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Abstract
In the evolution toward 6G, integrating artificial 

intelligence (AI) with advanced network infrastruc-
ture emerges as a pivotal strategy for enhancing net-
work intelligence and resource utilization. Existing 
distributed learning frameworks like federated learn-
ing and split learning often struggle with significant 
challenges in dynamic network environments includ-
ing high synchronization demands, costly com-
munication overhead, severe computing resource 
consumption, and data heterogeneity across net-
work nodes. These obstacles hinder the applications 
of ubiquitous computing capabilities of 6G net-
works, especially in light of the trend of escalating 
model parameters and training data volumes. To 
address these challenges effectively, this article intro-
duces “Snake Learning,” a cost-effective distributed 
learning framework. Specifically, Snake Learning 
respects the heterogeneity of inter-node computing 
capability and local data distribution in 6G networks, 
and sequentially trains the designated part of model 
layers on individual nodes. This layer-by-layer serpen-
tine update mechanism will significantly reduce the 
requirements for storage, memory, and communi-
cation during the model training phase. It demon-
strates superior adaptability and efficiency for both 
classification and fine-tuning tasks across homoge-
neous and heterogeneous data distributions.

Introduction
As 5G networks lay the groundwork to support 
Artificial Intelligence (AI)-related operations, 
especially enabling Federated Learning (FL) and 
model distribution, and so on [1], 6G is expected 
to further enable deeper integration of AI-relat-
ed capabilities and communications, as shown in 
Fig. 1, by supporting both “learning to commu-
nicate” and “communicating to learn” paradigms 
[2]. This advancement enables 6G to evolve into 
a dynamic, distributed computing platform that 
leverages intelligent User Equipment (UE) and 
Network Elements (NEs) as computing nodes, 
collectively offering Compute-as-a-Service (CaaS) 
and AI-as-a-Service (AIaaS). Such a transforma-
tion enhances distributed computation offloading, 
model training, and inference, further unleashing 
the potential of in-network resources while opti-
mizing capital expenditure.

Despite the apparent importance of an effec-
tive and efficient distributed training and/or 
fine-tuning framework, designing such a frame-
work in 6G networks still encounters considerable 
unique challenges [3]. First, the inherent variabil-
ity of the wireless network environment and the 
heterogeneous & dynamic computing resource 
availability can destabilize existing distributed 
learning frameworks (e.g., FL [4] or Split Learning 
[5]) and exacerbate the communication burden 
due to their frequent, real-time synchronization 
for parameter aggregation or intermediate acti-
vation and gradient transmission [6]. Although 
asynchronous methods can relax synchronization 
requirements, they give rise to certain complica-
tions [7] such as model inconsistency. Second, 
the statistical heterogeneity of data across scat-
tered nodes, characterized by diverse distributions 
and sizes, can hinder convergence and degrade 
model quality. Third, model training (fine-tuning) 
and inference in a distributed manner exhibit sig-
nificantly distinctive demands on memory band-
width and computing resources [8], particularly in 
6G networks where resources are shared among 
communication, CaaS and AIaaS functions. Tradi-
tional dynamic switching operations [9], based on 
traffic “tidal effect” in telecommunications, may 
no longer suffice to fully harness the capabilities 
of widely deployed computing resources in 6G. 
Therefore, a qualified training (fine-tuning) frame-
work that efficiently leverages dynamically avail-
able communication and computational resources 
while ensuring model consistency is essential to 
optimize resource utilization and complement the 
development of AIaaS in 6G networks [10].

In a nutshell, this article proposes a novel 
communication- and computation-efficient dis-
tributed collaborative learning framework for 6G 
networks, termed “Snake Learning.” Inspired by 
the “Snake” game, where the snake grows by 
progressively consuming items, Snake Learning 
incrementally improves model performance by 
serpentine layer-wise updates across different 
computing nodes with their local data. Significant-
ly different from existing approaches and frame-
works like parallel-oriented FL [4], relay-based 
Split Learning [5], and many variants [11–13], the 
serpentine, incremental parameter update and 
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transmission relax real-time and frequent synchro-
nization requirements while maintaining privacy 
friendliness. To ensure seamless integration, Snake 
Learning meaningfully calibrates service compo-
nents and workflows in 6G networks, and novelly 
incorporates several modules like data processing 
and Knowledge Distillation (KD). Benefiting from 
these revolutionary efforts, Snake Learning yields 
remarkably improved computation and commu-
nication efficiency and reduces storage and mem-
ory demands, making it well-suited to support 
model training or fine-tuning on resource-con-
strained nodes in 6G networks.

Existing Distributed Learning Frameworks and  
Key Issues within 6G Networks

Existing Distributed Learning Frameworks
Federated Learning: FL enables distributed devic-
es to locally train complete models on their own 
data and share only the resulting model updates 
with a central server, instead of transmitting raw 
data. As depicted in Fig. 2, central aggregation 
typically follows strategies like FedAvg [4], where 
each client’s contribution is weighted by their data 
size. Albeit its enhancement in privacy friendliness, 
classical FL suffers from excessive dependence 
on the single central server with minimal failure 
tolerance. Contingent on device-to-device com-
munication, decentralized alternatives emerge. 
However, both approaches struggle with compu-
tational-intensive demands for training increasing-
ly larger models on resource-constrained nodes 
[14] and the “straggler problem” in compulsory 
aggregation synchronization, where slower nodes 
disrupt the entire process.

Split Learning: Split Learning [5] optimizes for 
resource-constrained scenarios by offloading most 
Deep Neural Network (DNN) computations to 
a central server, while clients process only a few 

early layers (called client-side model) using local 
data. During training, clients transmit intermediate 
activations and labels (referred to as “smashed 
data”) to the server in exchange for gradients. 
Random Walking Snakes (RWS) [11] bypass serv-
er reliance by finely segmenting the model and 
sequentially activating a set of clients (a “snake”), 
where the periodically re-shuffled “head of snake” 
client, which holds the training data, offloads 
model segments to other clients within a snake, as 
depicted in Fig. 2. Despite the reduction in local 

FIGURE 1. Examples of Beyond Communication Services Overview provided by 6G networks.
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computing and memory demands, these relay-
based approaches [5, 11] significantly increase 
communication overhead and add susceptibility 
to disruptions. Additionally, they risk overfitting 
and catastrophic forgetting due to data heteroge-
neity among clients.

Combination of Federated Learning and Split 
Learning: Various hybrid approaches that integrate 
FL and Split Learning are also being explored. Split-
Fed Learning [12] leverages a dual-server setup, 
with the main server handling server-side model 
computations and the federal server synchroniz-
ing client-side model updates via FedAvg, to boost 
communication complexity through parallel pro-
cessing. Meanwhile, Accelerated FL [13] reduces 
reliance on communication by adopting a local-
loss-based training method. Notably, it utilizes two 
different local loss functions (one for the auxiliary 
network [e.g., Multi-Layer Perceptrons] connected 
to the cut layer on the client-side model, and the 
other for the server-side model’s output layer) for 
separately updating two split models, which are 
further concatenated to form a final model. There-
fore, it avoids receiving gradients from the main 
server and reduces the need for real-time synchro-
nization. Nevertheless, the federal server-related 
communication problem persists.

Key Issues of Distributed Learning within 6G networks
After reviewing representative distributed learn-
ing solutions, we can highlight several underlying 
deployment issues, which are analyzed at the bot-
tom part of Fig. 2 and provide the fundamental 
incentives for developing Snake Learning.

Reliance on Communication Synchronization: 
Wireless connections between UE and Base Sta-
tions (BSs) often fluctuate due to environmental 
conditions, device density, and mobility, leading 
to unpredictable changes in uplink and downlink 
speeds that disrupt the real-time data and model 
synchronization for distributed learning. This, in 
turn, exacerbates pressure on the bandwidth-lim-
ited air interface. Besides, asynchronous methods 
additionally introduce complexities like “model 
staleness” due to delayed updates, which leads to 
model inconsistency and non-convergence, ulti-
mately destabilizing training processes [7]. Hence, 
the over-reliance on synchronous communication 
heavily hinders the applicability of federal aggre-
gation-based distributed learning frameworks. 

Heterogeneous, Dynamic and Limited 
Resource Availability: Unlike stable and dedicated 
cloud computing resources, the inter-service shar-
ing nature in 6G networks underscores the “tidal 
effect” of traffic loads from conventional services, 
implying a tidal shift in the available computation-
al resources (e.g., CPU, memory, or any type of 
accelerators such as GPUs) for CaaS and AIaaS. 
Besides, the computing nodes, supplied by differ-
ent vendors, are constrained by heterogeneous 
computational capabilities due to the limitation of 
hardware, processing power, storage, and energy 
consumption. These result in significant disparities 
across computing nodes and make the aforemen-
tioned distributed learning frameworks fall short 
of processing computation-intensive tasks prompt-
ly and dynamically.

Heterogeneity of Data: Data from diverse 
network nodes exhibit unique distributions, com-
monly known as Non-Independent and Identi-

cally Distributed (Non-IID), due to differences in 
modalities, user behavior, and temporal and geo-
graphic preferences. Such heterogeneity intro-
duces biases during model training, affecting the 
stability of the training process and diminishing 
the generalization ability of the model [15]. To 
counteract these issues, simply adopting data-lev-
el techniques, such as augmentation or synthe-
sizing under-represented class samples, proves 
inadequate. Instead, more advanced strategies 
must be incorporated into the design of distribut-
ed learning frameworks.

Snake Learning: A Distributed Collaborative 
Learning Framework in 6G Networks

This section outlines the key components and imple-
mentation workflow (Fig. 3) of Snake Learning.

Overview
Toward efficient model training/fine-tuning while 
addressing emerging issues the previous section, 
Snake Learning shifts the paradigm from commu-
nication-intensive exchange of complete model 
updates in FL and real-time smashed data in Split 
Learning. In Snake Learning, each node with 
distinct local data is designated to train specific 
middle layers, along with the first and last layers 
of a DNN model, since the first layer extracts 
fundamental features while the last layer tailors 
task-specific decision boundaries for new tasks. 
Updated parameters are uploaded only once 
after completing local training on a node. This 
layer assignment for distributed training facilitates 
the adaptation to resource availability and hetero-
geneity, and locally training partial layers greatly 
reduces computing, storage, and communication 
requirements on individual nodes while maintain-
ing privacy friendliness. In case of communication 
and computation disruptions, the chain of training 
can seamlessly transit to an alternative idle node, 
thus ensuring continuity of model training.

Key Enabling Components for Snake Learning
In line with AIaaS like FL [2], Snake Learning 
necessitates the integration of several enabling 
components within 6G networks. As the sub-ar-
chitecture of distributed AI services advocated 
in Hexa-X project [2], these components primar-
ily encompass the Service Provider (SP), Process 
Controller (PC) & Process Computation Engine 
(PCE), and Local Manager (LM) & Local Compu-
tation Engine (LCE).

Service Provider: The SP, whether located 
externally or within 6G networks, manages dis-
tributed training and fine-tuning services that can 
be instantiated on demand. Operators or third 
parties interact with the SP via the Application 
Programming Interface (API), which supports the 
registration and de-registration of Snake Learning 
services. The SP handles different user requests, 
creating a dedicated process for each emerging 
task, associated with essential entities (e.g., Vir-
tual Machines [VMs] or containers) required for 
a library of AI models. At the system level, the 
SP orchestrates multiple concurrent processes, 
each managed by its own PC, allowing for simul-
taneous multi-task execution across the network. 
By continuously monitoring the working status of 
active processes, the SP can dynamically reallo-

In Snake Learning, each node 
with distinct local data is 

designated to train specific 
middle layers, along with 

the first and last layers of a 
DNN model, since the first 

layer extracts fundamental 
features while the last layer 
tailors task-specific decision 

boundaries for new tasks. 
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cate and migrate the entities that execute these 
processes based on service demands, resource 
availability, or fluctuations in wireless link quality.

Process Controller and Process Computa-
tion Engine: Each active Snake Learning process 
includes a dedicated PC and a PCE that can be 
virtually taken charge of by the SP. The PC bridg-
es the SP and LMs within different computing 
nodes (e.g., UE), while the PCE handles compu-
tations. The PC is responsible for balancing trade-
offs between resource cost and performance, and 
is conceptionally composed of several logically 
separated network functions, such as node man-
agement, training task allocation & scheduling 
(i.e., assigning different layers to specific nodes), 
and communication management.

Local Manager and Local Computation 
Engine: Each computing node is endowed with a 
Snake Learning LM, which manages interactions 
between Snake Learning services and the LCE 
within the node. To facilitate the orchestration 
of resources, idle UEs may request authorization 
from the SP in advance, while other in-network 
computing nodes semi-actively apply the joining. 
In terms of computational capability, resource 
availability, and data relevance & quality, the PC 
in the process instantiated for a specific training 
task coordinates and determines the acceptance 
of nodes. Once approved, the node is added 
to a node management pool within the specif-
ic PC. Notably, during its enrollment in a spe-
cific task, each node still has the privilege to be 
accepted and reassigned by another PC based 
on its resource availability and the emerging com-
puting demand. On the other hand, the LCE is 
responsible for performing actual computation 
tasks, including data processing, model training 
and parameter updates, and adopting appropriate 
measures (e.g., provisionally activating a KD mod-
ule) to maintain acceptable performance.

Workflow of Snake Learning
Initialization: Snake Learning process, an instance 
of service registered via AIaaS API with key ser-
vice descriptions such as task, objectives, require-
ments, and possible constraints (e.g., Service 
Level Agreement [SLA], data & devices, and layer 
assignment guidelines), begins with initialization 
of the AI model and training tasks, and authorized 
participating nodes from the SP. Then the allo-
cated PC for specific task takes charge of unified 
service node management, including identifying 
and verifying node connectivity, assessing and 
confirming node computational resources, and 
monitoring its status, resource usage, data quality 
and performance metrics. Additionally, to address 
data heterogeneity and prevent catastrophic for-
getting, the KD module, which computes a dis-
tillation loss, is conditionally activated according 
to the measured inter-node data distribution dis-
crepancy (e.g., Kullback–Leibler divergence, Jen-
sen–Shannon distance or hyperparameter fitting 
differences).

Layer Assignment: Once registered for 
a Snake Learning service, each idle node is 
informed by the PC of the specific “middle layer” 
to be learned (i.e., one of the 2nd to N – 1-th lay-
ers in a model with N layers). In other words, the 
PC takes charge of the layer assignment. Specif-
ically, with training objective (e.g., accuracy) as 
the primary goal, this layer assignment, which shall 
account for various factors from training complex-
ities of middle layers to network conditions (e.g., 
connectivity quality & stability, and routing paths) 
and system constraints (e.g., bandwidth, latency, 
energy consumption, and resource availability), 
aims to make assigned layers proportionate to 
the computational capability and communica-
tion connectivity of nodes. Categorized as the 
well-studied multi-objective optimization prob-
lem, it can be solved by methods like mixed-in-

FIGURE 3. Workflow of Snake Learning in both Client-Server and Peer-to-Peer modes. The KD module, an abbreviation for Knowledge Distillation, activates or deactivates according to the inter-node 
data heterogeneity. 
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teger linear programming, AI-driven approaches 
such as reinforcement learning, and bio-inspired 
heuristic algorithms. Notably, in CS mode, it is 
feasible to simultaneously enable multiple nodes 
for parallel execution of the same training task, 
while PCE aggregates the results. Nevertheless, 
this parallelization comes at the cost of compro-
mised relaxation to synchronization requirements. 
Furthermore, fully without the involvement of the 
PCE, the P2P mode might also involve the slight 
participation of the PC. For example, the first 
training node acquires an initial model and tasks 
from the PC, while next-hop nodes are coordi-
nately selected by the PC.

Local Training: Same as FL, Snake Learning 
adopts privacy-friendly distributed data training 
by keeping raw data at generated nodes only. 
Additionally, advanced techniques like differen-
tial privacy and homomorphic encryption can be 
further employed to strengthen the privacy-pre-
serving capabilities of Snake Learning by reducing 
data leakage risks and defending against malicious 
attacks during parameter transmission. Before train-
ing the assigned layers from locally stored data, 
a Data Module in LCE gets involved for prepro-
cessing (e.g., normalization, cleaning) and filtering 
of the data. To ensure training effectiveness, local 
data heterogeneity can be optimized by adopt-
ing techniques such as clustering and anomaly 
detection to identify similarities and isolate data 
inconsistencies, while inter-node heterogeneity 
that leads to excessive imbalances in updates can 
be alleviated by KD module. In that regard, if the 
KD module is triggered in initialization, it conducts 
an extra distillation operation by calculating the 
cross-entropy loss. This loss measures the discrep-
ancy between the model previously received by 
the node (as the “teacher”) and the model cur-
rently undergoing local training iterations (as the 
“student”), thus preventing catastrophic forget-
ting while maintaining learning stability. Besides, 
integrating gradient clipping and adaptive learn-

ing rate with optimizers like Adam, RMSprop can 
contribute to improving learning effectiveness. In 
our following serpentine training feasibility study, 
the initial learning rate for updating the parame-
ters of each middle layer remains constant, while 
the adjustment (e.g., decaying the learning rate) is 
performed after updating all layers once (i.e., one 
cycle), thus leading to uniform inter-layer learning 
speed and boosting model stability across cycles. 
Meanwhile, prior to updating the model, the com-
puted gradients undergo a clipping operation to 
avoid gradient explosion. In addition, those non-up-
dated layers’ parameters can be quantized to fur-
ther reduce storage demands.

Updated Parameter Transmission and Node 
Management: Normally, in CS mode, the updat-
ed parameters are uploaded to the PCE, which 
aggregates (if necessary) and disseminates them 
to the next node selected by the PC. In P2P 
mode, nodes also learn the next hop node from 
the PC, and if the next node has the latest model 
cached, updated parameters can be directly trans-
mitted. For each computing node, communica-
tion for parameter uploading occurs only once at 
the end of local training. Nodes can proactively 
request the PC to exit a Snake Learning service 
upon reaching the designated training epochs, 
predefined threshold training metrics, or detecting 
trivial performance improvement. The task-spe-
cific PC continuously monitors each accepted 
node’s status and retains the authority to remove 
nodes from the training process and inform SP 
under conditions such as intermittent and unsta-
ble network connectivity, unexpected deteriora-
tion in resource availability (e.g., load, memory, 
battery status), or disqualified local training effi-
ciency (e.g., unsatisfactory processing speed or 
suboptimal training accuracy). When this occurs, 
the PC ensures continuity by notifying the node’s 
LM to terminate its participation and initiate 
updated parameter upload, while dynamically 
reallocating the training task to candidate nodes 

FIGURE 4. The illustration of Snake Learning’s feasibility on VGG-11 model.
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with available resources. This process helps main-
tain training consistency and robustness, ensuring 
Snake Learning remains scalable and adaptable to 
the dynamic complexities of 6G networks.

Feasibility Study of Snake Learning
This section presents the feasibility study of Snake 
Learning’s serpentine training and highlights its 
superiority over existing representative methods on 
classic tasks including the widely-used image clas-
sification task in the literature as well as emerging 
more complex use cases like LLM fine-tuning.

Feasibility Study
Training of Classification Tasks: We demon-
strate the effectiveness of Snake Learning using 
the VGG-11 model on the CIFAR-10 dataset. 
VGG-11 comprises 8 Convolutional (Conv) and 
3 Fully Connected (FC) layers, with the last FC 
layer producing a 10-class output. As illustrated 
in Fig. 4, Snake Learning assigns the 9 middle 
layers (excluding the 1st and 11th) to distribut-
ed nodes with distinct local data, whereas Accel-
erated FL updates the first two layers of model 
and an auxiliary linear layer and FL updates the 
entire model across the same nodes. In IID cases, 
50,000 samples (each with 32  32 pixels) are 
uniformly spread among 9 nodes. For Non-IID 
scenarios, the datasets are partitioned based on 
Dirichlet distribution as class priors. We allocate 
data Dk to k-th node based on a sampled D  
Dir(a), where a determines the degree of Non-
IID, with a default value of 2.0. One epoch (i.e.,  
E = 1) refers to one entire passing of a node’s local 
dataset. After the designated training epochs, 
Accelerated FL and FL executes FedAvg aggrega-
tion [4], while Snake Learning transfers the updat-
ed parameters. Results in Fig. 5 show that Snake 
Learning rapidly attains 60 percent accuracy with 
significantly fewer training iterations, underscoring 
its computational efficiency for individual nodes. 
More importantly, Snake Learning achieves 
acceptable final performance (i.e., exceeding 
95 percent of that of FL), while simultaneously 
reducing communication overhead per commu-
nication round by nearly half, as detailed in Fig. 
2. Furthermore, our experiment experience also 
indicates that Snake Learning provides appealing 
performance robustness in dynamic wireless net-
works and the unexpected interruption during 
layer-wise communications only leads to trivial 
performance degradation. These results corrob-
orate Snake Learning’s promise for distributed 
serpentine learning with limited communication 
and computational resources only.

Additionally, we further examine layer update 
sequences, finding that reverse middle layer train-
ing (i.e., from deep to early layers) violates hier-
archical feature learning. Random and sequential 
updates yield similar results in IID cases, while 
sequential serpentine training is superior in Non-
IID settings. Such observations align with com-
mon DNN insights that early layers learn basic 
features and deeper layers capture complex pat-
terns, guaranteeing Snake Learning’s robustness 
to heterogeneous data distributions.

Fine-Tuning of LLMs: Distributed fine-tuning of 
data-hungry and compute-intensive LLMs within 
6G network nodes becomes crucial, yet challeng-
ing due to the single node’s memory usage limita-

tion in FL and billions of communication demands 
in Split Learning. Thus, such LLMs can gain from 
Snake Learning by optimizing the fine-tuning pro-
cess across multiple nodes with lower comput-
ing, memory, and communication demands. Our 
experiments employ Supervised Fine-Tuning (SFT) 
on both the 1.3-billion-parameter OPT model and 
the 8-billion-parameter Llama-3 model, featuring 
24 and 32 transformer blocks respectively, for 
causal language tasks. Apart from the embedding 
layer and the linear output layer for generating 
predictions, the intermediate transformer blocks 
are assigned to distinct nodes for fine-tuning, 
with each node updating a specific transformer 
block and employing strategies like freezing or 
8-bit quantization on non-updated parameters 
to further reduce memory. Besides, rather than 
simply using the typical cosine learning sched-
ule strategy in LLMs, Snake Learning maintains 
a constant learning rate throughout the cycle 
updating of all blocks, while using the systematic 
decay for the next cycle to guarantee consistent 
training across layers. Experimental results show 
that such a design contributes to avoiding over-
fitting and enhancing model stability. To further 
enhance computing and memory efficiency, we 
complement Snake Learning with the parame-
ter-efficient Low-Rank Adaptation (LoRA) tech-
nique [10], decomposing weight updates for all 
linear layers into the product of two low-rank 
matrices, thus significantly reducing the complex-
ity of the model while maintaining performance. 
Additionally, given the variability in computing 
power among distributed nodes, assigning a per-
sonalized rank to each node could enable a more 
efficient balance between model size, computa-
tional cost, and performance. This aspect warrants 
further exploration. 4 query-answer pair datasets 
including rm-static, synthtic-instruct-gptj-pairwise, 
full-hh-rlhf, and rlhf-reward-datasets are used for 
OPT-1.3B, while higher-quality dataset “ChatGPT-
GroundTruth” consisting of 160 sub-topics are 
used for Llama3-8B. The datasets are uniformly 
distributed across the nodes in IID settings; while 
in Non-IID settings, each node holds different 
datasets or different types of sub-topics. Figure 6 
provides the comparison between Snake Learn-
ing and FL, showing that compared to FL, Snake 
Learning achieves a more rapid decline in per-
plexity (ppl) in IID cases. Besides, as validated by 

FIGURE 5. Image classification performance comparison of other frameworks and Snake Learning (SL) across varying 
training epochs E.
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experiments, the performance superiority holds 
for Non-IID settings as well, indicating its effi-
cient utilization of nodes’ data to enhance model 
performance. Furthermore, this performance 
improvement becomes increasingly apparent as 
the number of epochs increases. Meanwhile, the 
memory footprint for fine-tuning the OPT-1.3B 
model on a single node is reduced from approx-
imately 19.37 GB in conventional FL to just 3.13 
GB for Snake Learning. These results indicate that 
Snake Learning is a promising framework for col-
laboratively fine-tuning LLMs on resource-con-
strained network nodes.

Discussions
Besides the performance improvement shown 
above, it is worthy to discuss the following aspects 
of Snake Learning.

Relaxed Synchronization Requirements: 
Snake Learning employs sequential learning, per-
forming complete iterations on individual nodes 
without the need for synchronization, as required 
in FL for parameter aggregation or Split Learning 
for intermediate activation/gradient transmission. 
This enables flexible training schedules such as 
off-peak time fine-tuning.

Computation Savings: While non-updated 
layers require forward propagation to pass fea-
tures, their weight gradient computations can be 
skipped, retaining only activation gradients for 
backpropagation. This reduces FLOPs and leads 
to computational savings on-node. Integrating 
pruning and quantization can further enhance 
these savings.

Memory Savings: Snake Learning significant-
ly lowers memory usage by storing only updated 
parameter gradients and their optimizer states, while 
these factors deeply affect the peak memory occu-
pation during training. Quantization of non-updated 
parameters can lead to additional savings.

Communication Savings: Split Learning’s com-
munication overhead is proportional to the data 
size, resulting in large volumes of smashed data, 
especially for fine-tuning LLMs. Meanwhile, due 
to the real-time synchronization of the complete 
model, significant communication overhead is 
also required in FL. In comparison, Snake Learning 
transfers only locally updated partial parameters 
and eliminates the need for frequent synchroniza-
tion, thus saving significant communication over-
head, especially as local iterations increase.

Data Heterogeneity Adaptation and Scal-
ability: As shown in Figs. 5 and 6, Snake Learn-
ing excels with Non-IID data through techniques, 
such as KD, gradient clipping & learning rate 
adjustment, and better aligns with the real-world 
scenarios of gradually garnering data and training 
the model.

Training Time: The sequential training nature 
in Snake Learning takes increased training time. 
Therefore, it is more suitable for some time-insen-
sitive distributed training/fine-tuning tasks, to reap 
the available computing resources for off-peak 
communication services.

Interoperability: As discussed earlier, APIs 
are essential for AIaaS due to the complication 
of orchestrating distributed communication and 
computing resources, while reserved APIs need 
further investigation to implement task-oriented 
orchestration and guarantee service continuity. 
Initiatives such as the ONAP MultiCloud project 
and Camara’s Edge Cloud, which enables the 
exposure of resources and features for optimiz-
ing VNF (Virtual Network Function) homing and 
placement and the deployment of applications on 
VMs and containers, are exemplary in this regard.

Conclusions and Open Research Directions
We propose the distributed learning framework 
“Snake Learning” that optimizes computational 
resource utilization within 6G by assigning par-
tial layers for sequential model training/fine-tuning 
across idle nodes. Its serpentine training mechanism 
minimizes synchronization and data transmission, 
addressing the limitations of traditional FL and Split 
Learning. Knowledge distillation and gradient clip-
ping help prevent catastrophic forgetting caused by 
data heterogeneity and gradient explosion. Evalua-
tions on classification and LLM fine-tuning tasks con-
firm that it outperforms in decentralizing workloads 
and reducing storage, memory, and communication 
demands on individual nodes, while maintaining 
robust model performance. While Snake Learning is 
a promising distributed learning framework for pro-
visioning AI model training/fine-tuning services, there 
are still some remaining open issues, such as open 
API design and standardization for enhanced interop-
erability, fine-grained layer assignment schemes for a 
library of typical AI models, thorough node selection 
and resource scheduling management schemes. 
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