
IEEE Communications Magazine • May 2025198 0163-6804/25/$25.00 © 2025 IEEE

Abstract
In the evolution toward 6G, integrating artificial

intelligence (AI) with advanced network infrastruc-
ture emerges as a pivotal strategy for enhancing net-
work intelligence and resource utilization. Existing
distributed learning frameworks like federated learn-
ing and split learning often struggle with significant
challenges in dynamic network environments includ-
ing high synchronization demands, costly com-
munication overhead, severe computing resource
consumption, and data heterogeneity across net-
work nodes. These obstacles hinder the applications
of ubiquitous computing capabilities of 6G net-
works, especially in light of the trend of escalating
model parameters and training data volumes. To
address these challenges effectively, this article intro-
duces “Snake Learning,” a cost-effective distributed
learning framework. Specifically, Snake Learning
respects the heterogeneity of inter-node computing
capability and local data distribution in 6G networks,
and sequentially trains the designated part of model
layers on individual nodes. This layer-by-layer serpen-
tine update mechanism will significantly reduce the
requirements for storage, memory, and communi-
cation during the model training phase. It demon-
strates superior adaptability and efficiency for both
classification and fine-tuning tasks across homoge-
neous and heterogeneous data distributions.

Introduction
As 5G networks lay the groundwork to support
Artificial Intelligence (AI)-related operations,
especially enabling Federated Learning (FL) and
model distribution, and so on [1], 6G is expected
to further enable deeper integration of AI-relat-
ed capabilities and communications, as shown in
Fig. 1, by supporting both “learning to commu-
nicate” and “communicating to learn” paradigms
[2]. This advancement enables 6G to evolve into
a dynamic, distributed computing platform that
leverages intelligent User Equipment (UE) and
Network Elements (NEs) as computing nodes,
collectively offering Compute-as-a-Service (CaaS)
and AI-as-a-Service (AIaaS). Such a transforma-
tion enhances distributed computation offloading,
model training, and inference, further unleashing
the potential of in-network resources while opti-
mizing capital expenditure.

Despite the apparent importance of an effec-
tive and efficient distributed training and/or
fine-tuning framework, designing such a frame-
work in 6G networks still encounters considerable
unique challenges [3]. First, the inherent variabil-
ity of the wireless network environment and the
heterogeneous & dynamic computing resource
availability can destabilize existing distributed
learning frameworks (e.g., FL [4] or Split Learning
[5]) and exacerbate the communication burden
due to their frequent, real-time synchronization
for parameter aggregation or intermediate acti-
vation and gradient transmission [6]. Although
asynchronous methods can relax synchronization
requirements, they give rise to certain complica-
tions [7] such as model inconsistency. Second,
the statistical heterogeneity of data across scat-
tered nodes, characterized by diverse distributions
and sizes, can hinder convergence and degrade
model quality. Third, model training (fine-tuning)
and inference in a distributed manner exhibit sig-
nificantly distinctive demands on memory band-
width and computing resources [8], particularly in
6G networks where resources are shared among
communication, CaaS and AIaaS functions. Tradi-
tional dynamic switching operations [9], based on
traffic “tidal effect” in telecommunications, may
no longer suffice to fully harness the capabilities
of widely deployed computing resources in 6G.
Therefore, a qualified training (fine-tuning) frame-
work that efficiently leverages dynamically avail-
able communication and computational resources
while ensuring model consistency is essential to
optimize resource utilization and complement the
development of AIaaS in 6G networks [10].

In a nutshell, this article proposes a novel
communication- and computation-efficient dis-
tributed collaborative learning framework for 6G
networks, termed “Snake Learning.” Inspired by
the “Snake” game, where the snake grows by
progressively consuming items, Snake Learning
incrementally improves model performance by
serpentine layer-wise updates across different
computing nodes with their local data. Significant-
ly different from existing approaches and frame-
works like parallel-oriented FL [4], relay-based
Split Learning [5], and many variants [11–13], the
serpentine, incremental parameter update and

Xiaoxue Yu, Xingfu Yi, Rongpeng Li, Fei Wang, Chenghui Peng, Zhifeng Zhao, and Honggang Zhang

Xiaoxue Yu, Xingfu Yi, and Rongpeng Li (corresponding author) are with Zhejiang University, China; Fei Wang and Chenghui Peng are with
Huawei Technologies, China; Zhifeng Zhao is with Zhejiang Lab, China; Honggang Zhang is with City University of Macau, China.Digital Object Identifier: 10.1109/MCOM.005.2400282

Snake Learning: A Communication- and
Computation-Efficient Distributed

Learning Framework for 6G

ACCEPTED FROM OPEN CALL

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025 199

transmission relax real-time and frequent synchro-
nization requirements while maintaining privacy
friendliness. To ensure seamless integration, Snake
Learning meaningfully calibrates service compo-
nents and workflows in 6G networks, and novelly
incorporates several modules like data processing
and Knowledge Distillation (KD). Benefiting from
these revolutionary efforts, Snake Learning yields
remarkably improved computation and commu-
nication efficiency and reduces storage and mem-
ory demands, making it well-suited to support
model training or fine-tuning on resource-con-
strained nodes in 6G networks.

Existing Distributed Learning Frameworks and
Key Issues within 6G Networks

Existing Distributed Learning Frameworks
Federated Learning: FL enables distributed devic-
es to locally train complete models on their own
data and share only the resulting model updates
with a central server, instead of transmitting raw
data. As depicted in Fig. 2, central aggregation
typically follows strategies like FedAvg [4], where
each client’s contribution is weighted by their data
size. Albeit its enhancement in privacy friendliness,
classical FL suffers from excessive dependence
on the single central server with minimal failure
tolerance. Contingent on device-to-device com-
munication, decentralized alternatives emerge.
However, both approaches struggle with compu-
tational-intensive demands for training increasing-
ly larger models on resource-constrained nodes
[14] and the “straggler problem” in compulsory
aggregation synchronization, where slower nodes
disrupt the entire process.

Split Learning: Split Learning [5] optimizes for
resource-constrained scenarios by offloading most
Deep Neural Network (DNN) computations to
a central server, while clients process only a few

early layers (called client-side model) using local
data. During training, clients transmit intermediate
activations and labels (referred to as “smashed
data”) to the server in exchange for gradients.
Random Walking Snakes (RWS) [11] bypass serv-
er reliance by finely segmenting the model and
sequentially activating a set of clients (a “snake”),
where the periodically re-shuffled “head of snake”
client, which holds the training data, offloads
model segments to other clients within a snake, as
depicted in Fig. 2. Despite the reduction in local

FIGURE 1. Examples of Beyond Communication Services Overview provided by 6G networks.

Core Networks

Terminal Users and
Various Vertical Domain Infrastructure

UE UE UE UE

Radio Access Networks

……

Enhanced Positioning

Precise Tracking

Integrated Sensing

Voice Translation
Driving Assistance Smart Logistics

Speech Recognition Optimization Custom Image Recognition
User Behavior Prediction

Distributed Model
 Training
 Fine-tuning
 Inference

Distributed Data
 Collection
 Transformation
 Feature extraction

Localized/personalized AI tasks optimization & Network-assistant AI services provision

Distributed Compu-
tation Offloading

AI-as-a-Service Compute-as-a-ServiceData Analysis

……

Beyond Communication Services

FIGURE 2. Comparison of different distributed learning frameworks.

Activations
and labels

Client-
side

model

Full model
exchange

Activations’
gradients

Model
aggregation

Auxiliary
network

Client
parameters
exchange

SplitFed Accelerated FL

Main
ServerServer-

side
model

Fed
ServerGlobal

model

Wireless channel

Server

Client

Communication
Overhead

Main
Server

Fed
Server

Updated
Parameters Training Frozen

Communication
Synchronization
Heterogeneous,

Dynamic and Limited
Computing Resource

Data
Heterogeneity

Parameter
-related

Data
-related

 Split Learning…

…

RWSSnake Learning

Server

Client-
Server

Peer-
to-

Peer

FL

 E
va

lu
at

io
n

R
ob

us
tn

es
s

of

506*D Million 819 Million 1.4*D + 819 Million 2.8*D + 410 Million 282 Million 6.6 Billion

*Communication Overhead Analysis on Model:VGG-11; Dataset:CIFAR-10; Total data:50,000 ; Input Size:3*32*32 ; Nodes:9 ; Epoch on each node:1 ; Synchronization times:D .

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025200

computing and memory demands, these relay-
based approaches [5, 11] significantly increase
communication overhead and add susceptibility
to disruptions. Additionally, they risk overfitting
and catastrophic forgetting due to data heteroge-
neity among clients.

Combination of Federated Learning and Split
Learning: Various hybrid approaches that integrate
FL and Split Learning are also being explored. Split-
Fed Learning [12] leverages a dual-server setup,
with the main server handling server-side model
computations and the federal server synchroniz-
ing client-side model updates via FedAvg, to boost
communication complexity through parallel pro-
cessing. Meanwhile, Accelerated FL [13] reduces
reliance on communication by adopting a local-
loss-based training method. Notably, it utilizes two
different local loss functions (one for the auxiliary
network [e.g., Multi-Layer Perceptrons] connected
to the cut layer on the client-side model, and the
other for the server-side model’s output layer) for
separately updating two split models, which are
further concatenated to form a final model. There-
fore, it avoids receiving gradients from the main
server and reduces the need for real-time synchro-
nization. Nevertheless, the federal server-related
communication problem persists.

Key Issues of Distributed Learning within 6G networks
After reviewing representative distributed learn-
ing solutions, we can highlight several underlying
deployment issues, which are analyzed at the bot-
tom part of Fig. 2 and provide the fundamental
incentives for developing Snake Learning.

Reliance on Communication Synchronization:
Wireless connections between UE and Base Sta-
tions (BSs) often fluctuate due to environmental
conditions, device density, and mobility, leading
to unpredictable changes in uplink and downlink
speeds that disrupt the real-time data and model
synchronization for distributed learning. This, in
turn, exacerbates pressure on the bandwidth-lim-
ited air interface. Besides, asynchronous methods
additionally introduce complexities like “model
staleness” due to delayed updates, which leads to
model inconsistency and non-convergence, ulti-
mately destabilizing training processes [7]. Hence,
the over-reliance on synchronous communication
heavily hinders the applicability of federal aggre-
gation-based distributed learning frameworks.

Heterogeneous, Dynamic and Limited
Resource Availability: Unlike stable and dedicated
cloud computing resources, the inter-service shar-
ing nature in 6G networks underscores the “tidal
effect” of traffic loads from conventional services,
implying a tidal shift in the available computation-
al resources (e.g., CPU, memory, or any type of
accelerators such as GPUs) for CaaS and AIaaS.
Besides, the computing nodes, supplied by differ-
ent vendors, are constrained by heterogeneous
computational capabilities due to the limitation of
hardware, processing power, storage, and energy
consumption. These result in significant disparities
across computing nodes and make the aforemen-
tioned distributed learning frameworks fall short
of processing computation-intensive tasks prompt-
ly and dynamically.

Heterogeneity of Data: Data from diverse
network nodes exhibit unique distributions, com-
monly known as Non-Independent and Identi-

cally Distributed (Non-IID), due to differences in
modalities, user behavior, and temporal and geo-
graphic preferences. Such heterogeneity intro-
duces biases during model training, affecting the
stability of the training process and diminishing
the generalization ability of the model [15]. To
counteract these issues, simply adopting data-lev-
el techniques, such as augmentation or synthe-
sizing under-represented class samples, proves
inadequate. Instead, more advanced strategies
must be incorporated into the design of distribut-
ed learning frameworks.

Snake Learning: A Distributed Collaborative
Learning Framework in 6G Networks

This section outlines the key components and imple-
mentation workflow (Fig. 3) of Snake Learning.

Overview
Toward efficient model training/fine-tuning while
addressing emerging issues the previous section,
Snake Learning shifts the paradigm from commu-
nication-intensive exchange of complete model
updates in FL and real-time smashed data in Split
Learning. In Snake Learning, each node with
distinct local data is designated to train specific
middle layers, along with the first and last layers
of a DNN model, since the first layer extracts
fundamental features while the last layer tailors
task-specific decision boundaries for new tasks.
Updated parameters are uploaded only once
after completing local training on a node. This
layer assignment for distributed training facilitates
the adaptation to resource availability and hetero-
geneity, and locally training partial layers greatly
reduces computing, storage, and communication
requirements on individual nodes while maintain-
ing privacy friendliness. In case of communication
and computation disruptions, the chain of training
can seamlessly transit to an alternative idle node,
thus ensuring continuity of model training.

Key Enabling Components for Snake Learning
In line with AIaaS like FL [2], Snake Learning
necessitates the integration of several enabling
components within 6G networks. As the sub-ar-
chitecture of distributed AI services advocated
in Hexa-X project [2], these components primar-
ily encompass the Service Provider (SP), Process
Controller (PC) & Process Computation Engine
(PCE), and Local Manager (LM) & Local Compu-
tation Engine (LCE).

Service Provider: The SP, whether located
externally or within 6G networks, manages dis-
tributed training and fine-tuning services that can
be instantiated on demand. Operators or third
parties interact with the SP via the Application
Programming Interface (API), which supports the
registration and de-registration of Snake Learning
services. The SP handles different user requests,
creating a dedicated process for each emerging
task, associated with essential entities (e.g., Vir-
tual Machines [VMs] or containers) required for
a library of AI models. At the system level, the
SP orchestrates multiple concurrent processes,
each managed by its own PC, allowing for simul-
taneous multi-task execution across the network.
By continuously monitoring the working status of
active processes, the SP can dynamically reallo-

In Snake Learning, each node
with distinct local data is

designated to train specific
middle layers, along with

the first and last layers of a
DNN model, since the first

layer extracts fundamental
features while the last layer
tailors task-specific decision

boundaries for new tasks.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025 201

cate and migrate the entities that execute these
processes based on service demands, resource
availability, or fluctuations in wireless link quality.

Process Controller and Process Computa-
tion Engine: Each active Snake Learning process
includes a dedicated PC and a PCE that can be
virtually taken charge of by the SP. The PC bridg-
es the SP and LMs within different computing
nodes (e.g., UE), while the PCE handles compu-
tations. The PC is responsible for balancing trade-
offs between resource cost and performance, and
is conceptionally composed of several logically
separated network functions, such as node man-
agement, training task allocation & scheduling
(i.e., assigning different layers to specific nodes),
and communication management.

Local Manager and Local Computation
Engine: Each computing node is endowed with a
Snake Learning LM, which manages interactions
between Snake Learning services and the LCE
within the node. To facilitate the orchestration
of resources, idle UEs may request authorization
from the SP in advance, while other in-network
computing nodes semi-actively apply the joining.
In terms of computational capability, resource
availability, and data relevance & quality, the PC
in the process instantiated for a specific training
task coordinates and determines the acceptance
of nodes. Once approved, the node is added
to a node management pool within the specif-
ic PC. Notably, during its enrollment in a spe-
cific task, each node still has the privilege to be
accepted and reassigned by another PC based
on its resource availability and the emerging com-
puting demand. On the other hand, the LCE is
responsible for performing actual computation
tasks, including data processing, model training
and parameter updates, and adopting appropriate
measures (e.g., provisionally activating a KD mod-
ule) to maintain acceptable performance.

Workflow of Snake Learning
Initialization: Snake Learning process, an instance
of service registered via AIaaS API with key ser-
vice descriptions such as task, objectives, require-
ments, and possible constraints (e.g., Service
Level Agreement [SLA], data & devices, and layer
assignment guidelines), begins with initialization
of the AI model and training tasks, and authorized
participating nodes from the SP. Then the allo-
cated PC for specific task takes charge of unified
service node management, including identifying
and verifying node connectivity, assessing and
confirming node computational resources, and
monitoring its status, resource usage, data quality
and performance metrics. Additionally, to address
data heterogeneity and prevent catastrophic for-
getting, the KD module, which computes a dis-
tillation loss, is conditionally activated according
to the measured inter-node data distribution dis-
crepancy (e.g., Kullback–Leibler divergence, Jen-
sen–Shannon distance or hyperparameter fitting
differences).

Layer Assignment: Once registered for
a Snake Learning service, each idle node is
informed by the PC of the specific “middle layer”
to be learned (i.e., one of the 2nd to N – 1-th lay-
ers in a model with N layers). In other words, the
PC takes charge of the layer assignment. Specif-
ically, with training objective (e.g., accuracy) as
the primary goal, this layer assignment, which shall
account for various factors from training complex-
ities of middle layers to network conditions (e.g.,
connectivity quality & stability, and routing paths)
and system constraints (e.g., bandwidth, latency,
energy consumption, and resource availability),
aims to make assigned layers proportionate to
the computational capability and communica-
tion connectivity of nodes. Categorized as the
well-studied multi-objective optimization prob-
lem, it can be solved by methods like mixed-in-

FIGURE 3. Workflow of Snake Learning in both Client-Server and Peer-to-Peer modes. The KD module, an abbreviation for Knowledge Distillation, activates or deactivates according to the inter-node
data heterogeneity.

Process Controller
(PC)

Snake Learning Process 1

Process Controller

Communication Management
...

Process Controller
(PC)

Communication Management

Snake Learning Process 1Snake Learning Process i

Process Computation Engine

Process Controller

Node Management

Communication Management

Task Allocation and Scheduling

...

Process Controller
(PC)

Communication Management

Snake Learning Process 1Snake Learning Process 2

Process Computation Engine

Process Controller

Node Management

Communication Management

Task Allocation and Scheduling

...

NE

c

Local Manager
NE 1

Local Computation Engine

KD
ModuleLoss

Snake Learning Service ProviderLocal Data
Data

Module

Data Teacher
Logits

Distillation Loss

Non-updated model

Partial updated model

Student
Logits

Total Loss LossKD Module

Distillation Loss

Client-Server Mode

AIaaS Exposure API

Peer-to-Peer ModeSnake Learning
Service Request Middle Layer 1

Update

Middle Layer
2 Update

c

Local Manager

NE

Local Computation Engine

c

Local Manager

Local Computation Engine

NE 2

Loss
Local Data

NE k

KD
Module

Loss
Local Data

c

Local Manager

Local Computation Engine

NE 1

KD
ModuleLoss

Local Data

c

Local Manager

Local Computation Engine

NE 2

c

Local Manager

Local Computation Engine

NE k

KD
ModuleLoss

Local Data

KD
Module

Loss
Local Data

Process Controller
(PC)

Communication Management

Snake Learning Process 1

Process Computation Engine

Process Controller

Node Management

Communication Management

Task Allocation and Scheduling

...

Middle Layer 1
Update

Middle Layer k
Updates

Aggregation

Middle Layer
2 Update

Middle Layer
k Update

......

... ...

Middle Layer
k Update

Data
Module

KD
Module

Data
Module

Data
Module

Data
Module

Data
Module

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025202

teger linear programming, AI-driven approaches
such as reinforcement learning, and bio-inspired
heuristic algorithms. Notably, in CS mode, it is
feasible to simultaneously enable multiple nodes
for parallel execution of the same training task,
while PCE aggregates the results. Nevertheless,
this parallelization comes at the cost of compro-
mised relaxation to synchronization requirements.
Furthermore, fully without the involvement of the
PCE, the P2P mode might also involve the slight
participation of the PC. For example, the first
training node acquires an initial model and tasks
from the PC, while next-hop nodes are coordi-
nately selected by the PC.

Local Training: Same as FL, Snake Learning
adopts privacy-friendly distributed data training
by keeping raw data at generated nodes only.
Additionally, advanced techniques like differen-
tial privacy and homomorphic encryption can be
further employed to strengthen the privacy-pre-
serving capabilities of Snake Learning by reducing
data leakage risks and defending against malicious
attacks during parameter transmission. Before train-
ing the assigned layers from locally stored data,
a Data Module in LCE gets involved for prepro-
cessing (e.g., normalization, cleaning) and filtering
of the data. To ensure training effectiveness, local
data heterogeneity can be optimized by adopt-
ing techniques such as clustering and anomaly
detection to identify similarities and isolate data
inconsistencies, while inter-node heterogeneity
that leads to excessive imbalances in updates can
be alleviated by KD module. In that regard, if the
KD module is triggered in initialization, it conducts
an extra distillation operation by calculating the
cross-entropy loss. This loss measures the discrep-
ancy between the model previously received by
the node (as the “teacher”) and the model cur-
rently undergoing local training iterations (as the
“student”), thus preventing catastrophic forget-
ting while maintaining learning stability. Besides,
integrating gradient clipping and adaptive learn-

ing rate with optimizers like Adam, RMSprop can
contribute to improving learning effectiveness. In
our following serpentine training feasibility study,
the initial learning rate for updating the parame-
ters of each middle layer remains constant, while
the adjustment (e.g., decaying the learning rate) is
performed after updating all layers once (i.e., one
cycle), thus leading to uniform inter-layer learning
speed and boosting model stability across cycles.
Meanwhile, prior to updating the model, the com-
puted gradients undergo a clipping operation to
avoid gradient explosion. In addition, those non-up-
dated layers’ parameters can be quantized to fur-
ther reduce storage demands.

Updated Parameter Transmission and Node
Management: Normally, in CS mode, the updat-
ed parameters are uploaded to the PCE, which
aggregates (if necessary) and disseminates them
to the next node selected by the PC. In P2P
mode, nodes also learn the next hop node from
the PC, and if the next node has the latest model
cached, updated parameters can be directly trans-
mitted. For each computing node, communica-
tion for parameter uploading occurs only once at
the end of local training. Nodes can proactively
request the PC to exit a Snake Learning service
upon reaching the designated training epochs,
predefined threshold training metrics, or detecting
trivial performance improvement. The task-spe-
cific PC continuously monitors each accepted
node’s status and retains the authority to remove
nodes from the training process and inform SP
under conditions such as intermittent and unsta-
ble network connectivity, unexpected deteriora-
tion in resource availability (e.g., load, memory,
battery status), or disqualified local training effi-
ciency (e.g., unsatisfactory processing speed or
suboptimal training accuracy). When this occurs,
the PC ensures continuity by notifying the node’s
LM to terminate its participation and initiate
updated parameter upload, while dynamically
reallocating the training task to candidate nodes

FIGURE 4. The illustration of Snake Learning’s feasibility on VGG-11 model.

Optimizer
State

Storage

Optimizer
State

Storage

3×3 Conv3, 256

z

Loss = L (O ,Y)

3×3 Conv1, 64

3×3 Conv5, 512

3×3 Conv3, 256

3×3 Conv4, 256

3×3 Conv2, 128

3×3 Conv6, 512

3×3 Conv7, 512

3×3 Conv8, 512

FC9 4096

FC10 4096

FC11 10

pool / 2

pool / 2

pool / 2

pool / 2
Flatten

Output

Input X

pool / 2

B
ackpropagation

Forw
ard

Optimizer
State

Storage

Optimizer
State

Storage

Layer 1 update
with 1,792

parameters

Layer 2 update
with 73,856
parameters

Layer 11 update
with 40,970
paramters

Optimizer
State

Storage

Loss = L (O ,Y)

3×3 Conv1, 64

3×3 Conv5, 512

3×3 Conv4, 256

3×3 Conv6, 512

3×3 Conv7, 512

3×3 Conv8, 512

FC9 4096

FC10 4096

FC11 10

pool / 2

pool / 2

pool / 2

pool / 2
Flatten

Output

Input X

pool / 2

B
ackpropagation

Forw
ard

Optimizer
State

Storage

Layer 3 update
with 295,168
parameters

Updated Weight

Conv1

Conv2
FC11

NE 2NE 1

Distillation
Loss

Distillation
Loss

momentum,
gradients

adaptive rates
……

3×3 Conv2, 128

Layer 11 update
with 40,970
paramters

Layer 1 update
with 1,792

parameters

1,792

73,856

295,168

590,080

1,180,160

2,359,808

2,359,808

2,359,808

2,101,248
Related to data

16,781,312

40,970
Related to task

Total
Parameters
28,144,010

Parameter
Size

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025 203

with available resources. This process helps main-
tain training consistency and robustness, ensuring
Snake Learning remains scalable and adaptable to
the dynamic complexities of 6G networks.

Feasibility Study of Snake Learning
This section presents the feasibility study of Snake
Learning’s serpentine training and highlights its
superiority over existing representative methods on
classic tasks including the widely-used image clas-
sification task in the literature as well as emerging
more complex use cases like LLM fine-tuning.

Feasibility Study
Training of Classification Tasks: We demon-
strate the effectiveness of Snake Learning using
the VGG-11 model on the CIFAR-10 dataset.
VGG-11 comprises 8 Convolutional (Conv) and
3 Fully Connected (FC) layers, with the last FC
layer producing a 10-class output. As illustrated
in Fig. 4, Snake Learning assigns the 9 middle
layers (excluding the 1st and 11th) to distribut-
ed nodes with distinct local data, whereas Accel-
erated FL updates the first two layers of model
and an auxiliary linear layer and FL updates the
entire model across the same nodes. In IID cases,
50,000 samples (each with 32  32 pixels) are
uniformly spread among 9 nodes. For Non-IID
scenarios, the datasets are partitioned based on
Dirichlet distribution as class priors. We allocate
data Dk to k-th node based on a sampled D 
Dir(a), where a determines the degree of Non-
IID, with a default value of 2.0. One epoch (i.e.,
E = 1) refers to one entire passing of a node’s local
dataset. After the designated training epochs,
Accelerated FL and FL executes FedAvg aggrega-
tion [4], while Snake Learning transfers the updat-
ed parameters. Results in Fig. 5 show that Snake
Learning rapidly attains 60 percent accuracy with
significantly fewer training iterations, underscoring
its computational efficiency for individual nodes.
More importantly, Snake Learning achieves
acceptable final performance (i.e., exceeding
95 percent of that of FL), while simultaneously
reducing communication overhead per commu-
nication round by nearly half, as detailed in Fig.
2. Furthermore, our experiment experience also
indicates that Snake Learning provides appealing
performance robustness in dynamic wireless net-
works and the unexpected interruption during
layer-wise communications only leads to trivial
performance degradation. These results corrob-
orate Snake Learning’s promise for distributed
serpentine learning with limited communication
and computational resources only.

Additionally, we further examine layer update
sequences, finding that reverse middle layer train-
ing (i.e., from deep to early layers) violates hier-
archical feature learning. Random and sequential
updates yield similar results in IID cases, while
sequential serpentine training is superior in Non-
IID settings. Such observations align with com-
mon DNN insights that early layers learn basic
features and deeper layers capture complex pat-
terns, guaranteeing Snake Learning’s robustness
to heterogeneous data distributions.

Fine-Tuning of LLMs: Distributed fine-tuning of
data-hungry and compute-intensive LLMs within
6G network nodes becomes crucial, yet challeng-
ing due to the single node’s memory usage limita-

tion in FL and billions of communication demands
in Split Learning. Thus, such LLMs can gain from
Snake Learning by optimizing the fine-tuning pro-
cess across multiple nodes with lower comput-
ing, memory, and communication demands. Our
experiments employ Supervised Fine-Tuning (SFT)
on both the 1.3-billion-parameter OPT model and
the 8-billion-parameter Llama-3 model, featuring
24 and 32 transformer blocks respectively, for
causal language tasks. Apart from the embedding
layer and the linear output layer for generating
predictions, the intermediate transformer blocks
are assigned to distinct nodes for fine-tuning,
with each node updating a specific transformer
block and employing strategies like freezing or
8-bit quantization on non-updated parameters
to further reduce memory. Besides, rather than
simply using the typical cosine learning sched-
ule strategy in LLMs, Snake Learning maintains
a constant learning rate throughout the cycle
updating of all blocks, while using the systematic
decay for the next cycle to guarantee consistent
training across layers. Experimental results show
that such a design contributes to avoiding over-
fitting and enhancing model stability. To further
enhance computing and memory efficiency, we
complement Snake Learning with the parame-
ter-efficient Low-Rank Adaptation (LoRA) tech-
nique [10], decomposing weight updates for all
linear layers into the product of two low-rank
matrices, thus significantly reducing the complex-
ity of the model while maintaining performance.
Additionally, given the variability in computing
power among distributed nodes, assigning a per-
sonalized rank to each node could enable a more
efficient balance between model size, computa-
tional cost, and performance. This aspect warrants
further exploration. 4 query-answer pair datasets
including rm-static, synthtic-instruct-gptj-pairwise,
full-hh-rlhf, and rlhf-reward-datasets are used for
OPT-1.3B, while higher-quality dataset “ChatGPT-
GroundTruth” consisting of 160 sub-topics are
used for Llama3-8B. The datasets are uniformly
distributed across the nodes in IID settings; while
in Non-IID settings, each node holds different
datasets or different types of sub-topics. Figure 6
provides the comparison between Snake Learn-
ing and FL, showing that compared to FL, Snake
Learning achieves a more rapid decline in per-
plexity (ppl) in IID cases. Besides, as validated by

FIGURE 5. Image classification performance comparison of other frameworks and Snake Learning (SL) across varying
training epochs E.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025204

experiments, the performance superiority holds
for Non-IID settings as well, indicating its effi-
cient utilization of nodes’ data to enhance model
performance. Furthermore, this performance
improvement becomes increasingly apparent as
the number of epochs increases. Meanwhile, the
memory footprint for fine-tuning the OPT-1.3B
model on a single node is reduced from approx-
imately 19.37 GB in conventional FL to just 3.13
GB for Snake Learning. These results indicate that
Snake Learning is a promising framework for col-
laboratively fine-tuning LLMs on resource-con-
strained network nodes.

Discussions
Besides the performance improvement shown
above, it is worthy to discuss the following aspects
of Snake Learning.

Relaxed Synchronization Requirements:
Snake Learning employs sequential learning, per-
forming complete iterations on individual nodes
without the need for synchronization, as required
in FL for parameter aggregation or Split Learning
for intermediate activation/gradient transmission.
This enables flexible training schedules such as
off-peak time fine-tuning.

Computation Savings: While non-updated
layers require forward propagation to pass fea-
tures, their weight gradient computations can be
skipped, retaining only activation gradients for
backpropagation. This reduces FLOPs and leads
to computational savings on-node. Integrating
pruning and quantization can further enhance
these savings.

Memory Savings: Snake Learning significant-
ly lowers memory usage by storing only updated
parameter gradients and their optimizer states, while
these factors deeply affect the peak memory occu-
pation during training. Quantization of non-updated
parameters can lead to additional savings.

Communication Savings: Split Learning’s com-
munication overhead is proportional to the data
size, resulting in large volumes of smashed data,
especially for fine-tuning LLMs. Meanwhile, due
to the real-time synchronization of the complete
model, significant communication overhead is
also required in FL. In comparison, Snake Learning
transfers only locally updated partial parameters
and eliminates the need for frequent synchroniza-
tion, thus saving significant communication over-
head, especially as local iterations increase.

Data Heterogeneity Adaptation and Scal-
ability: As shown in Figs. 5 and 6, Snake Learn-
ing excels with Non-IID data through techniques,
such as KD, gradient clipping & learning rate
adjustment, and better aligns with the real-world
scenarios of gradually garnering data and training
the model.

Training Time: The sequential training nature
in Snake Learning takes increased training time.
Therefore, it is more suitable for some time-insen-
sitive distributed training/fine-tuning tasks, to reap
the available computing resources for off-peak
communication services.

Interoperability: As discussed earlier, APIs
are essential for AIaaS due to the complication
of orchestrating distributed communication and
computing resources, while reserved APIs need
further investigation to implement task-oriented
orchestration and guarantee service continuity.
Initiatives such as the ONAP MultiCloud project
and Camara’s Edge Cloud, which enables the
exposure of resources and features for optimiz-
ing VNF (Virtual Network Function) homing and
placement and the deployment of applications on
VMs and containers, are exemplary in this regard.

Conclusions and Open Research Directions
We propose the distributed learning framework
“Snake Learning” that optimizes computational
resource utilization within 6G by assigning par-
tial layers for sequential model training/fine-tuning
across idle nodes. Its serpentine training mechanism
minimizes synchronization and data transmission,
addressing the limitations of traditional FL and Split
Learning. Knowledge distillation and gradient clip-
ping help prevent catastrophic forgetting caused by
data heterogeneity and gradient explosion. Evalua-
tions on classification and LLM fine-tuning tasks con-
firm that it outperforms in decentralizing workloads
and reducing storage, memory, and communication
demands on individual nodes, while maintaining
robust model performance. While Snake Learning is
a promising distributed learning framework for pro-
visioning AI model training/fine-tuning services, there
are still some remaining open issues, such as open
API design and standardization for enhanced interop-
erability, fine-grained layer assignment schemes for a
library of typical AI models, thorough node selection
and resource scheduling management schemes.

Acknowledgment
This work was supported in part by the National
Key Research and Development Program of China
under Grant 2024YFE0200600, in part by the Zhe-
jiang Key Research and Development Plan under
Grant 2022C01093, in part by the Zhejiang Pro-
vincial Natural Science Foundation of China under
Grant LR23F010005, in part by the National Key
Laboratory of Wireless Communications Founda-
tion under Grant 2023KP01601, and in part by
the Big Data and Intelligent Computing Key Lab of
CQUPT under Grant BDIC-2023-B-001.

References
[1] 3GPP, “Technical Specification Group Services and System

Aspects; Study on 5G System Support for AI/ML-based Ser-
vices (Release 18),” Tech. Rep. 23.700, V18.0.0, Dec. 2022.

[2] M. Merluzzi et al., “The Hexa-X Project Vision on Artificial
Intelligence and Machine Learning-Driven Communication
and Computation Co-Design for 6G,” IEEE Access, vol. 11,
2023, pp. 65,620–48.

[3] C. Campolo et al., “Network for Distributed Intelligence: A

FIGURE 6. LLM fine-tuning performance comparison of FL and Snake Learning (SL) across varying training epochs E,
where the performance is measured by ppl with lower values indicating greater model certainty and effectiveness.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • May 2025 205

Survey and Future Perspectives,” IEEE Access, vol. 11, 2023,
pp. 52,840–61.

[4] B. McMahan et al., “Communication-Efficient Learning of
Deep Networks From Decentralized Data,” Proc. AISTATS,
Fort Lauderdale, FL, United States, Apr. 2017.

[5] O. Gupta et al., “Distributed Learning of Deep Neural Net-
work Over Multiple Agents,” J. Netw. Comput. Appl., vol.
116, Aug. 2018, pp. 1–8.

[6] H. Woisetschläger et al., “Federated Fine-Tuning of
LLMs on the Very Edge: The Good, the Bad, the Ugly,”
arXiv:2310.03150, 2023.

[7] W. Kuang et al., “FederatedScope-LLM: A Comprehensive
Package for Fine-Tuning Large Language Models in Federat-
ed Learning,” arXiv preprint arXiv:2309.00363, 2023.

[8] X. Miao et al., “FlexLLM: A System for Co-Serving Large Lan-
guage Model Inference and Parameter-Efficient Finetuning,”
arXiv: 2402.18789, 2024.

[9] Z. Niu, “TANGO: Traffic-Aware Network Planning and
Green Operation,” IEEE Wireless Commun., vol. 18, no. 5,
Oct. 2011, pp. 25–29.

[10] Y. Chen et al., “NetGPT: An AI-Native Network Architec-
ture for Provisioning Beyond Personalized Generative Ser-
vices,” IEEE Network, Mar. 2024.

[11] A. B. Ardic et al., “Random Walking Snakes for Decen-
tralized Learning at Edge Networks,” IEEE Workshop Local
Metrop. Area Netw., London, United Kingdom, July 2023.

[12] C. Thapa et al., “Splitfed: When Federated Learning Meets
Split Learning,” Proc. AAAI, Virtual, Online, June 2022.

[13] D.-J. Han et al., “Accelerating Federated Learning With Split
Learning on Locally Generated Losses,” Proc. ICML, Virtual,
Online, July 2021.

[14] J. Kaplan et al., “Scaling Laws for Neural Language Mod-
els,” arXiv: 2001.08361, 2020.

[15] A. M. Abdelmoniem et al., “A Comprehensive Empirical
Study of Heterogeneity in Federated Learning,” IEEE Internet
Things J., vol. 10, no. 16, Aug. 2023, pp. 14,07–83.

Biographies
Xiaoxue Yu (sdwhyxx@zju.edu.cn) is a PhD Candidate in Zheji-
ang University, Hangzhou, China. Her research interests current-
ly focus on communications in distributed learning.

Xingfu Yi (yixingfu@zju.edu.cn) was a master student in Zheji-
ang University, and graduated in Mar. 2024.

Rongpeng Li (lirongpeng@zju.edu.cn) is an Associate Professor
in Zhejiang University. His research interests currently focus on
networked intelligence.

Fei Wang (wangfei76@huawei.com) is a Chief Researcher of
Huawei Technologies. His research directions include 6G wire-
less network architecture and distributed learning, and so on.

Chenghui Peng (pengchenghui@huawei.com) is a Principal
Researcher of Huawei Technologies. His current research inter-
ests focus on 6G native AI architecture design.

Zhifeng Zhao (zhaozf@zhejianglab.com) is the Chief Engineer
with Zhejiang Lab, Hangzhou, China. His research area includes
collective intelligence and software-defined networks.

Honggang Zhang (hgzhang@cityu.edu.mo) is a Professor in
City University of Macau, Macau, China. He is interested in cog-
nitive green communications.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 15,2025 at 09:01:58 UTC from IEEE Xplore. Restrictions apply.

