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Abstract—Multiple quadrotor uncrewed aerial vehicles (UAVs)
systems have garnered widespread research interest and fostered
tremendous interesting applications, especially in multicon-
strained pursuit-evasion games (MC-PEGs). The cooperative
evasion and formation coverage (CEFC) task, where the UAV
swarm aims to maximize formation coverage across multiple
target zones while collaboratively evading predators, belongs to
one of the most challenging issues in MC-PEGs, especially under
communication-limited constraints. This multifaceted problem,
which intertwines responses to obstacles, adversaries, target
zones, and formation dynamics, brings up significant high-
dimensional complications in locating a solution. In this article,
we propose a novel two-level framework [i.e., consensus inference-
based hierarchical reinforcement learning (CI-HRL)], which
delegates target localization to a high-level policy, while adopting
a low-level policy to manage obstacle avoidance, navigation, and
formation. Specifically, in the high-level policy, we develop a
novel multiagent reinforcement learning (RL) module, consensus-
oriented multiagent communication (ConsMAC), to enable agents
to perceive global information and establish consensus from local
states by effectively aggregating neighbor messages. Meanwhile,
we leverage an alternative training-based MAPPO (AT-M) and
policy distillation to accomplish the low-level control. The exper-
imental results, including the high-fidelity software-in-the-loop
(SITL) simulations, validate that CI-HRL provides a superior
solution with enhanced swarm’s collaborative evasion and task
completion capabilities.

Index Terms—Cooperative evasion and formation coverage
(CEFC), decentralized consensus inference, hierarchical model,
multiagent reinforcement learning (MARL), multiquadcopter
motion planning.
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CEFC Cooperative evasion and formation
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CI-HRL Consensus inference-based hierarchical
reinforcement learning.

ConsMAC Consensus-oriented multiagent
communication.

MC-PEG Multiconstrained pursuit-evasion games.

SITL Software-in-the-loop.

I. INTRODUCTION

OWADAYS, quadrotor uncrewed aerial vehicles (UAVs)

have demonstrated great potential in costly or human-
unfriendly tasks (e.g., disaster response [1]), due to their
agility, cost-effectiveness, and compact size. Nevertheless,
the UAV swarm is likely to be exposed to an adversarial
environment, where a hostile factor or agent might attack
the affiliated members, and must respond promptly to boost
the survival opportunity. Typically, such a CEFC scenario is
formulated as an MC-PEG [2], wherein preys (i.e., UAVs)
shall maximize the ratio of accomplishing planned missions
while avoiding attacks from predators (i.e., the hostile attacker)
[3]. However, as the complexity of MC-PEGs or environmental
constraints escalates, conventional control algorithms face sev-
eral aspects of prominent shortcomings, such as oversimplified
predator strategies (e.g., fixed trajectory) [4], lack of intergroup
cooperation [5], limitation to one single formation pattern
[6], and unrealistic presumption on the availability of global
information [7], [8].

Benefiting from the robust adaptability in complex envi-
ronments, multiagent reinforcement learning (MARL)-based
approaches [9], [10], [11] have been widely adopted. For
instance, QMIX [12] and its variants [13] have yielded
appealing results in complex multiagent scenarios, and
heterogeneous-agent soft actor-critic (HASAC) [14], as the
latest state-of-the-art (SOTA) algorithm, has also demonstrated
outstanding capabilities in many benchmarks. While these
advancements are noteworthy, recent MARL implementations
in practical systems still heavily rely on multiagent proximal
policy optimization (MAPPO) [15], [16] due to its stability
and computational efficiency [17]. However, existing MAPPO-
based multirobot control frameworks [8] typically adopt
oversimplified assumptions (e.g., global obstacle coordinates
and small-scale scenarios), limiting their applicability to real-
world environments. Nevertheless, for complex multitasks or
MC-PEGs, direct application of MAPPO often fails to achieve
satisfactory convergence [18], necessitating the employment
of advanced methodologies (e.g., hierarchical models [19] or
alternative training [20]).

In the framework of MARL, the centralized training with
decentralized execution (CTDE) architecture acts as a foun-
dational solution [9]. Accordingly, many variants of CTDE
[21] have been proposed to improve the execution perfor-
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mance by devising a communication module to allow agents
to explicitly or implicitly exchange their local information
during the training. Contingent on a communication network
or leader-follower assumption, these MARL approaches gen-
erally face some communication-performance dilemmas. For
example, [13] unveils that a globally shared observation might
generate a significant amount of redundant information and
even yield less competitive results than the case with partial
local observation only. Therefore, it becomes critical to design
some consensus inference algorithms to effectively guide the
interaction between agents. In this regard, conventional algo-
rithms [22] generally formulate an optimization problem and
utilize control theory to produce a solution. Nevertheless, these
algorithms lack the essential flexibility and cannot be easily
merged into MARL methods [23]. Meanwhile, attributed to a
closed-box deep neural network (DNN), the communication
module in [24] and [25] only transmits the local information
in a blunt manner, which could not unleash its potential to
the full extent (e.g., unable to infer and forward global infor-
mation during the execution) and fails to filter the meaningful
communication content, thus being less competent to handle
complex scenarios. As a remedy, the opponent modeling
approaches [26], [27] interpret the communication content
as the speculated future actions of other agents. However,
in partially observable scenarios, this approach suffers from
speculation inconsistency, as individual agents possibly make
different speculations according to their local observations
[28]. Thus, it remains challenging to infer the consensus and
perceive consistent information from diversified, limited local
information. Alternatively, hierarchical reinforcement learning
(HRL) is considered to effectively deal with these underlying
difficulties [29]. In HRL, high-level policies are cooperatively
learned to focus on subgoals (e.g., to which position), while
the low-level policies are designed for completing subgoal-
related basic operations (e.g., specific movements and obstacle
avoidance) [19]. The coordinated interplay between two-level
policies often achieves effects in complex tasks that surpass the
capabilities of a single-level structure [30]. Nevertheless, inte-
grating consensus mechanisms into HRL adds to the training
difficulty, especially when agents must make decisions based
on incomplete and diverse local observations.

In this article, toward the CEFC control in a partially
observed environment, we propose a novel decentralized
CI-HRL framework. To be specific, to tackle the global
collaboration problem of agents with local observations, we
incorporate a hierarchical CTDE architecture with both high
and low levels. In particular, the high-level policy is designed
to select appropriate anchor points (i.e., target positions),
according to the state of neighbors and predators on top of
ConsMAC, while the low-level policy, which is implemented
by alternative training and policy distillation, is responsible
for adaptive formation navigation and obstacle avoidance man-
dated by the high-level decision. Compared with the existing
work, the contribution of our article can be summarized as
follows.

1) We present a hierarchical framework for a single-
pursuer-multiple-evader MC-PEG. Specifically, the
high-level policy provides appropriate anchor points
and determines the target selection policy, while the
low-level policy resolves motion control (i.e., formation,
navigation, and obstacle avoidance), enabling UAVs to
navigate and adapt to dynamic and uncertain CEFC
environments effectively.
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2) On top of alternative training-based MAPPO (AT-M), we
implement an efficient multipolicy-distilled model for
low-level decentralized adaptive formation with obstacle
avoidance, which is capable of adapting to agent quan-
tity changes, reducing the training cost, and improving
the obstacle avoidance and formation performance.

3) The high-level policy learns a distributed target selection
and division policy, based on an interagent unified
understanding of the current global state provided by
ConsMAC. Notably, the high-level reinforcement learn-
ing (RL)-based module and ConsMAC are trained
alternately to align consensus inference and policy mak-
ing.

4) Through extensive simulations in both multiagent par-
ticle environment (MPE) and SITL environment in
Gazebo, we demonstrate the effectiveness and superi-
ority of our framework over existing models.

To improve readability, we summarize a list of abbre-
viations above. The remainder of the article is organized
as follows. Section II briefly introduces the related works.
Section III presents the system model and formulates the
problem. Section IV provides the details of the proposed
framework. In Section V, we introduce the experimental
results and discussions. Finally, Section VI concludes the
article.

II. RELATED WORK

A. DRL for PEG-Based UAV Systems

The PEG has been extensively studied in UAV systems
due to its flexible requirements, and DRL has been proved
effective for environmental awareness and decision control
capacity [7], [31], [32]. However, the literature above only
focuses on a single, simplified evader and is contingent on
an over-idealistic full connectivity assumption. For example,
Young and La [4] proposed a hierarchical system integrating
flocking control and RL for multiagents to evade a pre-
defined pursuer. But it implements one invariant formation
and oversimplifies the pursuer policy. Ref. [33] combines
a mix-attention and independent PPO (IPPO) algorithm to
enhance the agents’ adaptation in the multipursuer-multievader
PEG. Notably, these methods neglect the cooperation among
evaders and have not considered the downstream tasks such
as target covering and formation maintaining. While Deng and
Kong [34] designed a collaborative pursuit-defense strategy in
a firefighting task, it does not take account of the possible
existence of obstacles and assumes full connectivity. Different
from these existing works, we address downstream tasks for
the communication-limited UAV swarm and aim to develop
a decentralized policy that optimizes the completion of the
CEFC task while considering communication constraints and
collision avoidance.

B. Hierarchical Reinforcement Learning

HRL [29] excels in simplifying complex tasks into man-
ageable subtasks for long-term, multistep problem-solving.
Classical research in HRL aims to optimize the discovery and
use of subtasks and to develop algorithms supporting hier-
archical structure learning [35], [36]. Option-based methods
[37] enable agents to dynamically discover subtasks through
environmental exploration, merging into a hierarchical pol-
icy. However, these approaches may incur higher exploration
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and training expenses, and the discovered subtasks might
be incomplete or suboptimal, potentially impacting overall
performance quality. In our scenario, UAV's must consider both
formation obstacle avoidance and cooperative pursuit avoid-
ance, without requiring complex skill learning. To address
this, we opt for classical hierarchical policy learning, where
subtasks are predefined. Here, the low-level policy is trained
independently and then integrated into the training of the high-
level policy. This approach avoids the mutual influence and
excessive difficulty of concurrently training multiple policies
[38].

C. MARL With Communication

To guarantee agents with only local information to cooperate
meaningfully, CTDE is widely adopted in recent MARL
methods [9]. However, the partial observability in a CTDE-
based multiagent environment can undermine the coordination
between agents [28]. With few exceptions like HASAC [14],
most recent works introduce a communication module to
effectively mitigate this challenge [21]. For example, TarMAC
[25] leverages the attention mechanism in the communica-
tion policy to aggregate the messages from their neighbors.
However, these models do not clearly define the content
and significance of communication. Instead, they treat the
communication network as a closed box, thus reducing mes-
sage interpretability and compromising their effectiveness in
managing complex scenarios. To address this, recent stud-
ies have incorporated opponent modeling to better interpret
communication content. In intention sharing (IS) [26] and
ToM2C [27], each agent is designed to predict the future
actions of its teammates and utilizes these predictions as the
substance of communication messages. However, in partially
observable scenarios, agents possibly derive varied conjectures
based on their individual perceptions, and this speculation
heterogeneity could potentially disrupt the agent’s decision-
making process. Meanwhile, multi-agent communication via
self-supervised information aggregation (MASIA) [13] and
neighboring variational information flow (NVIF) [11] employ
supervised learning and an autoencoder to reduce the redun-
dancy of communication. Particularly, NVIF compresses local
information without linking it to global information, whereas
MASIA preserves the global state but assumes full communi-
cation. Under limited communication, merely transmitting raw
observations through MASIA fails to convey sufficient infor-
mation for overall movement trends. In contrast, ConsMAC
helps agents combine local observations and communication
messages to infer a consensus on the global state, effectively
addressing these challenges.

III. PRELIMINARIES AND SYSTEM MODEL

A. System Model

In this article, we consider a PEG scenario where a well-
formed swarm of UAVs flies and attempts to reach target areas
across an obstacle-cluttered space. In particular, the UAV flock
is fully decentralized with a limited communication range.

1) Quadcopter Model: The acceleration vector of each
quadrotor UAV is defined as [ux,uy,uz]T, where u,, u,, and
u, denote the acceleration in the North-East-Down inertial
frame. Each UAV is controlled by four control inputs U =
[Uy, Us, Uz, Uy] computed by the autopilot, for example, PX4
in our work, where U, is the thrust force along the vertical
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Fig. 1. Tllustration of the CEFC task, wherein the UAV swarm (in blue
dots) with some formation pattern is required to automatically respond to
the adversary (e.g., wildfire, in the red circle) and obstacles (in the black
circle) and move toward the multiple target areas (shown as the yellow flag)
to carry out their missions (e.g., dropping supplies) in a communication-
limited decentralized manner. (a) Randomly initialize and avoid obstacles.
(b) Aggregate to the desired formation. (c) Split, change target, and transform
into a new formation. (d) Escape and approach a new target. (e) Score on both
targets. (f) New agents arrive and change formation adaptively.

direction and U,, Uz, and U; are rolling, pitching, and
yawing moments, respectively. Aligned with MARL-related
mainstream UAV studies for MC-PEGs [3], [32], we assume
the UAV swarm flies at a fixed altitude, by constraining u, = 0.
After obtaining the desired acceleration w = [uy,u,] in the
horizontal direction by the proposed MARL method, it is sent
to the autopilot, for example, PX4, to calculate the thrust force
U based on the proportion integration differentiation (PID)
algorithm [39], with which the physical simulator then iterates
the UAV’s pose based on the Newton-Euler formalism [40].
2) CEFC Task Model: We primarily consider a CEFC task
as illustrated in Fig. 1, wherein a set N' of UAVs, with
IV| = N, are required to carry out their missions at target
areas (i.e., formation coverage) in a communication-limited
decentralized manner, as shown in Fig. 1(a) and (b). Notably,
we denote 7 as the set of target areas, and each target area
T € T can be represented as T = (ps, K(It)), where p; denotes

the position and Kg) denotes the urgency of the target area,
which decreases as the agents arrive. Besides, the adversary A
should prevent the agents from reaching the target areas, and in
this work, due to the algorithmic maturity, domain suitability
for continuous control, and implementation practicality with
reduced hyperparameter sensitivity [41], a default PPO policy
is primarily used for the adversary to trace the nearest group.

In case of the possible adversary [see Fig. 1(c)] and obsta-
cles [see Fig. 1(d) and (e)], the set of UAVs switch among
a set of predefined formation patterns {A.|Yc € C}, where ¢
represents the agent quantity in formation A. and C denotes
the set of possible patterns. Hence, at each time step ¢, each
agent i needs to recognize its ¢ — 1 teammates cooperatively
and spontaneously determine one formation pattern c, resulting
in y groups with each group N,k € {1,...,x"} of agents
satisfying |[Nx| = m, no isolated agents (i.e., no sufficient
number of neighbors within the observation range to form any
pattern in C) and ng+n;+---+n,0 = N. In response to changes
in the number of neighbor agents [see from 3 in Fig. 1(e)
to 5 in Fig. 1(f)], the UAV shall switch the formation pattern
automatically.
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To accomplish the CEFC task, we formulate the problem as
a decentralized partially observable Markov decision process
(Dec-POMDP), which is defined as (N, S,U, P, Z,R, Q,v). In
the CEFC task, S denotes the global state space while U is the
homogeneous action space for a single agent. At each time step
t, owing to the scant ability of perception against the colossal
environment, each agent i € N obtains a local state zgt) ez
via the local state function Q(zf,’)ls(’), NS XN x Z—-[0,1]
instead of the state s’ € S at each time step and adopts an
action u beld according to the individual policy z;(- |z(’)) Z X
U — [0, 1]. The joint action u® = [u(l) u(zt), ...,u] taken at
the current state s’ makes the environment tran51t into the
next state s’ according to the function P(s“*D|s® u®):S x
U xS — [0,1]. All agents share a global reward function
R(s”,u”):S x4 — R with a discount factor y and agents need
to maximize the discounted accumulated reward E [Z,y’ R(')].
Consistent with the Dec-POMDP framework, we specify the
elements as follows.
1) Local State: The local state z ) should encompass the
information of neighbors, target areas, and the adversary.
For brevity, we denote the relative position and velocity
of agent j with respect to i as p,,; and v;;. The
observation of target areas and the adversary can be

denoted as o), = {p” ., «|T € T} and Oigw

tarz

[pl_,u, z—)‘JI] respectively. Meanwhile, agent i obtains

(€I O] (t) (t)
some 'dlref:t observation o ; = {pHJ’ H]I\v’] € &)
of their neighbors through communications and receives

n  _ Dy + () 1

exchanged messages M.;; = {m_|Vj € &"}," where
m? is a learnable vector to be communicated and £
denotes the set of agents satisfying that the Euclidean
distance ||p(’) || is less than a maximum observation

distance g (i.€., IIprJII < Ogps). For the sake of

simplicity, the local observation of agent i is defined

as o(t) [og)”, ;gw, ;2”] Besides, the detection results

dﬁt) = [dx),...,dfjtu] of M light detection and ranging
(LiDARs) [10] with angle resolution 27/M are also
used as part of the local state to help the agent avoid
obstacles. Thus, the local state of agent i is summarized
as z” = [0, M, ..d{"].

2) Actwn As mentioned in Section III-A1, based on the
local state z(’), each agent sets its acceleration u(t) =
[u;’} u}l)] € U following policy m;(: Iz(t)) 1nd1V1dually to
complete the CEFC task.

3) Reward Function: For the CEFC task, the reward func-
tion is designed to summarize multiple ingredients with

weights wy, wy, Wy, we, and w, as
RY = w fRif) + waRY + R + w,RY + w R (1)

where the Hausdorff distance (HD)-based [42] for-
mation reward R measures the topological distance
between the current and the expected formation for each
group, while the navigation reward RY, weighted by the
urgency of target areas, incentivizes agents to efficiently
reach target areas. The task accomplishment reward Rﬁt)
is used to quantify the progress of the formation cov-
erage. The evasion reward RY and collision avoidance
reward R(C’), which serve as a critical safety mechanism,
penalize agents in close proximity to the adversary

IThe detailed procedure to acquire these messages shall be discussed in
Section IV-C.
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and obstacles. We leave their specific expressions in
Appendix A.

B. Multiagent Proximal Policy Optimization

To guide all agents to maximize the discounted accumu-
lated reward E [Y_,»'R”], MAPPO [16], which combines the
single-agent PPO [15] and CTDE to learn the policy ﬂgi('lly))
(Vi) and value function V¢(s(’)):8 — R parameterized by 6;
and ¢, is used. Consistent with PPO, MAPPO maintains the
old-version 8;44 and ¢oq and uses 6;oq to interact with the
environment and accumulate samples. Furthermore, 6; and ¢
are periodically updated to maximize

I = min (A7, clip (8,1~ .1+ £) A7)
n 2
IP@) = ~(Vy (s) = (A + Vi, (7)) @)

where ﬁgt) = (ngi(u?)|z§’)))/ (o, d(ugt)|zl(<’))), the clipping func-
tion clip(ﬂl(.’), 1-¢,1+ &) constrains ﬁg’) €ell-e1+e¢], and
A® = T )l s the generalized advantage estima-
tion (GAE) [43] with 60 = R + yV,_ (s“*D) — V. (s?).
Notably, & and A are the hyperparameters. Thus, the final
optimization objective of MAPPO can be given by

Tsreo = By, [1060) + 10 @) + o (m ()]

where « is coefficient and # is the entropy function.

C. Problem Formulation

We expect the MARL-driven agents to minimize the
urgency of the target areas while avoiding collisions with
obstacles and the PPO-driven adversary. Meanwhile, the
parameters of each agent are shared during training to improve
the learning efficiency, which implies mg, = my (¥Yi € N).
Accordingly, we propose a system utility function J as the
objective of policy optimization, which can be expressed as

max 3 = max E; [R®|( - [2”)] . 4)

Basically, we follow the CTDE architecture and lever-
age MAPPO for multiagent control. Recalling that z(’) =

[0" Mgg”,d(')] (¥i), the communicated information (i.e., m(’))
shall impact the final performance. Meanwhile, classical solu-
tions to CEFC rely on a centralized leader and cannot be
directly applied to distributed agents. Therefore, to train a
policy that can be executed in a completely distributed manner,
we resort to a consensus inference module ConsMAC to
compute m,(.’) in Section IV-C and propose a distillation-based,

agent number-adaptable distributed solution.

IV. CONSENSUS INFERENCE-BASED HRL
A. Overview of the CI-HRL Framework

In this section, we present an overview of the proposed
CI-HRL framework, which capably addresses the challenges
of cooperative evasion from the adversary and the execution
of formation coverage tasks under the constraints of limited
communication. As shown in Fig. 2, CI-HRL implements
a decentralized, real-time inference of the environment, and
enables the UAV swarm to dynamically split and reorganize
to accomplish the CEFC task. Specifically, for each agent i,
CI-HRL automatically determines the anchor point p,; € P,
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;’e)ii under a limited range. Low-level policy (see Section IV-B) outputs

specific actions uy) for task execution. (c) Policy distillation process for adaptive formation control. (d) AT-M for single-formation policy.

as the temporary target location over a specified duration,
where P, denotes a candidate set of discrete or continuous
coordinates. Hence, to strike a balance between evasion and
mission execution, a subset of UAVs may select anchor points
proximal to target areas for formation coverage, while others
choose anchor points at a distance from predators to evade.

The whole training process consists of two stages, and the
final policy can be represented as a combination of two-level
policies, mg = [, my], where ® denotes the collective parame-
ters of multiple DNNs. During the low-level stage, each agent
i should learn a policy m(w;lp,;,z;), which is a distillation-
based adaptive formation solution AT-M, to output continuous
acceleration u; to control its journey to a specific anchor point
p,; while maintaining formation with its neighbors. Then, at
the high-level stage, a ConsMAC-based, decentralized high-
level policy mg(p,;lz;) is trained to output the anchor point
for guiding the low-level policy, thus jointly accomplishing
the CEFC task. It should be noticed that the low-level policy
solely accounts for formation with neighbors and navigation
toward the anchor point, implying that when some UAVs select
congruent anchor points that significantly differ from the rest
of the swarm, these UAVs will automatically secede from
the main group to form a new subgroup. Consequently, the
formation pattern, to which each UAV belongs, is indirectly
determined by the high-level decision-making. To simplify
the following presentation, we denote a multilayer perceptron
(MLP)-based DNN as F().

B. Low-Level Policy

In this section, we design an effective low-level policy that
allows agents to constitute some predefined formations and
move toward the anchor point in a communication-limited,
decentralized manner. Notably, we start with a low-level policy
for a specific formation while ignoring the target areas as
well as the adversary in Section IV-B2. During the training,
all agents belong to the same group (i.e., y” is set to 1).
Afterward, more general cases for flexible formation patterns
will be investigated in Section IV-B3.

1) Low-Level Objective: As mentioned earlier, the low-
level policy considers how to avoid obstacles and travel to the
anchor point with formation, yielding the acceleration control
of the agent. Therefore, the input only includes the observation
of neighbors offe)i,i, LiDAR detection results d;t), and the anchor
point p,, which during the training are the same and randomly
given by the environment in each episode. In Section IV-C,
we will explain how to compute appropriate anchor points
for practical execution. Meanwhile, since the low-level policy
focuses more on the navigation and formation, the task and
evasion reward (i.e., R, and R,) in (1) are ignored in this
subsection. Therefore, the low-level optimization objective
can be simplified as max, J; = maxX, E,[R(Ll)|7rL], where
R = wngf) + wRY + w.RY. Moreover, given that we
focus on anchor points instead of target areas, the navigation
reward given by (16) in Appendix A-2 can be regarded as
RY = —|[p® —p,|l, where p® is the center of agents.

2) AT-M for Single-Formation Policy: Despite the remark-
able performance in small-scale, fully connected multiagent
formation tasks, MAPPO [16] in Section III-B faces significant
difficulties in training formation and navigation policy directly
in a partially observable environment with random obstacles.
For example, our results show that by assigning a small weight
w, to collision avoidance reward, MAPPO converges to a well-
formed policy with frequent collisions. On the contrary, the
policy ends up with poor formation competence for enlarging
w.. Motivated by these facts, we adopt an AT-M to fuse
multiple coupled constraints and better balance the tradeoff
therein.

Beforehand, consistent with the conventional MAPPO
framework, the corresponding value function V4, is imple-
mented by using an MLP [16]. As shown in Fig. 2(d),
for a fixed formation {A.|VYc € C}, AT-M aims to obtain a
policy network a; parameterized by @F = [6{,, 6] ,, 0] .1, which
consists of three MLP-based parts, namely, the formation and
navigation module ./T'.gif, the obstacle avoidance module .F(.)ia
and the output layer Fy . In particular, for each time step
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Fig. 3.
numbers of UAVs (i.e., c€C =

lustration of the predefined formations corresponding to different
{3,4,5,6,7,8)}).

Fy. is used to sample an action u” ~ Normal(u”, o\") as
the final output by computing the mean and variance of the
Gaussian distribution as

0 o = Fy (]-‘gif (Pm nm>+f (dﬁ’))). (5)

ﬂl O i

AT-M first independently trains DNNs parameterized by ®7 in
an environment without and with the involvement of obstacles
(i.e., some w. # 0) and obtains two sets of corresponding
parameters ©; ; and ©7 ,, respectively. On this basis, AT-M
fine-tunes a merged policy parameterized by (O f 15O a0 O 04]
in the original environment to achieve the policy a7. Cor-
respondingly, the swarm is endowed with the capacity to
reach the anchor point in a fixed formation A, while avoiding
obstacles. Due to the independent pretraining of modules
across disparate environments, we regard this approach as an
alternative training.

3) Policy Distillation-Based Adaptive Formation Control:
Following Section IV-B2, we can obtain a set of policies
{m/[Vc € C}, respectively, for formation A. depicted in Fig. 3.
In this part, we regard these policies as teacher models (i.e., a
teacher model nf instructs the formation A.) and utilize policy
distillation [44] to obtain a mixed-formation policy, to reduce
local memory occupation. As shown in Fig. 2(c), we collect
both inputs and outputs of policies {nf|¥c € C} by constituting
a replay memory B = {(pS.z, u)xal¥c € C}, where u® is
generated by a learned teacher model ny to form A, and A
is the capacity of replay buffer. Considering the dimension of
observation z¢ is determined by the agent number ¢, we align
the vectors of observations in different formations by a zero-
padding operation. In each training episode, memories (i.e., z)
from different teacher models are fed into the student model
m;, simultaneously to calculate the corresponding @ = 7. (p,,, Z).
Afterward, we train ;; by minimizing the mean-squared-error
(mse) loss

Lpp (©1) = ) |ju— 3 6)

uelB

where @, is the parameter of m. After updating ®, through
(6), the mixed-formation policy set {nf|Vc € C} is merged to
one student policy mz, which significantly saves the usage of
agents’ memory.

To sum up, we describe the training procedure of the low-
level policy in Algorithm 1.

C. High-Level Policy

Contingent on the low-level policy m; for yielding the
formation and obstacle avoidance action u, the MAPPO-
based high-level policy my can avoid the cumbersomeness
of considering underlying tasks and put more emphasis on

Algorithm 1 Training of Low-Level Policy
1: Initialize the set of quantities C.
// AT-M for each formation pattern
2: for each c € C do

3: // Step 1

4: Initialize the environment corresponding to c;

5: Train the policy and value function parameterized by
O, = 6,601,601 and ¢; | with random initial-
ization by MAPPO;

6: // Step 2

: Initialize the environment with random obstacles;
8: Train the policy and value function parameterized by

07, = 65,6, 6{,,] and ¢, with random initial-
ization by MAPPO;
9: // Step 3
10: Initialize the environment with random obstacles;
11: Fine-tune the policy and value function parameterized
by ©f = [0{;,0{,,,0,,] and ¢; , by MAPPO;
12: end for
// Policy Distillation
13: Initialize the replay memory B « @ and the student policy
m;, with random parameters @, the training batch size Np;
14: Collect tuples (p,,z,u) in each environment by {xf|Yc €
C}, respectively, and store them in B;
15: for each policy distillation epoch do
16: Sample a batch of N, tuples from B;
17: Calculate @ based on p, and z;
18: Update ®; according to (6) via gradient descent and
Adam optimizer;
19: end for
Output: The trained Oy;

selecting an appropriate anchor point p,, which fully takes
account of evading the adversary for accomplishing the CEFC
task. Similar to the low-level policy, the corresponding value
function Vy, is implemented by an MLP as well. How-
ever, different from MAPPO, as illustrated in Fig. 2(a),
the high-level policy introduces a novel, supervised-learning-
based consensus inference method ConsMAC, which can
provide global consensus and complement the RL-based target
selector to calculate certain decisions from a more global
perspective.

1) High-Level Objective: Since the low-level policy saves
the high-level policy from the formation and collision avoid-
ance, the optimization objective of high-level policy can
be represented as max,, Iy = maxg EJ[R H|7rH,7rL] where
R(;I) = R(t)—&-w,R(’)—&—weR(’) Recalling z(t) [o(’) Mfl'g”,dgl)],
the maximization of this high- level ob_]ectwe lies in the effec-
tiveness of exchange messages M(y),; = (m{|V € £"}.

2) ConsMAC-Based Anchor Point Selection: Targeted at
effectively aggregating observations 0; and messages My,
received from neighbors, ConsMAC is carefully calibrated and
encompasses the following parts. First, to incorporate histor-
ical information, each agent i adopts a GRU-alike memory
module Fy,, parameterized by ¥y to process the concatenation

of its own message m ) and the local observation 0() that is,

- (1)

)
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where || represents the concatenation operation and the dimen-
sions of both mg) and m;O are the same. Meanwhile, for
simplicity of representation, for each agent i € N, i; denotes
the jth nearest neighbor while i, indicates itself. Next, in
resemblance to the positional encoding in Transformer [45],
we use a learnable distance encoder to distinguish messages
from agents with different distances and correspondingly

assign different attention weights. Mathematically,
B =[mi0f]. EQ =[m?|[of, . m[0f]  ®

V7D) [eoswillp2, D - . cos(wpllpi2,, ID 17,
Yp = [wi,...,wp] are the trainable parameters D is the
dimension of the latent space and k = Iff)l denoting the
number of neighbors. Then, each agent can aggregate a latent
vector ml(.t) as the message for time step ¢t + 1 by

(z+1) = MHA,, (E%,ES:,),,»E%{,) ©

E®

me_

where CDg)
J

where MHA is a multihead attention layer [45] parameterized
by 4. Furthermore, we infer the global information by a
global estimator J,, parameterized by ¢, and the estimated
state embedding can be written as

8" = 7y, (mi).

We leverage global state gl(.') € s as the label for supervised
learning and adopt mse as the loss function. Therefore, the
loss function of ConsMAC can be formulated as

LCnnsMAC M) = |: i| (11)

where ¥ = [Yp, ¥y, ¥4, WE]. Notably, the specific choice of
global state g(’) could be rather flexible such as the anchor

points of all agents g(t) {pg)Jl\v’ j € N} or the observations of
(1) _ ={ (1) (f)

all agents g; Pis Vi IVj € N}, denoted as ConsMAC-A
and ConsMAC-O, respectlvely We evaluate both methods
in Section V and validate the scalability of ConsMAC. In
this way, minimize (11) ensures ]-'wE(ml(.'H)) - gl(.’), and the
intermediate output of ConsMAC in the local perspective can
implicitly embed the global information of all agents (i.e.,
m = F~!(g, 0)), rather than merely aligning local observations
in methods like NVIF [11] (i.e., m = F~'(0)). Due to the
uniqueness of the global state, such a procedure can be inter-
preted as the establishment of consensus among neighbors.
Accordingly, the RL-based policy, which encompasses an
observation encoder and an RL-based selector, yields a suitable
anchor point corresponding to the observations and established
consensus (i.e., 0(') and m§’+l)). In particular, the embedding
vector Ef,') can be obtained by the MLP-based observation
encoder Fy,, and the RL-based selector Fy, is used to
calculate and sample the anchor point as the final output

(1) (+1)
paz ~ ]:HHS (Eff,)’ mi ) .

As mentioned in Section IV-A, we can treat [®y, V] as the
parameters of the high-level policy my, where ®f = [6ho, Ous]-

3) Training Techniques: In a nutshell, the loss function of
the high-level policy can be summarized as

Liigh(®n, ¢, V) = —Jhigh(On) — Jv(@r) + Lconsmac(P).
(13)

The optimization of ¥ for ConsMAC is a standard super-
vised learning problem that can be solved by a gradient

(10)

&0 (0
g[ gl

12)

18235

descent algorithm. Then, the RL-based module ®y utilizes
the message m“*, yielded by ConsMAC, as part of the local
information for decision-making as in (12) and employs the
gradient obtained by RL to optimize the policy. It should be
noticed that even though the message m“*" is used as the
input of the policy module, the RL loss does not backpropagate
to ConsMAC. In other words, ConsMAC is designed as an
independent information processing module to provide the
global consensus, and the anchor point selector needs to learn
how to use it through the RL method. During the training
process, both ConsMAC and RL-based modules are alternately
updated. On the other hand, in our hierarchical architecture,
the training of the high-level policy is based on the lower-level
network, which means that specific decisions of the agents in
the environment are given by the low-level policy. Therefore, it
is necessary to derive how to compute the specific RL gradient
of me, in this nested scenario. In this regard, the gradient of
Jhigh Will be given by the following theorem. For convenience,
we omit the superscript () in this part and simplify m and z
as s. Therefore, the high- and low-level policies are denoted
as my(p,ls) and m (uls,p,), respectively. To align with the
PPO-based CI-HRL framework, we assume the joint policy for
the agent to interact with the environment (i.e., e = [m,, Ty ])
is a stochastic policy, which implies that the two policies are
not deterministic simultaneously.

Theorem 1: Given the high-level RL-based policy mry and
the low-level policy mr;, the gradient of the objective function
Jhigh(®n) with respect to the variable O is

Vo, Jhigh(On)
=Esu-m, p,~my [(@ Vo, Inmy(p,ls)+a.Vp, Inm (uls, p,)
Vo, mu(P,ls)) (s, u)] (14)

where Q is the state-action value function of &, u is the joint
action of all agents. ay is set to 1 if the high-level policy is
stochastic and O otherwise. «; is associated with the low-level
policy following the same binary convention.

Proof: See Appendix B in the Supplementary File. [

To boost the performance of the trained high-level policy,
we treat the low-level policy as a deterministic policy and
use a navigation-only low-level policy, which neglects the
constraint of formation, to pretrain the stochastic high-level
policy. Afterward, we fine-tune the high-level policy in the
complete environment with the formation constraint. To sum
up, the training procedure is summarized in Algorithm 2.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate our method in both the MPE [9]
and an SITL simulation environment based on the robot oper-
ating system (ROS) system, Gazebo-Classic physics simulator
[46], and PX4 autopilot [39] for quadrotor UAVs. Notably,
different formation patterns correspond to different formation
numbers, as shown in Fig. 3.

A. Experimental Settings

During the experiments, we utilize some common train-
ing techniques in MAPPO such as orthogonal initialization,
gradient clipping, and value normalization, while the value
functions of both the high- and low-level policies are imple-
mented by a three-layer MLP with a hidden size of 128. The
training data is collected in 20 threads simultaneously, and the
update epoch of PPO is 15. The Adam optimizer is used with
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Algorithm 2 Training of CI-HRL

1: Initialize ConsMAC, the RL-based module and value
function with random parameters ¥, @y, ¢y, respectively;

2: Initialize the training batch size of ConsMAC N,, and the
replay memory B¢ « @;

3: Initialize the adversary 2 and the set of target areas T ;
// Pretraining of high-level policy

4: for each train episode do

5: Randomly initialize the environment state s©;

// Training of RL-based module
6: for t=1{1,...,T} do

7: Each agent i obtains o from s® and receives Mffe)i,i
from neighbors;

8: Calculate m{""" by (9) and p) by (12);

9; Store <01(‘l)’M1(1te)i,i’pfzt,)i’S?)> in Bc.

10: Calculate the state value Vj, (s©);

11: Calculate actions ul@ by a navigation-only policy;

12: Execute actions, obtain the reward RZ) and update

state s — s+,
13: end for
14: Update ®g, ¢y according to (13) while incorporating
the training techniques of MAPPO;
// Training of ConsMAC
15: for each update epoch of ConsMAC do

16: Sample a batch of N, tuples from Bc;

17: Calculates 8" by (7)~(10);

18: Update ¥ according to (11) via Adam optimizer;
19: end for

20: end for

// Training of low-level policy

21: Train the low-level policy m; by Algorithm 1;
// Fine-tuning

22: Fine tuning the high-level modules ¥, Oy, ¢y in the
environment by step 4-20, but the actions ul(.t) is calculated
by the low-level policy ;.

Output: The trained ¥, Oy, O;

a learning rate of 1 x 10™*. Meanwhile, aligned with MARL-
related mainstream UAV studies for MC-PEGs [3], [32], we
focus on the 2-D experiments with a fixed altitude, where
the coordinates of UAVs are randomly initialized in the range
[-2, 2] m along the x- and y-axes. Moreover, the key parameter
settings of the environment are summarized in Nomenclature,
and the specific settings of each level are as follows.

1) Low-Level Settings: In our experiments, the low-level
policy is updated for 500 episodes, each of which has 100
time steps, and the anchor point is randomly initialized in the
range [—5, 5] m for both the x- and y-axes. The formation and
navigation module, the obstacle avoidance module, and the
output layer in (5) are all composed of a three-layer MLP with
a hidden size of 128 for all ¢ € C. In each step of AT-M, we
set up different environments as mentioned in Section IV-B2
with obstacle densities of 0 and 3 x 1072/m?, respectively,
for training. However, when the number of agents is small,
direct training in an environment with obstacles already leads
to satisfactory results, and recombining modules may reduce
performance. Therefore, in subsequent performance compari-
son, we only focus on the pattern greater than 5.
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TABLE I
KEY PARAMETER SETTINGS OF THE ENVIRONMENT

Parameters | Settings
Number of UAVs N =8
The set of possible quantities C=1{3,4,5,6,7,8}
Range of velocity per UAV (m/s) [—1, 1]
Range of adversary velocity (m/s) [—0.75, 0.75]
Observation distance (m) dobs = 3

Reward weights of Ry,
Reward weights of Ry
PPO Hyperparameter

(w, wn,we) = (15,4, 100)
(wt,wn,we) = (10,0.1,100)
(v,e,A) = (0.8,0.2,0.95)

2) High-Level Settings: The high-level policy is updated for
1000 episodes during pretraining and 500 episodes during fine-
tuning, each of which has 400 time steps, but anchor points
are generated by the high-level policy every ten steps. The
predator primarily uses a single-agent PPO policy, with the
same network structure as the low-level policy of UAVs, and
is set to chase the nearest group with at least three members
and avoid obstacles. For convenience, the discrete coordinate is
used for the high-level policy, and the set of possible anchor
points in the x- and y-axes is {—8,0,8} m, implying a 9-D
high-level action space. The distance encoder consists of a
linear layer, while the global estimator is implemented by a
three-layer MLP, and the rest of the MLP-based modules have
two layers. Besides, we implement a four-head attention layer,
and the dimension of the message m and attention layer is 64,
while the hidden size of other MLPs is 128. Moreover, after
every 20 episodes of interaction, the collected data are utilized
to train ConsMAC 5000 times with a batch size of 2048. We
assume the number of target areas is set to 2 (i.e. |T| = 2),
with each area randomly selected from the set of coordinates
{(=8,-8),(=8,8),(8,-8),(8,8)} m.

B. Performance of Low-Level Policy

1) Evaluation Metrics: We evaluate the formation perfor-
mance in terms of the average reward per time step Ry, the
formation stability F, the navigation efficiency N, and average
collision probability C. Specifically, the formation stability F
counts the average time of formation maintenance per episode
(i.e., the time when the HD-based formation error defined in
Appendix A-1 is less than 1 m), while the formation accuracy
complies with the required <1.5 m positioning accuracy in
D2D communication [47]. For navigation tasks, the navigation
efficiency N quantifies the average time staying in proximity
to the destination (i.e., |[p® — p,ll < 1 m), such a positional
accuracy in swarms can significantly enhance payload deploy-
ment success rates [48]. Additionally, the average collision
probability C evaluates obstacle avoidance and the average
reward per time step R, provides a comprehensive perfor-
mance evaluation aligned with operational objectives.

2) Performance Comparison: To test the performance of
the AT-M under more severe conditions with denser obstacles,
we have increased the density of obstacles to 5 x 1072/m?. We
evaluate the curriculum learning-based formation [18], denoted
as CL-M, classical multi-agent deep deterministic policy gra-
dient (MADDPG) [9], traditional optimal reciprocal collision
avoidance (ORCA)-based formation ORCA-F [49], and our
AT-M of each step in MPE. Table II shows the average results
of 50 episodes of tests. To address safety-critical scenarios,
we further propose AT-M-Safe, a conservative variant of AT-
M. By slightly adjusting LiDAR parameters (instead of 4

im?
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TABLE I
PERFORMANCE COMPARISON OF AT-M WITH BASELINES

¢ | Method | Rp 7 Fs)T N1 CO%)l
MADDPG [9] - 58.12 4.26 -
ORCA-F [49] —92.55 24.52 45.06 0.40
CL-M [18] —90.79 48.80 38.94 0.78
6 AT-M-Step 1 —424.45 59.64 46.20 11.40
AT-M-Step 2 —96.56 17.7 35.50 0.86
AT-M-Step 3 —96.00 49.72 36.66 0.78
AT-M-Safe —46.28 29.54 24.24 0.36
MADDPG [9] - 0.84 46.94 -
ORCA-F [49] —118.10 15.74 35.50 0.48
CL-M [18] —113.69 29.72 15.28 0.74
7 AT-M-Step 1 —660.84 55.78 40.26 19.46
AT-M-Step 2 —125.84 8.14 28.40 1.08
AT-M-Step 3 —94.32 40.24 24.26 0.74
AT-M-Safe —55.61 23.92 16.88 0.46
MADDPG [9] - 0.02 49.30 -
ORCA-F [49] —195.23 7.74 28.52 0.66
CL-M [18] —121.90 29.30 34.08 1.30
8 AT-M-Step 1 —506.48 45.84 53.92 13.20
AT-M-Step 2 —266.94 0.10 1.68 2.56
AT-M-Step 3 —106.94 41.52 36.90 1.14
AT-M-Safe —72.57 20.26 26.60 0.62

d”—0.2 is used in (5) when the mth LiDAR of the UAV detects
an obstacle), UAVs initiate precautionary avoidance measures
earlier. The results of AT-M-Step 2 indicate that initializing a
model in the case of dense obstacles leads to excessive col-
lision penalties, hindering the learning of effective formation
strategy, but it still maintains commendable obstacle avoidance
capabilities. Furthermore, it can be observed that our proposed
AT-M (i.e., AT-M-Step 3) outperforms other baselines in terms
of overall performance balance when the number of agents
increases, which demonstrates that introducing a well-trained
obstacle avoidance model into a formation-capable model and
fine-tuning the integrated model can significantly produce
appealing performance. In addition, MADDPG [9] is also
trained in an environment without obstacles, but even so,
when pattern ¢ is larger than 6, MADDPG can no longer
learn effective strategies, and its training overhead is very
large compared to other methods. Meanwhile, ORCA-F [49],
which is based on ORCA and a fully connected leader-follower
framework, can greatly reduce the probability of collisions.
However, ORCA-F performs poorly when integrated with
downstream formation and navigation tasks, and becomes
overly conservative as the number of agents increases, lead-
ing to further performance degradation, which highlights its
limitations. Meanwhile, since the collision avoidance reward
in (21) penalizes proximity to obstacles for proactive avoid-
ance, AT-M-Safe achieves superior collision avoidance than
ORCA-F while maintaining formation and navigation capabil-
ities, further validating the universality and flexibility of the
AT-M methodology. Nevertheless, AT-M-Safe is conservative
as well, with significantly degraded formation and navigation
performance compared to AT-M-Step 3. Thus, it serves as
a backup for dense obstacle environments, while AT-M-Step
3 suffices for subsequent experiments. Different from AT-M,
the CL-M [18] involves gradually increasing obstacle den-
sity during training. Notably, the performance gap between
AT-M and CL-M gradually increases as the number of agents
increases, since the curriculum learning method gradually
enhances obstacle perception and inadvertently leads to a
partial and irreversible loss of formation ability. In contrast,
our AT-M can achieve obstacle avoidance while maintaining
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Fig. 4. Simulation results of adaptive formation. (a) Curve of loss during
policy distillation. (b) Formation reward when a random agent drops out every
200 time steps.
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Fig. 5. Comparison to other communication methods.

the original formation ability by fusing models from different
stages and fine-tuning.

3) Adaptive Formation Results: For the adaptive formation
mentioned in Section IV-B3, we pretrain six formation models
with the pattern c ranging from 3 to 8 in Fig. 3 and store the
corresponding tuples (p,,z,u) for 60 000 time steps as the
replay memory 5. Besides, the hidden size of the distilled
model is 256 and the Adam optimizer is used with a learning
rate of 1 x 10~%. Meanwhile, the distilled student model is
trained for 300 000 episodes, and the batch size of each
episode of sampling is 600. The curve of loss during policy
distillation is shown in Fig. 4(a), while Fig. 4(b) illustrates
the curve of formation reward over time. In particular, given
the initial existence of eight agents, some randomly selected
UAVs are assumed to be no longer observed. In the adaptive
formation task, agents are supposed to perceive the change in
the fleet number itself and adapt the formation policy swiftly.

C. Performance of ConsMAC

1) Effectiveness and Superiority of ConsMAC: We com-
pare our ConsMAC module with three representative MARL
communication methods (i.e., the attention-based message
aggregation method TarMAC [25], the supervised learning-
based information extraction method MASIA [13], and the
SOTA communication method NVIF [11]), and the commu-
nication content and overhead of each method are shown in
Table III. In addition, we add the original MAPPO and the
latest MARL SOTA algorithm HASAC [14] without communi-
cation to reflect the effect of the communication module. Fig. 5
presents the corresponding performance comparison while
Table III lists the communication costs. As shown in Fig. 5,
ConsMAC significantly outperforms other baselines, and it
is worth noting that both ConsMAC-A and ConsMAC-O,
which refer to training ConsMAC by using global outputs of
anchor points or global observations of all agents as labels,
respectively, significantly improve the overall performance,
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TABLE III
COMMUNICATION OVERHEAD OF EACH METHOD

Method | Communication Content | Dimension
MAPPO [16] - 0
HASAC [14] - 0
TarMAC [25] Latent Vector 64
MASIA [13] Local Observation 38

NVIF [11] Latent Vector + Local Observation 102
ConsMAC (Ours) Latent Vector 64
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Fig. 6. Ablation results of ConsMAC-A.

demonstrating the robustness and generality of our method.
On the other hand, TarMAC accelerates the convergence rate
by introducing the implicit communication vector, but its final
performance is not as good as the original MAPPO, possibly
due to that it does not guide the communication content and
produces invalid information. Besides, both the convergence
rate and the final effect of MASIA are also reduced in the local
communication environment, which indicates that only trans-
mitting the original observation information cannot provide
enough guidance for the agent to make decisions. Notably,
NVIF converges as fast as TartMAC and ultimately outperforms
both TarMAC and MASIA, demonstrating its improvements
over existing communication methods. However, it still lags
behind ConsMAC and MAPPO, indicating insufficient guid-
ance in communication content. Meanwhile, when the number
of training iterations aligns with other baselines, HASAC
merely leads to significantly inferior results.

2) Ablation Study of ConsMAC-A: We perform the ablation
study of ConsMAC-A to further demonstrate the effective-
ness of each part in ConsMAC. Fig. 6 illustrates the results
between ConsMAC-A and some variants. ConsMAC-wo-
Com denotes the ConsMAC without communicated messages,
while we remove the memory module and distance encoder
in ConsMAC-wo-Mem and ConsMAC-wo-DE, respectively.
Moreover, ConsMAC-wt-RL uses both supervised learning
loss and RL loss to update ConsMAC. The results in Fig. 6
verify the individual contribution of each module. Mean-
while, ConsMAC-G uses the estimated state g in (10) as the
communicated message instead of m, and the results show
that the effect of communicating the hidden layer vector is
significantly better than that of communicating g, and greatly
contributes to the overall performance improvement. Besides,
it is worth noting that adding the RL loss to the ConsMAC
reduces the performance, which demonstrates the importance
of independent learning in ConsMAC.

D. Performance of CI-HRL

1) MPE Simulation:
a) Effectiveness and superiority of CI-HRL: On the basis
of ConsMAC-A, we follow Algorithm 2 and fine-tune the
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Fig. 7. Effectiveness of fine-tuning hierarchical policies in CI-HRL.
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TABLE IV
PERFORMANCE COMPARISON OF CI-HRL WITH BASELINES

Method | Rut R¢t  Rat Ret EJ
MAPPO [16]+ATM | —397.29 54.33 —334.95 —116.68 8.78
HASAC [14]+AT-M | —381.07 105.70 —347.82 —138.95 11.42
TarMAC [25]+AT-M | —432.81 29.81 —367.06 —95.56 7.16
MASIA [13]+AT-M | —404.45 31.89 —336.17 —100.19 7.72
NVIF [11] +ATM | —403.79 16.12 —340.58 —79.33 5.94

CI-HRL-w-CL-M-wo-FT | —408.55 38.81 —326.08 —121.29 9.48
CI-HRL-w-CL-M | —320.69 74.13 —288.11 —106.70 8.40
CI-HRL-DT —366.95 79.72 —381.52 —65.16 5.16
CI-HRL-wo-FT —351.27 58.31 —301.65 —107.93 7.66
CI-HRL (Ours) |—281.56 107.37 —327.27 —61.66 4.46

overall CI-HRL with the trained low-level policy. Besides, we
directly train the high-level policy with the low-level policy
for comparison, denoted as CI-HRL-DT, while we suffix CI-
HRL methods without the last fine-tuning by “wo-FT.” Fig. 7
compares the learning curves of both fine-tuning and direct
training. Furthermore, in Table IV, we evaluate each method
for 50 episodes and record the rewards for all parts, where
E denotes the average time of dangerous situations per round
(i.e., the distance between agents and the adversary is less
than 2 m). The related results indicate that the high-level
decision-making in CI-HRL significantly outperforms other
MARL algorithms, achieving larger task rewards in target
areas. Meanwhile, due to variations in the low-level strategies,
a direct concatenation of these components cannot score more
effectively. Nevertheless, the pretrained CI-HRL still performs
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Fig. 9. Task overview in Gazebo simulator for SITL.

TABLE V
EVALUATION RESULTS OF DIFFERENT ADVERSARY STRATEGIES

| PPO DDPG  R-Largest R-Nearest
Ry 107.37 161.97 151.74 187.87
Re | —61.66  —82.43 —55.48 —79.54
E 4.46 6.42 4.44 5.80

better on average reward and navigation efficiency than direct
joint training. Moreover, the joint fine-tuning discussed in
Section IV-C3 contributes to improving the performance. In
addition, CL-M in Section V-B2 is used as the low-level
policy of CI-HRL, and the resulting model CI-HRL-w-CL-M
severely underperforms its AT-M counterpart, but the joint
fine-tuning improves the overall performance significantly,
demonstrating that an optimized high-level policy can com-
pensate for the shortcomings of a less-performing low-level
one.

b) Generalization results: To further validate the robust-
ness and generalization of CI-HRL, we conduct extensive
experiments under diverse adversary strategies and larger-scale
scenarios, respectively. In addition to the original PPO-based
adversary, we also evaluate the performance of the CI-HRL
under DDPG-driven and two different rule-based adversary
policies (i.e., tracing the largest group, denoted as R-Largest,
and targeting the nearest agent, denoted as R-Nearest). Table V
reveals the robust performance of CI-HRL against various
adversary strategies. Notably, DDPG and R-Nearest strategies
focus more on chasing the nearest agent rather than impe
ding the swarm’s task completion, leading to lower eva-
sion rewards. In other words, such an overemphasis on a
single agent enhances the safety and task efficiency of the
remaining agents, thereby improving the overall performance.
Furthermore, we expand the number of agents to 15, and
the agent-averaging results are shown in Table VI. Consistent
with the trend in Table II, along with the increase in the
number of agents, the formation performance of low-level
policy decreases, which subsequently impacts the overall task
completion. However, the average navigation and evasion
rewards remain relatively stable, indicating that the high-level
policy can make superior decisions to compensate for the
low-level performance degradation. These results highlight
the scalability and adaptability of our method to diverse
adversarial dynamics and validate its potential for deployment
in complex environments, motivating us to investigate the
practical performance of CI-HRL.

2) SITL Simulation:
a) Framework of SITL: To verify the performance of
the CI-HRL algorithm deployed on a quadrotor UAV in the
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TABLE VI
GENERALIZATION RESULTS OF CI-HRL IN LARGE-SCALE GROUPS

N | Ru/N R¢/N Ry/N Re/N E/N
8 | —35.20 1342 —40.91 —7.71 0.56
9 | —36.80 15.67 —43.13 —9.34 0.68
10 | —41.16 1011  —43.61 —7.66 0.60
12 | —4226 891  —44.97 —6.20 0.9
15 | —45.31  4.09 —41.46 —7.95 0.63

real world, as shown in Fig. 8, we develop an ROS-based
SITL simulation environment with Gazebo-Classic physics
simulator and PX4 autopilot [39] for quadrotor UAVs.
Different from existing open-source SITL work such as
XT-Drone [50], in our simulation the UAV node makes
fully distributed and asynchronous decisions based on
partial observations within a limited communication range,
and the CEFC task is simulated in high fidelity with
multiple obstacles, target areas, and game scenario, as
illustrated in Fig. 9. Specifically, each UAV in offboard
control mode corresponds to an independent Python flight
control process (CI-HRL algorithm with ConsMAC-A).
Moreover, based on the MAVROS protocol, each UAV

subscribes to/publishes ROS topics via user datagram
protocol (UDP) connections to broadcast its states
and observations regarding the adversary, obstacles,

target areas, and neighboring agents. Then, each UAV
calculates the expected acceleration according to the
CI-HRL output and publishes the result to the topic
subscribed by PX4. Meanwhile, PX4 gets the UAV’s real-
time pose and sensor messages via a transmission control
protocol (TCP) connection with Gazebo. Based on the
received acceleration requirement, PX4 calculates motor and
actuator values from the PID controller and sends them to
the Gazebo. Afterward, Gazebo determines the next frame’s
pose and sensor data according to the UAV’s dynamic model
and sends it back to PX4.

b) Strategy analysis: We depict four typical cooperation
steps in one episode of SITL and the corresponding partial
motion path based on the pose history from the ROS topic in
Fig. 10. Besides, to verify how CI-HRL works, we save the
64-dimensional message ml(.’) that is transmitted to neighboring
agents. Furthermore, we compute the cosine similarity of the
messages from UAV {1, 2, 3,4} at each high-level decision step
to analyze the target intention of agents, as an illustration
in Fig. 11(a). Notably, higher cosine similarity of messages
implies more similar intention and consistent anchor points,
since the communicated messages mﬁt) imply the prediction
of the global state as (10) and the selection of anchor points
largely depends on the aggregated message mElH) followed
by the CI-HRL as (12). It can be observed from Fig. 10(a)
that at the beginning of the simulation (i.e., step 1), given
the existence of the adversary, all agents take unanimous
decisions toward the top right corner target rather than the
target p; = (-8, —8). The similarity matrix shown in Fig. 11(b)
suggests all the message similarities among four agents are
higher than 0.9, standing for agents’ consensus on the target
decision at the moment. At step 19, as shown in Fig. 10(b), due
to the adversary’s approach, the corresponding agents, which
originally formed in Ag, undergo an adaptive transformation.
Specifically, agents {1,4,7} form an As; group and move
in directions different from agents {2,3} and {0,5,6}, who
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seem to be responsible for diverting the adversary’s attention,
according to the similar intention of {1,4} and {2,3} in Fig.
11(c). During the adversary approaches to the left side at step
50, agents {4, 6,7} reassess the safety of the target area p, =
(8,8) and automatically form Az, while agents {0, 1,2,3,5}
proceed to the anchor point (—8,—8) and adaptively form a
As group, as shown in Fig. 10(c). Correspondingly, it can be
observed from Fig. 11(d) that the communicated messages of
agents {1,2,3} maintain a similarity higher than 0.9, while
the similarity with Agent 4 turns less than 0.85. Such an
observation is consistent with the case where agents in two
different groups choose different anchor points. Later at step
79, with the adversary moving close to (—8,-8), agents
{0,1,2,3,5} escape from p,, reach the anchor point (8, 8) and
eventually form Ag as shown in Fig. 10(d), when the messages
become highly similar again as shown in Fig. 11(e).

c) Impact of real-world factors: To validate the robust-
ness of our algorithm deployed at real-world UAV systems,
we simulate more practical factors (e.g., winds and sensing
deviation) with Gazebo plugins. Table VII records the times
of critical events such as formation, navigation, and collision

probability during 1000-step game in SITL. It shows that
AT-M can competently handle environmental dynamics. For
example, even confronted with strong wind, whose speed
follows a Gaussian distribution with a mean of 8 m/s, the
formation and navigation completion remain approximately
78.4% compared to that in a calm environment. Similarly,
AT-M sustains 80% of its performance even when its input
is skewed by a Gaussian distribution with a mean of 0.8 m.
It is safe and reliable until the deviation is minor than the
obstacle radius, which is 0.4 m in our case. Furthermore, to
verify the effectiveness in a realistic distributed architecture,
we deploy it across multiple devices in a LAN environment.
For example, an NVIDIA Jetson TX2 NX is assigned to run
a single onboard agent process, requiring 12.3 ms/decision,
while a GeForce RTX 4090-equipped computer is responsible
for seven other agents, consuming 0.96 ms/decision. Owing
to the gap in computing efficiency, the average completion
rate of asynchronous AT-M, denoted as SITL-M in Table VII,
reaches 97.1% of the performance observed in simulation on a
single device (denoted as SITL-S). As for CI-HRL, the average
effective formation rate in 50 episodes of SITL-M is equivalent
to 92.7% of that achieved by SITL-S.
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TABLE VII

PERFORMANCE VALIDATION OF AT-M IN SITL WITH DIFFERENT SENS-
ING DEVIATION, WIND SPEED, AND HARDWARE DEPLOYMENT

Critical Event | F(s) N() C(%) | F(s) N¢() C%)
c | 5 | 6
SITL-S 693 722.4 0 711 645 0
Wind-3m/s 669.3 651.3 0 637 644 0
Wind-5m/s 643.2 579.2 0 586 632.5 0
Wind-8m/s 558 549 0 530 628 0
Deviation-0.3m 683 652 0 667 639 0
Deviation-0.5m | 647.5  628.7 0 616 623 0.33
Deviation-0.8m | 545.5  605.5 2.95 534 551 1.20
SITL-M ‘ 652.8 T711.1 0 ‘ 676.1 647.9 0
c | 7 | 8
SITL-S 746 707 0 712 696.5 0
Wind-3m/s 582 636 0 612.6 631.3 0
Wind-5m/s 577 585 0 593.7 615.7 0
Wind-8m/s 521 508 0 524 580 0
Deviation-0.3m | 676.3  703.2 0 616.3 649 0
Deviation-0.5m 606 690.5 0.60 600.3 643 0.28
Deviation-0.8m 590 593 2.20 503 551 2.18
SITL-M ‘ 691.4 700.8 0 ‘ 654 705.7 0

VI. CONCLUSION AND FUTURE WORK

In this work, toward accomplishing the CEFC task, we
have proposed and validated a consensus inference-based
hierarchical MARL framework (CI-HRL). Specifically, in low-
level policy, we have implemented an AT-M to satisfy multiple
coupled constraints and better balance the tradeoff between
formation and navigation performance through dense ran-
dom obstacles. Moreover, policy distillation has been adopted
to achieve a more flexible adaptive formation. Meanwhile,
in high-level control, to infer global information from the
partially observed local state and implicitly establish the
consensus, the ConsMAC methodology, has been designed in a
novel supervised learning manner. Finally, we have conducted
extensive experiments in MPE and SITL environments and
successfully demonstrated the effectiveness and robustness of
individual modules in CI-HRL. Moreover, the superiority of
CI-HRL has been thoroughly validated.

Although CI-HRL has brilliant performance, there are still
policy convergence challenges in super-large-scale scenarios.
This limitation stems from the exponential growth of com-
plexity for the centralized critic in the CTDE framework and
the strict topological constraints in formation control. Potential
solutions include fully decentralized training [S1] or fractal-
based hierarchical partitioning [52]. Meanwhile, we will carry
out intense studies to further improve the stability of the
MARL framework, optimize communication overhead, and
develop methods to counter stronger adversaries. For example,
to enhance UAV maneuverability in a 3-D environment, we
will study the incorporation of an altitude planner for alti-
tude adjustments while maintaining the swarm’s fundamental
2-D behaviors. Furthermore, recent advances in adversarial RL
[53], [54] provide promising directions for designing adaptive
adversaries that can dynamically adjust their strategies during
training. Integrating such methods could enhance the robust-
ness of CI-HRL against sophisticated adversarial tactics.

APPENDIX A
DETAILS OF THE REWARD FUNCTION DESIGN
In this part, we introduce the details of the reward function
in Section III-A2. For simplicity of representation, we denote
the relative positions of agents in the group k € {1,...,y®} as
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P = {py) p’IVj € Ni} where p\” is the center of the group

and A, is the target formation corresponding to k.

1) Formation Reward:

Toward implementing leader-free formation control and
enhancing the robustness, we adopt the HD [42] to measure
the formation error between the current and the expected
formation. The HD between two topologies & and & is
defined as HD(E, &) = maxyeg, minyeg, |X—yll. The formation
reward for each group can be obtained as

Xll)
RY = -3 HD (Ank, P;”) ~ RS (15)
k=1

where R” = 0 and w; is the formation lag coeflicient to better
reflect the formation trend.

2) Navigation Reward:

The navigation reward simply uses an urgency-weighted
Euclidean distance between agents and targets, which can be

given by
R(t) - Z Z K(Z)

ieN TeT

()

Piox (16)

3) Task Accomplishment Reward:

The task accomplishment reward is awarded when each
group k reaches the target area and maintains the formation
and can be written as

R = YOS TRY a7
IeT k*
where
0]
TR}(CI)_)i _ ) if Hpk*_n < Otask (18)

0, otherwise

with J,sc denoting the radius of the target area and k* €
{1,...,x""} indicates a group meeting a formation tolerance
Ofor, that is, HD(A,W,P(’)) < Ogor- Besides, the urgency factor
(’) will gradually decay when the agents stay in target area T
as follows:

+1)
Ky

Wy Z TR{ .0 (19)

= max KI

where Kg)) =1 and wy is the decay factor.

4) Evasion Reward:

The evasion reward is designed to prevent the adversary and
can be formulated as

RY = Zmax( e prgﬂ

ieN

0) (20)

where 6,, is the alert distance of evasion.
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TABLE VIII
PARAMETER SETTINGS OF THE REWARD

Parameters |  Settings

Formation lag coefficient w; 0.3

Decay factor wq 0.003
Alert distance dae, Jac (2 m, 0.5 m)

Formation tolerance g, Im

The radius of the target area g gk 3 m

Minimum safety distance g 0.2 m
Collision constants wer; , Werg, C1, C2 (24,8,3,1)

5) Collision Avoidance Reward:

The collision avoidance reward, which is designed to pre-
vent obstacles, can be formulated as a summation of individual

rewards, namely,
() — (1)
RO ==> > CRL,
ieN j#i,jeT

21

where Z is the set of agents and obstacles, and for the
minimum safety distance d; and collision alert distance 6,
Wer, (5s - df.j,;) +Ci, dY <,
®
CRi—)j =\ Wer, (60,,6 - df%) + Cp, 65 < dg}:l

o
0, d; > 64

<6 (22

with ) = min(d}{,...,d{) related to LiDAR and positive
constants Wey,, Wer,, C1, and Cs.

Furthermore, we have summarized the parameter settings of
the reward in Table VIII.
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