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High-fidelity data-driven dynamics model
for reinforcement learning-based control
in HL-3 tokamak
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Reinforcement learning (RL)-based control in tokamaks offers improved flexibility for nuclear fusion,
but typically depends on simulators that can accurately evolve the high-dimensional plasma state.
First-principle simulators are often too computationally intensive for efficient RL training. Here, we
develop a fully data-driven simulator that mitigates compounding errors caused by its autoregressive
nature. This high-fidelity model enables rapid training of an RL agent that generates engineering-
reasonable actuator commands to reach long-term plasma configuration targets. Combined with a
neural network surrogate for equilibrium fitting (EFITNN), the agent maintains a 400-ms, 1 kHz control
trajectory on the HL-3 tokamak, accurately tracking plasma current and boundary shape. It also
adapts to changes in triangularity without retraining, demonstrating robustness. These results show
that data-driven dynamics models can support fast and reliable RL-based control, meeting
anticipated engineering requirements for routine operation in future fusion devices such as ITER.

The objective of the tokamak, a torus-shaped nuclear fusion device, is to
provide sustainable energy by effectively confining high-temperature
plasmas using magnetic fields. The stable confinement of plasma in a
tokamak depends significantly on well-calibrated control approaches,
which can be developed through a thorough understanding of the
underlying dynamics1–3. Rather than providing an exhaustive inter-
pretation of fundamental physics, control-oriented dynamics models
deliver significant advantages in simplicity with reasonable accuracy4,
assisting the precise manipulation of various actuators toward desired
configurations. For instance, the reliable prediction of rapidly growing
plasma instabilities contributes to proactively suppressing disruptions5–8,
while an accurate long-term evolution of the plasma dynamics supports
Reinforcement Learning (RL)-based controller to meticulously regulate
high-dimensional, mutually coupled magnetic coils toward target plasma
current and shape9,10.

Classically, a high-fidelity, autoregression-capable dynamics
model11,12 can be built on first-principles-based computations. A notable
example is the Forward Grad-Shafranov Evolutive (FGE) model, which
solves the free-boundary equilibrium while accounting for the plasma
current evolution coupled to controller dynamics13. Through accurately
synthesizing high-dimensional magnetic flux and local magnetic field
measurements as outputs of the tokamak sensors, this model enables the

offline training of an RL-based magnetic controller9. Although this
physics-driven approach can give highly detailed simulations, an over-
reliance on such simulators without incorporating sufficient real-world
data may reduce the generalizability of RL policies14. Additionally, each
training step has to await the FGE simulator for the cumbersome
computations of lumped-parameter equations9, making the training of
RL policies possibly take hours10. In contrast, ITER, the International
Thermonuclear Experimental Reactor, is expected to be capable of
executing the next pulse within a minimum of 30 min15. Despite pro-
gress to accelerate training, the physics-driven simulator is still not
competent for training RL-based control policies at a sufficiently fast
pace10, an anticipated engineering requirement in daily discharge
practices for ITER.

Compared to first-principles-based approaches, historical discharge
data offers the potential to develop models with significantly faster
speed. For example, experimental data facilitates the adoption of line-
arized system identification techniques to approximately reproduce the
response of coupled plasma profiles under variations of given actuators1
4,16. Nevertheless, the validity of the linearized dynamics model is limited
to the vicinity of the plasma equilibrium that needs to be tracked17. An
alternative approach resorts to Artificial Intelligence (AI) models, as
Deep Neural Network (DNN)-based models demonstrate satisfactory
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accuracy18–22 with preliminary dynamics modeling results5,11,12. Promi-
nently, a DNN model that competently forecasts the future tearing
likelihood from various plasma profiles and tokamak actuations has
successfully contributed to the prediction-driven planning of a high-
level policy to yield desired beam power and plasma triangularity target
for tearing avoidance5. Though such a process disentangles the pre-
dictive power of the dynamics model from the policy learning proce-
dure, building a high-fidelity, data-driven simulator for training a high-
dimensional, high-frequency RL controller remains challenging. Unless
optimizations are adopted to make long-range predictions, the auto-
regressive nature of such simulators can lead to compounding errors,
which gradually accumulate over long-term multiple-step evolution,
resulting in significant discrepancies and potentially catastrophic
outcomes23.

To combat the long-term divergence issue, one intuitive means is to
unroll the single-step prediction to incorporate multi-prediction losses
during training24–28; while another line of work lies in implicitly29–31 or
explicitly32,33 learning a specific dynamicsmodel for every n-step prediction.
Albeit the practicability in low-dimensional scenarios25–32, both strategies
imply significant training difficulties with limited scalability for a magnetic
control that usually lasts for hundreds or even thousands of steps. Therefore,
on top of single-step prediction, several techniques like ensembling34,35,
principal component analysis36, and noise layer11,12 have been leveraged to
ameliorate this issue. However, to our best knowledge, the data-driven
dynamics model is still far from perfect for long-term, high-dimensional
trajectory control. Inevitably, Proportional-Integral-Derivative (PID)
controllers5,11,12, historically logged multi-variate commands36,37, or online
ModelPredictiveControl (MPC)35 indispensable complement for achieving
localized short-term, low-level magnetic control. Nevertheless, PID con-
trollers imply tremendous engineering and design efforts before
deployment9, while online MPC suffers from the cumbersome online
autoregression of the dynamics model for trajectory sampling6,35. Conse-
quently, due to the rare readiness of either low-level controllers or physical
simulators, the limited accuracy with only short-term guarantees in existing
data-driven dynamic models hinders the learning of high-dimensional,
long-term trajectory control policies.

In this paper, we aim to provide a data-driven dynamics model that
exclusively learns from the discharge logs collected through the interaction
between PID controllers and the tokamak device. The dynamics model is
designed to efficiently support the fast training and practical deployment of
a long-term, low-level RL-based agent, capable of directly generating
actuator commands. The systemarchitecture is shown inFig. 1.As shown in
Fig. 1a, EFITNN38, a surrogate model of the magnetic equilibrium recon-
struction code EFIT39,40, is leveraged to meaningfully transform the high-
dimensional magnetic measurements to lower-dimensional plasma shape
information while maintaining the physical interpretability and supporting
real-time deployment. Subsequently, a Long Short-TermMemoryNetwork
(LSTM)-based41 dynamics model is developed to track the evolution of
plasma shape and current, based on accessible zero-dimensional plasma
parameters and executed actuations. Benefiting from effectively leveraging
several useful techniques, including scheduling sampling42,43, adaptive
weight adjustment44,45, self-attention46, and model ensembling47, the trained
dynamics model demonstrates exceptional generalization capability on
unseen plasma current regions during training and sensitively captures
shape variations in typical scenarios, such as transitioning from limiter to
(advanced) divertor configuration48, and soft ramp-down49 during dis-
charges.Unlike localized short-termplanning5,11,12 shown in Supplementary
Fig. 1a, this data-driven dynamics model enables fully RL-based 400-ms,
1-kHz low-level trajectory control of up to 17 magnetic coils, achieving the
desired Last Closed Flux Surface (LCFS)50 via six shape and position para-
meters; while, as in Supplementary Fig. 1b, the training of 250,000 iterations
completes within 22min on the customer-grade Nvidia GeForce RTX 4090
GPU, fully satisfying the anticipation for RL-based magnetic control in
ITER. It even achieves zero-shot triangularity adjustment, validating the
effectiveness and reliability of the data-driven dynamics model.

Results
Construction of a data-driven dynamics model
To train a 1-kHz RL-based control policy, it is essential to build a high-
fidelity data-driven dynamics model, which can autoregressively produce
accurate predictions for up to 25 variates. These predictive variates
encompass the plasma current, 6 plasma shape and position parameters,
and 18 channels of feedforward coil currents, which together correspond to
a 44-dimensional indispensable input (SupplementaryTable 2) and support
the training of an engineering-reasonable policy for controlling 17magnetic
coil voltages. In comparison to yielding 100 ms-averaged evolution12,
forecasting single-variate tearability5, or only tuning the total power and
torque injected from the neutral beams36, the significantly higher resolution
and a larger number of coupling actuators implies to pose considerable
challenges and require a more comprehensive design.

During training, to mitigate the compounding errors, scheduled
sampling, which blends the historical logged data and model output42,43,
is leveraged. Fig. 2 shows that this easy-to-implement technique ensures
the training scalability and brings appealing results; in the “Methods”
section, a more thorough comparison with alternative solutions, such as
noise layer12, shows the flexibility of this training approach. On top,
training the dynamics model incorporates several useful techniques. In
particular, adaptive weight adjustment44,45, which simplifies the tuning of
weights for combining multi-task loss functions45 and guarantees resi-
lient and steady model learning44, is adopted to capture the implicit
relationship among plasma shape and position parameters. Meanwhile,
auxiliary techniques, such as self-attention46 and model ensembling47,
further enhance accuracy through a concerted effort. Fig. 3a presents the
ablation study in terms of Mean Absolute Error (MAE) and demon-
strates the incremental contribution of each technique to train the
dynamics model. Besides, the model maintains high consistency across
different tasks, achieving at least a 58.8% reduction in MAE than the
standard LSTM-based training. In addition, Fig. 3b provides the sta-
tistical measure in terms of the coefficient of determination R2 and
shows that the autoregressive output of the dynamics model can fit the
actual data well.

Prediction accuracy under abrupt shape variations
In the previous section, we demonstrated the capability of the data-driven
dynamicsmodel in learning the high-dimensional evolution. In this section,
we switch to investigate the prediction accuracy under abrupt plasma shape
variations, which are commonly encountered due to the transition from
limiter to divertor shape, the advanced divertor configuration transforma-
tion, or the initialization of soft ramp-down. Taking the example of shot
#6221, an H-mode discharge with edge localized modes (ELMs), Fig. 4d
manifests the significant impact of these activities on the plasma LCFS.
Specifically, following the shift fromthe limiter to thedivertor configuration,
the plasma’s elongation κ, upper triangularity δu, and lower triangularity δl
surge abruptly. Fortunately, as shown in Fig. 4a, the dynamics model sen-
sitively captures this variation. Similar robustness in predicting significant
fluctuations in elongation and horizontal displacement can be observed in
the initial segment of the ramp-down phase, where magnetic control still
dominates despite the plasma’s strong interaction with the wall, producing
significant non-magnetic effects. On the other hand, Fig. 4b and c validate
the accuracy of the dynamics model to predict abrupt shape variations in
both advanced divertor configuration and Internal Transport Barrier (ITB)
discharges51,52.

Extrapolation capability on unseen plasma current
Consistent with the staged research plan in ITER to gradually increase
plasma current (Ip)

15, it is crucial to assess the extrapolation capability of a
dynamics model trained on lower-Ip datasets when applied to a higher Ip
plasma discharge scenario. Therefore, we investigate the marginal con-
tributions of incorporating various numbers of additional 700 kA dis-
charges to fine-tune a dynamicsmodel initially trained on data with plasma
currents ranging from 300 to 600 kA.
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Figure 5 presents the corresponding results averaging over a testing
dataset consisting of 30 shots of 700 kA discharges, where the zero-shot
training implies no involvement of data from 700 kA discharges, while full-
shot learning indicates using data from all available 67 shots. As depicted in
Fig. 6, under zero-shot training, themodel gives a 152.6 kA discrepancy and
fails to reach themaximumplasma current value of 700 kA, highlighting the
generalization difficulty to higher currents without any prior information.
Nevertheless, with the introduction of just 2 or 4 additional shots of 700 kA
data for training, the prediction accuracy improves significantly, with a 90%
reduction in MAE. Meanwhile, both Figs. 5 and 6 indicate that with the
inclusion of 6 additional shots, the performance closely approaches that of
full-shot training, demonstrating the model’s strong extrapolation cap-
ability even with a limited dataset. On the other hand, for the geometric

parameters in the 700 kA discharge, a zero-shot model maintains an
acceptably low prediction error, suggesting more robust extrapolative
abilities for shape and position parameters. These experiments carry
encouraging implications for both the predictive and control aspects of
staged discharge within the upcoming ITER device.

RL-based on-device control results
In line with the long-term trajectory, magnetic control in ref. 9, we aim to
learn an RL-based policy to generate direct coil voltage commands for the
target plasma shape. This policy is trained through interactions with an
autoregressively evolving dynamicsmodel. During training, an actor-critic-
based Proximal Policy Optimization (PPO)53 is leveraged for learning to
achieve the desired plasma current and shape, which is identical to the
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Fig. 1 | The overall architecture of the plasma current and shape control in the
HL-3 tokamak. a Deployment schematic for plasma control on the HL-3 tokamak,
illustrating two control paradigms. The Conventional Control System utilizes a
Proportional-Integral-Derivative (PID) controller. It operates on the error between
desired targets and a measured plasma state derived from the direct diagnostic
measurementsm via the M-Matrix, which calculates the R and Z positions for
control, to ultimately generate commands that contribute to the final actuator vol-
tages a. The Reinforcement Learning (RL) Control System employs a trained policy
controller. This controller receives its state o from the diagnostic measurements
m processed by the EFITNNmodel. This state o is composed of the plasma current Ip
as well as six shape and position parameters: the minor radius a, elongation κ, upper

triangularity δu, lower triangularity δl, and the radial and vertical positions, R and Z,
of the plasma geometric center. The controller then takes this state o and the desired
target state d as inputs to directly generate the action a, which represents the voltage
commands for the 17 magnetic coils. Historical data from the conventional system,
including direct diagnostic measurementsmt, derived state observations ot, and the
executed actuator commands at, are collected to train the data-driven dynamics
model. This model then serves as a high-fidelity simulated environment for the
offline training of the RL controller. b The proposed training diagram of the
dynamics model, including scheduling sampling, multi-task adaptive weight
adjustment, self-attention, and model ensembling.
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discharge result between 1500 and 2000ms of shot #6226 of the HL-3
tokamak, anH-mode discharge with ELMs and a plasma current of 300 kA.
In PPO53, the “actor” utilizes a policy to generate physics-reasonable mag-
netic coil voltage commands (see “Methods” section) and modulate the
plasma to the configuration of interest, while the “critic” evaluates the
effectiveness of the current policy by estimating state values or advantages
for potential policy refinement. Fig. 7a demonstrates the target tracking
accuracy of the well-trained PPO actor within 1500–2000ms’ simulations.
The control error of the plasma current is 2.55 kA, or equivalently, 0.85% of
the target for a 300 kA discharge. The control error for minor radius a is
0.34 cm, which corresponds to 0.52% of the 65 cm minor radius char-
acteristic of the HL-3 tokamak device. Additionally, the control errors for
the geometric center coordinates, both R and Z, are constrained within a
maximum of 1 cm. The results indicate that the RL agent, supported by a
data-driven dynamics model, can effectively explore and assimilate strate-
gies that are advantageous for achieving discharge control objectives.

Inspired by these promising results, we further evaluate the perfor-
manceof theRL-basedpolicy by integrating thewell-trainedPPOactorwith
the PlasmaControl System (PCS) of theHL-3 tokamak. Consistentwith ref.
9, experiments are executed without further tuning the weights of the PPO
actor after training. In other words, there is a “zero-shot” transfer from the
simulation to the real device. Meanwhile, to provide a real-time plasma
shape diagnostic and complete the shape-control feedback loop, we utilize

our previously developed EFITNN38, a surrogatemodel of the EFIT code39,40

consisting of several fully connected neural network layers with residual
connections54. In comparison with offline EFIT, EFITNN yields a relative
error of less than 1% and consumes just 0.08ms on NVIDIA A100 Tensor
Core GPU with TensorRT. The adoption of data-driven EFITNN con-
tributes to effectively reducing the learning expenses of the dynamicsmodel
and facilitating real-time control. A summarized comparison between
EFITNN and offline EFIT is presented in Fig. 8.

RL-based 400-ms magnetic control for target tracking. To thor-
oughly evaluate the flexibility of RL-based target tracking, we adopt a
progressive approach. Initially, we assess the agent’s target tracking
ability and ensure it aligns with the simulations. For this purpose, the
experimental target remains identical to the reference shot #6226 for PPO
training, and the PPO actor responds to the variations in plasma shape
and position parameters diagnosed by EFITNN. Despite the consistency
in targets, noticeable differences arise during the PID control due to the
inherent uncertainties in tokamak discharge and simultaneously coupled
operations for HL-3 maintenance and testing. A series of RL control
experiments has been performed on HL-3.

Typically, in shot #12781, alongside the traditional PID control, we
conduct an RL-based magnetic control from 1600ms to 2000ms with
30ms transition periods at the start and end. Fig. 7b provides the cor-
responding control results, and Table 1 details the evolution of elonga-
tion (κ) and upper and lower triangularities (δu and δl) during the RL
control phase. During its operational phase, the RL controller demon-
strates excellent tracking performance for the four plasma shape para-
meters (a, κ, δu, and δl). It rapidly adjusts these parameters to their target
values and subsequently maintains their stability with high precision. On
par with PID, the controller capably maintains the radial (R) and vertical
(Z) positions within a stable range, with precision slightly lower than that
of shape parameters. Additionally, the control handover induces a brief
fluctuation in the plasma current (Ip), which the RL controller promptly
corrects, restoring it to the target level. The experimental results confirm
that the RL controller possesses the capability for precise plasma shape
regulation. In contrast to the conventional PID system, which is limited
to controlling plasma positions (R and Z) and current (Ip), the RL
controller successfully extends the closed-loop scope to the simultaneous
regulation of four additional key shape parameters (a, κ, δu, and δl).

RL-based control for zero-shot adaptation to a changed
triangularity target. Triangularity is a critical shape parameter in toka-
mak plasmas, significantly affecting both vertical stability and the
structure of the plasma boundary55. Consequently, the ability to control
triangularity is crucial for optimizing tokamak plasma equilibria and
performance. To validate the flexibility of RL, we intentionally decrease
the upper and lower triangular shape parameters of the plasma by 0.2
from their target values during the training phase. The performance of
the PPO actor on triangularity targets not encountered during training
allows us to evaluate the agent’s adaptability to varying control objectives.

In shot #6698, similar to the procedure described in the preceding
subsection on target tracking control, RL assumes the discharge control task
fromPID from1600ms to1700mswith 10ms transitionperiods at the start
and end. Fig. 9 andTable 2 illustrate the corresponding control results of the
upper and lower triangularity. Both the lower triangularity δl and the upper
triangularity δu successfully reach the new target values. Specifically, the
lower triangularity δl swiftly progresses toward the target following a tran-
sition period of approximately 10ms, finally reaching it around 1650ms.
Meanwhile, the upper triangularity δu follows a gradual trajectory toward
the target during the initial 10-ms transition phase, accelerates its adjust-
ment after around 20ms, and aligns with the target at approximately
1650ms. It then maintains alignment with the target trajectory for the
remaining 50ms. These zero-shot triangularity control results verify the
versatility of RL toward effective control in previously unencountered sce-
narios. Furthermore, the post-experiment replay of the dynamics model

Fig. 2 | The demonstration case to predict plasma shape and position parameters
for shot #6065 with and without the involvement of Scheduled Sampling.
Compared with actual discharge data (black solid line), a model trained with
scheduled sampling (red dashed line) more effectively mitigates the compounding
error than one without scheduled sampling (blue dashed line). The shaded area
represents the results of ensembling 5 independent models.
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from 1600ms to 1700ms reveals a consistent trend, underscoring the
model’s generalizability and robustness for supporting RL in exploratory
applications.

Conclusions
We present a technique to learn a fully data-driven dynamics model
to characterize the evolution of plasma in a tokamak device. The
dynamics model, which leverages multiple components to mitigate
the compounding error issue and improve accuracy during auto-
regression, exhibits high fidelity and appealing extrapolation cap-
ability. It effectively supports the fast training of an RL-based high-
dimensional trajectory control policy, which, together with the real-
time plasma diagnostic empowered by EFITNN, can directly
manipulate the magnetic coil voltages to transform the plasma state
toward desired configurations.

Our work demonstrates the feasibility of data-driven, end-to-end
learning and control of plasma current and shape. By avoiding reliance
on first-principle-based simulators9 and auxiliary controlling commands
from historical data or controllers5,11,12,35–37, our approach significantly

differs from existing works. High-dimensional control over a learned
model falls into the general scope of model-based reinforcement
learning (MBRL)24. In this regard, as in Supplementary Fig. 1a, instead
of evolving the plasma state, ref. 5 mainly uses the output of the learned
dynamics model to generate a competent reward function, which limits
its applicability to localized reactive control only. Meanwhile, as in
Fig. 10, ref. 35 conducts a receding (limited-term) horizon control
through computation-intensive MPC, which involves cumbersome
online autoregression of the dynamics model for trajectory sampling,
making real-time deployment challenging56. On the contrary, as in
Supplementary Fig. 1b, our work provides a proof-of-concept study on
long-term high-dimensional dynamics model learning, which further
enables the training and deployment of the independent PPO actor for
complex magnetic control.

Our research presents a promising direction for routine discharge
operations in future tokamak devices. In the future, we will focus on
further improving the overall performance and generalization capability
of the control model. Building upon this foundation, we aim to address
more challenging control tasks, including the intelligent avoidance of

Fig. 3 | Accuracy of the dynamics model. aAblations for key techniques in terms of
MAE. SS: scheduled sampling, EN: ensemble, SA: self-attention, AW: adaptive
weight. Each group depicted here is derived by incorporating the corresponding
module on the basis of the preceding group. For instance, the notation “+EN"

signifies the integration of the Ensemble into the LSTM model that already incor-
porates scheduled sampling ("+SS''). b Goodness-of-fit of the dynamics model in
terms of the coefficient of determination R2. The color map indicates the density of
data points, and the red dashed line represents the line of perfect agreement.
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Fig. 4 | The accuracy of the dynamics model to predict abrupt plasma shape
variations. In (a-c), the model’s prediction (red dashed line) is compared with
experimental data (black solid line). The shaded regions highlight key operational
phases: the light blue region marks the transition from the limiter to divertor con-
figuration, the light orange region indicates the advanced divertor configuration
transformation phase, and the light green region denotes the plasma current ramp-
down phase. a Shot #6221, anH-mode discharge with ELMs and a plasma current of

300 kA. b Shot #6063, an advanced divertor configuration discharge with a plasma
current of 500 kA, with the advanced divertor configuration undergoing a complete
transformation between 1300 ms and 1500 ms. c Shot #6232, an ITB dischargewith a
plasma current of 600 kA. d The Last Closed Flux Surface (LCFS) variations cor-
respond to the transition from limiter to divertor shape and soft ramp-down phases
for shot #6221 (300 kA) and shot #6232 (600 kA), respectively.

Fig. 5 | Model error on 700 kA discharges. Mean Absolute Error (MAE) averaging over 30 shots of 700 kA discharges. The numbers in the brackets correspond to the
number of 700 kA discharges included in the training dataset.
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plasma instabilities and disruptions57–59. Moreover, we plan to conduct
transfer learning across tokamak devices57, further verifying the poten-
tial advantages of a fully data-driven method over first-principle-based
simulators.

Methods
HL-3
The HL-3 (previously named HL-2M) Tokamak is an experimental
fusion device constructed at the Southwestern Institute of Physics in
China. It is designed to operate at plasma current Ip = 3 MA, toroidal
field Bt = 3 T, major radius R = 1.78m, minor radius a = 0.65 m, elon-
gation κ ≤ 1.8, triangularity δ > 0.560. HL-3 has recently focused on high-
current, high βN discharges to achieve high-performance plasma,
establishing critical foundations for burning plasma research. As shown
in Fig. 1a, the poloidal field configuration of HL-3 is intricately managed
by a Central Solenoid (CS) coil, complemented by an ensemble of eight
pairs of Poloidal Field (PF) coils strategically distributed as inner coils
(PF1-PF4), top-bottom coils (PF5-PF6), and outer coils (PF7-PF8), with
the latter trio playing a pivotal role in establishing the divertor config-
uration, hence their nomenclature as divertor coils61–63. In particular, HL-
3 directly manipulates the voltage of 17 coils, comprising 1 CS coil and 16
PF coils. This manipulation indirectly influences the coil currents and
regulates the magnetic field within the vacuum chamber, enabling the
confinement and discharge of plasma.

Data pre-processing
Typically, the plasma discharge process can be divided into three distinct
phases (i.e., ramp-up, flat-top, and ramp-down phases). However, for the
ramp-up phase’s plasma, the relatively low current and the difficulty in
calculating the eddy currents in passive conductor structures (such as the
vacuum chamber and the first wall) often result in inaccurate shape cal-
culations, weakening the correlation between the coil voltage commands
and plasma shape. Therefore, considering that the primary objective of the
dynamicsmodel is to capture the complex evolution of the plasma state and
ultimately facilitate efficient RL training, model training is exclusively based
on data from the ramp-up phase, where the plasma current surpasses
100 kA, and the flat-top phase with a duration of at least 500ms. Based on
the historical discharge logs of HL-3 across campaigns from 2022 to 2024,
after such a meticulous selection procedure, a dataset comprising 832 suc-
cessful discharges has been curated, with a temporal resolution of 1ms,
totaling 1,833,516 time slices. The categorization of these 832 shots by flat-
top plasma current is detailed in Supplementary Table 1.

Acknowledging the importance of the historical plasma state and coil
commands, the dynamicsmodel integrates a time series as its input to better
capture the plasma evolution toward equilibrium. Specifically, given the
1-kHz control frequency, the model uses a 30-ms historical dataset for
single-step prediction of plasma current, shape, and position parameters, as
well as the coil currents. A summarized list of the input and output variables
of the dynamicsmodel can be found in Supplementary Table 2. Briefly, this
model learns up to 25 variables related to plasma current, shape, and
position, aswell as coil current froma44-dimensional input, which includes
autoregressive predictions of these 25 variables, 17 executed coil voltage
configurations, the toroidal magnetic field, and loop voltage. In addition,
n = 30 represents the length of the time series, andΔt = 1ms is the temporal
resolution. As theCS coil is composedof two parallel connected sets of coils,
the dimension of coil current (Ic) equals that of coil voltage (U) plus 1.

Throughout the discharge experiments in HL-3, engineering condi-
tions change continuously. As a result, we utilize themost recent discharges
for testing while earlier datasets are used for training. This methodology
contributes to learning from updated data distributions and adapts to the
latest discharge environment. To preventmodel overfitting, we designate 50
discharges from shot #5893 to shot #6055 as the validation set, and 70
discharges, including shots #6056-#6265 and #5095-#5105, as the test set.
Note that the range from shot #5095 to #5105 corresponds to 10 discharges
of the advanced divertor configuration, which exhibit more pronounced
morphological variations than standard discharges. During training, a
15-ms smoothing process is implemented on the training data to effectively
mitigate non-electromagnetic interference. Since the training dataset suffers
from a paucity of similar data instances, the corresponding results in Sup-
plementary Fig. 4 could partially validate the accuracy and extrapolation
capability of the dynamics model.

DNN design
DNN structure for the dynamicsmodel. Due to the practical demands,
plasma discharges are often carried out with identical or similar para-
meter sets to replicate specific physical outcomes, resulting in a lack of
diversity in the dataset. Therefore, although the Transformer excels in
parallel computation and can apprehendholistic information owing to its
self-attention mechanism46, it faces overfitting issues under limited and
narrow data distribution. The testingMAE for both the Transformer and
LSTM networks, as shown in Supplementary Fig. 2, suggests that under
the same training methods, dynamics models utilizing LSTM networks
typically outperform those based on the Transformer. As a result, we opt
for LSTM as the backbone of our dynamics model.

We utilize a stack of DNNs, including a three-layer LSTM network, a
self-attention module, and a three-layer fully connected MultiLayer Per-
ceptron (MLP). Specifically, each LSTM layer comprises 128 hidden neu-
ronswith a dropout rate of 0.2. For the 30 consecutive steps’ 44-dimensional
input, as in Supplementary Table 2, the third LSTM layer produces an
intermediate hidden layer output with dimensions of 30 × 128.

Fig. 6 | Few-shot learningperformance on anunseendischarge.Test results of shot
#4042 under the dynamics model from zero-shot (blue dashed line), 2-shot (green
dashdot line), and full-shot training (red dotted line). The shaded area represents the
results of the model ensemble, while actual discharge data is given in a black
solid line.
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Subsequently, the inner productbetween each128-length tensor and the last
one is computed, followed by a softmax-based normalization operation to
scale the values between 0 and 1. These self-attention values serve as
attention weights to aggregate the original LSTM outputs as a 128-length
vector. The integration of a self-attentionmechanism into the LSTM allows
the assignment of distinctiveweights to the intermediate output, rather than
placing equal emphasis andneglecting the inter-differences. Fig. 3a validates
the effectiveness of this modification. Afterward, the self-attention-
processed vector undergoes three MLPs with 128, 64, and 25 neurons and
a ReLU activation function, culminating in the single-step prediction of 25
variables as specified in Supplementary Table 2.

DNN structure for EFITNN. EFITNN38 is a surrogate model trained with
input and output provided by an offline Equilibrium FIT (EFIT) code39,40.
It accepts input signals from a poloidal array of pick-up coils, flux loops,
and coil currents, and concatenates them into a 68-element vector.
EFITNN supports the prediction of 8 scalar values, including six plasma
shape parameters, as well as the safe factor in 95% minor radius q95 and
plasma inductance li. Besides, it can produce predictions for poloidal
magnetic flux distributionΨrz and toroidal current density distribution Jp
with a resolution up to 129 × 129. For these heterogeneous outputs,
EFITNN adopts a shared 4-layer MLPs. Subsequently, for scalar pre-
diction, another 4-layer MLPs with residual connections54 are leveraged,
whileΨrz and Jp rely on deconvolutional networks

64. Note that eachMLP
layer consists of 512 neutrons with a GeLU activation function. EFITNN

adopts simultaneous training for this multi-task learning, and we kindly
refer to ref. 38 for the training details. Fig. 8 manifests the prediction
accuracy after training. In addition, if only plasma shape and position
parameters are predicted, EFITNN, without the use of deconvolutional
networks, consumes 0.08 ms on NVIDIA A100 Tensor Core GPU with
TensorRT, fully supporting the real-time deployment.

DNNstructure for PPO.We train the RL agent using PPO53, which, as an
actor-critic framework, updates both the policy and value networks
through interactions with the well-trained dynamics model. In our
experiments, both networks are structured as three-layer MLPs. The
policy network uses a tanh activation function and consists of 64 neurons
per layer, while the value network employs a ReLU activation function
and comprises 128 neurons per layer.

Training of high-fidelity dynamics models
Scheduled sampling. Without any preventive training measures, the
autoregressive nature of dynamics models leads to a gradually increasing
deviation between the actual data and model predictions due to com-
pounding error, as illustrated in Supplementary Fig. 3. Directly applying
such a model in practice can result in exposure bias65, incurring reduced
efficacy and severe misalignment between the training and testing
modalities. Therefore, during our training, we incorporate scheduled
sampling66,67 to stochastically determine the input, by selecting between
the model’s past predictive outputs and the current-step actual data

a b

Fig. 7 | Target tracking control results of RL on both simulation and actual
devices. a Simulated control results of plasma current Ip, shape and position para-
meters a, κ, δu, δl, R, and Z. The RL control results (red solid line) track the target
waveform from shot #6226 (black dashed line), with the handover time set at
1500 ms. b in shot #12781, the experimental data (red solid line) and the post-

experiment replay of the dynamics model (blue dashdot line), as well as the target
(black dashed line). The gray shaded area indicates the phase under PID control,
while the orange shaded area represents the phase under RL control. The vertical
dashed lines mark the start and end of the 30 ms handover period between the two
controllers.
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according to a teacher-forcing ratio p∈ [0, 1]. In other words, as the ratio
p approaches 1, a greater proportion of the real input data will be used.
Conversely, as p turns to 0, the model transitions to a strictly auto-
regressive mode, solely relying on the preceding steps’ predictions.
During the training, we initialize the ratio p to 1 and linearly decay it to 0
over 300 epochs. This approach ensures rapid convergence during
training and facilitates a seamless shift toward an autoregressive scheme
for training RL.

In contrast,11 adopts a different approach to intentionally add a zero-
meanGaussian noise layer to the training data. Nevertheless, apart from the
conflict with the data smoothing operation during training, the comparison
in Supplementary Fig. 4 also suggests its inferiority to scheduled sampling.
Specifically, the diverse impact on high-dimensional multi-task learning
makes selecting the appropriate variance of added Gaussian noise chal-
lenging. For example, with an amplitude of 0.1σx, where σx indicates the
standard deviation of the input data, the model exhibits the lowest error in
predicting κ but the highest error in predicting Ip. Conversely, the incor-
poration of scheduled samplingmaintains stability in significantly reducing
prediction errors for 25 variables. Therefore, we primarily take account of
scheduled sampling in this paper.

Adaptive weight adjustment. To unanimously provide multi-task
predictions for 25 variables, in Supplementary Table 2, the calibration of
relative weights assigned to the predictive losses of individual variables
could heavily affect the model performance. Mathematically, for a space

V containing 25 variables, the aggregated loss function given the 44-
dimensional input x shall be a scalar LV yV ; ŷV ; x

� �
computed from 25

individual loss functions Lv yv; ŷv; x
� �

weighted by cv, where yv and ŷv
correspond to actual data and model prediction for the variable v 2 V,
respectively, while yV and ŷV denote the concatenation of yv and ŷv ,
8v 2 V . Due to the discrepancies in distribution and noise among the
variables, a straightforward averaging of individual loss functions can
adversely impact the model’s accuracy. Meanwhile, manual weight tun-
ing is an arduous and time-intensive effort. Therefore, we utilize an
adaptive weight adjustment technique by regarding the loss weight cv as a
trainable single variate45. To prevent the lossweights from taking negative
values during the optimization process, which could lead to negative loss
values, we also employ a non-negative regularization constraint44 to
enhance the learning robustness. To sum up, the final loss function for
training can be calculated as

LV yV ; ŷV ; x
� � ¼

X

v2V

1
2 � c2v

� Lv yv; ŷv; x
� �þ ln 1þ c2v

� �� �
: ð1Þ

Training details. In training the dynamicsmodel, we initially segment all
the discharge data of training shots into consecutive groups with a fixed
length of 30 ms, followed by a shuffling process on all the segmented data.
We use DataLoader, a PyTorch library, to load the processed training
data, with a batch size set as 4096. In each training round, we randomly
utilize a batch of data without replacement for training, and an epoch
completes when all groups have been utilized. We employ the Adam
optimizer for optimizing network parameters, with an initial learning
rate of 0.001 for both the dynamics model and the adaptive weight
adjustment. To prevent training instability due to an excessively high
learning rate in the later stages of training, we adjust the learning rate
using an exponential decay method. Specifically, we reduce the learning
rate by a decay factor of 0.95 every 5 epochs, over a total of 300 training
epochs.

Finally, in addition to Fig. 3, Supplementary Fig. 5 shows the accuracy
for predicting all 18 coil currents.

Fig. 8 | Error between EFITNN and offline EFIT.
Histograms of the prediction error between the
EFITNN model and the offline EFIT code for key
plasma parameters over all time slices in the test set.
The Mean Absolute Error (MAE) for each para-
meter is shown in the title of its respective panel.

Table 1 | Plasma shape parameters during RL control for
Shot #12781

Time
(ms)

Elongation (κ) Upper
triangularity (δu)

Lower
triangularity (δl)

1600 1.30 0.316 0.518

1630 1.40 0.347 0.612

1700 1.46 0.339 0.611

1800 1.42 0.269 0.639

1900 1.42 0.229 0.661

2000 1.38 0.182 0.620
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Training and deployment of RL-based magnetic controller
State, action, and rewardofRL. In this study, we utilize RL to control
the plasma current (Ip) and six shape and position parameters (a, κ,
δl, δu, R, Z), and denote the concatenation of current observations as
o. To ensure the integrity and stability of HL-3 plasma discharges, we
select the actual waveform of shot #6226, an H-mode discharge with
ELMs and a plasma current of 300 kA, as the desired target d for
control. As shown in Supplementary Table 3, we consider a 14-
dimensional state s by amalgamating the observations o and desired
target d, while the 17-dimensional action a encompasses voltage
commands of 1 CS coil and 16 PF coils. To ensure control safety and
hardware integrity, we impose operational constraints by stipulating
that the dynamic rate of change between two consecutive voltage
commands must not exceed 20 Vms−1. In other words, for any coil,
any voltage command that changes beyond this limit will be clipped
to adhere to the safety constraints.

Typically, RL relies on explicit targets for reward function design. In
fusion experiments, however, diverse targets from varied discharge tem-
plates complicate reward engineering and can undermine model efficacy.

Therefore, we devise the reward function r(s, a) from two orthogonal per-
spectives. First, consistent with refs. 9,10, the reward function primarily
takes account of the element-wise divergence between the current obser-
vation o≜ [o(1),⋯ , o(7)] and desired target d≜ [d(1),⋯ , d(7)]. Tomerge the
divergence components into a scalar reward and emphasize those control
variables with sub-optimal control results, a smooth-max function10 is
leveraged. Second, owing to the constraints of the power module, the coil
current is permitted to cross zero only once. Therefore, contingent on the
coil current predicted by the dynamics model, we impose a penalty term to
inhibit the agent from exploring control commands that would result in
multiple zero crossings of the coil current. To sumup, the reward for a state-
action pair (s, a) is given as

rðs; a;ω; αÞ ¼ �
P7

i¼1ωijoðiÞ � dðiÞj expð�αjoðiÞ � dðiÞjÞ
P7

i¼1 ωi expð�αjoðiÞ � dðiÞjÞ þ
X17

i¼1

pi; ð2Þ

where weights ω ≜ [ω1, ⋯ , ω7] in the softmax function provide the
(relative) importance of each component and are initialized as
[3, 2, 2, 3, 1, 2, 2]. The modulation factor α, which affects the trade-offs
between “easy” and “hard” (to satisfy) components10, is set as −1 in our
experiment. Besides, for 17 coils, the penalty term pi for coil i is designed as
−1 when the coil current exceeds one zero-crossing, while nulls otherwise.

Dynamics model-based training. We utilize the trained dynamics
model as the interaction environment, through which the RL agent
explores suitable actions to achieve the desired plasma current and shape.
Specifically, as theHL-3 tokamak is a preliminarily established device and
initiates the global open campaigns in 2024 and 2025, a significant
number of discharge shots have been scheduled for international joint
physical experiments. Consequently, the proposal for RL-based control
has to share the discharges with other experiments. The choice of shot
#6226 for target tracking is also motivated by the potential to maximize
RL’s takeover opportunities, considering the frequent use of similar shot
templates in planned experiments on the HL-3 tokamak. As highlighted
in Fig. 9, the promising outcomes underscore the inherent generalization
capability, which suggests robust applicability to a variety of other dis-
charge templates. In addition, given the potential uncertainty in freshly
deploying RL-based control onHL-3, the early phase of a discharge, prior
to 1500 ms, is primarily allocated to other physics experiments. There-
fore, during training, RL assumes the 1-kHz control since 1500 ms of the
discharge, and the initial observations o are synchronized with those of
shot #6226, ensuring a smooth transition between PID control and RL
control. Furthermore, we take episodic training from 1500ms to 2000ms
of the discharge. Without loss of generality, at each time step t, the RL
agent determines an action at according to the state st, while the dynamics
model yields next-step plasma current as well as the six shape and
position parameters ot+1 based on st and at. Note that given the slow-
changing nature of the toroidal magnetic field and loop voltage, these two
values are considered invariant and maintain the same values as the
handover time of shot #6226.Hence, a reward r(st, at) can be computed as
in Equation (2). Finally, the episodic reward is derived from the dis-
counted cumulative rewardwith a discount factor γ set as 0.98. To strike a
balance between the variance and bias in the value function estimation,
we employ the Generalized Advantage Estimation (GAE)68 to compute
the advantage function. In addition, other parameters for the PPO are set
in a standard way. Specifically, we set the entropy coefficient, the clipping
parameter ϵ, and the λ parameter for GAE as 0.05, 0.2, and 0.95,
respectively. Following this, the PPO algorithm53 can iteratively update
the agent’s actor and critic networks. Fig. 7a illustrates the tracking
accuracy of the trained agent toward the target waveform within the
simulation setting and suggests that the RL agent, supported by a data-
driven dynamics model, has effectively explored and assimilated strate-
gies that are beneficial for achieving discharge control objectives.

The aforementioned single-template training necessitates retraining
the model with a new target for changed operational scenarios (e.g.,

Fig. 9 | Zero-shot triangularity control in shot #6698. The upper and lower tri-
angular control results of shot #6698. Compared to the target used for RL training
(black dashed line), the target for this discharge (green dashed line) has a triangu-
larity decreased by 0.2. The red solid line illustrates the experimental result, and the
blue dashdot line represents the post-experiment replay of our dynamicsmodel. The
gray shaded area indicates the phase under PID control, while the orange shaded
area represents the phase under RL control. The vertical dashed lines mark the start
and end of the 10 ms handover period between the two controllers.

Table 2 | Triangularity parameters during RL control for
shot #6698

Time (ms) Upper triangularity (δu) Lower triangularity (δl)

1610 0.235 0.589

1630 0.224 0.597

1640 0.220 0.577

1650 0.189 0.482

1660 0.144 0.412

1690 0.131 0.423

Target 0.128 0.396
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targeting a 700 kA plasma current). Despite this requirement for retraining,
the process is efficient. Systematic evaluations across different GPU plat-
forms (Supplementary Fig. 9 and Supplementary Table 4) substantiate this
efficiency. The PPO-based controller converges within 500 training epi-
sodes (25,000 interaction steps). Utilizing a standard configuration
(PyTorch 2.1.0, CUDA 12.2, batch size 512), training on an NVIDIA
GeForce RTX 4090 completes in just 22min. Such rapid training under-
scores the framework’s practical adaptability, even with the need for
template-specific retraining.

On-device deployment. To ascertain the practicability of the trained RL
agent as well as the accuracy of the dynamicsmodel, we integrate the PPO
actor into the PCS of HL-3 to undertake RL-based control in real dis-
charges. Since the PCS operates under the Red Hat 6.9 system and per-
forms real-time computations in C language, we convert the Pytorch-
based PPO actor into a compatible ONNX (Open Neural Network
Exchange)69 format, which offers cross-platform deployment capability
and high execution efficiency. During real discharges, the RL agent
receives plasma shape and position parameters from EFITNN38 while the
plasma current is measured by the CODIS-RTC system via reflective
memory in real time. The agent then generates coil voltage commands
anddelivers them to actuators through the PCS, completing a closed-loop
control period of 1 ms, synchronized with that for the PID control.

As mentioned earlier, the open campaigns on HL-3 have attracted a
considerable number of international joint experiments, limiting the

opportunities for testing RL-based control. Eventually, in a shared dis-
charge, the handover to RL-based control has to be delayed until other
physics experiments involving auxiliary heating are completed. To avoid
any potential plasma disturbances caused by shutting down the auxiliary
heating at 1500ms, which could impact the analysis of experimental results,
wehave further postponed the start ofRL-based control to 1600ms. Inother
words, we activate the RL control at 1600ms and revert to the PID control
after a predefined window. To ensure stability incurred during these mode
switches, we establish a transition period, during which a weighted sum of
commands from both modes is undertaken, and the weight of the super-
seding control mode linearly increases.

Our initial RL control experiments are conducted during the #6691-
#6698 shot series onHL-3. Due to the coincidence with the development of
the fast vertical position control system, the experiments undergo severely
unstable discharge conditions,withonly three effective discharges (i.e., shots
#6691 (Supplementary Fig. 6a), #6693 (Supplementary Fig. 7), and #6698
(Supplementary Fig. 6b)) sustaining the flat-top phase beyond 1600 ms.
Furthermore, to ensure operational safety, the RL control window is limited
to 100ms, with 10ms transition periods at its start and end. Unfortunately,
the conventional PID and fast vertical position control still exhibit limited
capability to suppress emerging voltage variations after reverting fromRL to
PID control, frequently resulting in plasma disruptions. More recently,
following the maturation of the fast vertical position control system for
routine operations, we replicated these experiments during the
#12777–#12781 shot series by adopting the same actor model. This second
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Fig. 10 | Comparison of the training and deployment between MPC (Model
Predictive Control) and PPO (Proximal Policy Optimization). a MPC with
online, limited-term dynamics model autoregression, and b PPO interacting with
the dynamics model for training only. The bottom panel serves as an inset for (a),
illustrating the core logic of theModel Predictive Controller. At the current state, the
controller performs trajectory sampling by simulating various possible future action

sequences using the dynamics model. These simulations generate multiple potential
future state trajectories (visualized as different colored paths). The controller eval-
uates these trajectories and selects the optimal one (the bold blue path) that best
achieves a predefined objective. Finally, only the first action of this optimal sequence
is executed, and this entire planning process is repeated at the next state.
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campaign yields three effective RL-controlled discharges: shots #12777
(100ms), #12779 (260ms), and #12781 (400ms). For these shots, 30ms
transition periods are implemented at the start and end. All three effective
discharges are completed with no disruptive events. Fig. 7b illustrates the
complete discharge for shot #12781. The complete discharges for the
remaining five successful RL-controlled shots (from both experimental
campaigns) are presented in Supplementary Figs. 6, 7, and 8. To quantita-
tively assess the performance differences between RL-based control and
fixed voltage control, we conduct a comparative experiment using shot
#12777. For shot #12777, it adopts an RL control solely until 1700ms
without the last 30-ms transitionperiod,while from1700ms to1730ms, the
control voltages are deliberately fixed at their 1700ms values. As depicted in
Supplementary Fig. 8, the resulting oscillations in plasma current and shape
confirm that, without closed-loop control, plasma stability is significantly
compromised, demonstrating the critical need for an effective closed-loop
control. Supplementary Fig. 10 illustrates the plasma current for the seven
shots from these campaigns in which RL control is not executed.

Post-experiment analyses. As illustrated in Figs. 7b and 9a, the post-
experiment replay for shot #12781 and shot #6698 is calculated using the
dynamics model. Specifically, the dynamics model starts to evolve according
to the input variables in Supplementary Table 2, set as practical values at the
handover time, as well as the practically executed coil voltage commands,
which are generated by RL during on-device deployment. In other words,
such a post-experiment replay represents the autoregressive output of the
dynamics model, and its closeness to the EFITNN-based diagnostic mea-
surement contributes to verifying the accuracy of the dynamic model.

On the other hand, as shown in Fig. 4d, to visually display the pre-
diction and control effect on the plasma shape and position, we calculate the
four extreme points of the cross-section based on the six shape and position
parameters obtained fromtheEFITNNcomputation.Theplasmaboundary
is then approximated as the connection of four-quarter ellipses70.

To better understand the control logic of the RL controller, we perform
a more in-depth analysis of the experimental results from shot #12781. As
illustrated inFig. 7b,while the controller demonstrateshigh-fidelity tracking
of the primary shape parameters (a, κ, δu, and δl), the positional parameters
(R and Z) exhibit persistent steady-state deviations from their targets. This
differential control efficacy is primarily attributed to three factors: (1) the
inherent strong coupling among the shape-defining parameters (a, κ, δl, and
δu), which are co-regulated by the PF coils; (2) the non-negligible influence
of non-electromagnetic experimental disturbances, such as gas puffing and
auxiliary heating, which could significantly affect the evolution of R and Z;
and (3) an implicit control priority mechanism within the RL policy – the
policy prioritizes the correction of κ, δl, δu, andRdue to the larger deviations
therein. In summary, compared to the standard PID controller, the RL
controller obtains similar precision in regulating R and Z, but significantly
extends this capability by simultaneouslyprovidingclosed-loopcontrol over
minor radius a, upper and lower triangularity δu, δl, and elongation κ.

Data availability
The source data for all graphs and charts presented in the main figures are
available in Supplementary Data 1. Any other datasets generated during the
current study are available from the corresponding author on reasonable
request.

Code availability
Codes used during the current study are available from the corresponding
author on reasonable request.
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