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ABSTRACT Online Reinforcement Learning (RL) has yielded remarkable performance in dynamic wireless
communication and networks by interacting with the environment and gradually improving the effectiveness
of its policy. As it is normal to witness much uncertainty in such an environment due to the intrinsic
randomness of channels and service demands, designing a sample-efficient RL with bounded regrets has
significant merits. In this paper, we focus on general Markov Decision Processes (MDPs) with time-evolving
rewards and state transition probability unknown a priori and develop a Variation-aware Bernstein-based
Upper Confidence Reinforcement Learning (VB-UCRL). In particular, we allow for restarting VB-UCRL
according to a variation-aware schedule. We successfully overcome the challenges due to both endogenous
and exogenous uncertainty and establish a regret bound of saving at most

√
S or S

1
6 T

1
12 compared with

the latest results in the literature, where S denotes the size of the state space of the MDP and T indicates
the iteration index of learning time-steps. Finally, we show via simulation that our algorithm VB-UCRL
significantly outperforms the existing algorithms in the literature.

INDEX TERMS Reinforcement learning, regret bound, Markov decision process, endogenous, exogenous
uncertainty.

I. INTRODUCTION
Online Reinforcement Learning (RL) has yielded remarkable
performance in dynamic wireless communication and net-
works [1], [2], [3], [4], [5], [6], [7], [8] by interacting with
the environment and gradually improving the effectiveness
of its policy. Typically, on top of a formulated Markov
Decision Process (MDP), an RL agent tries to maximize
the cumulative rewards (or minimize the cumulative loss),
by observing the environment as a state and taking an action

The associate editor coordinating the review of this manuscript and

approving it for publication was Usama Mir .

through an ‘‘economic’’ perspective [9]. For example, [6]
aims to optimize long-term utility by formulating a risk-
sensitive MDP, where the state captures the environment
dynamics and the reward is transformed through a utility
function. An RL agent is then trained to make economically
rational decisions under uncertainty, such as in portfolio
management or recommendation systems. Meanwhile, [7]
applies Deep RL (DRL) algorithms to optimize dynamic
resource allocation in wireless networks and shows that DRL
significantly outperforms traditional methods in adapting
to learning rates and scheduling strategies. Note-worthily,
in these scenarios, online RL emerges as a popular option.
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Therefore, it naturally raises a question what is the regret
bound of online RL-based solutions regardless of the specific
RL applications?

The difficulty in knowing this bound mainly lies in
the endogenous and exogenous uncertainty in the MDP.
Specifically, in the classical time-homogeneous MDP set-
tings, only endogenous uncertainty is considered. In other
words, at each time-step, the reward and the subsequent
state follow a reward distribution and a state transition
distribution, respectively, which solely depend on the current
state and action and remain fixed along with the temporal
variations. Unfortunately, in realistic environments like
wireless networks with fluctuating channel conditions and
dynamic service demands [8], both the reward functions
and transition probabilities vary significantly over time.
Therefore, the exogenous uncertainty has to be taken into
account. Typically, in order to unveil the uncertainty in the
MDP, the RL agent has to explore the MDP to accumulate
the related knowledge of those poorly visited states and
actions. As any decision of RL affects the subsequent
observations, more exploration usually produces long-term
impact yet affects short-term exploitation efficiency, which
is also termed as the exploration-exploitation dilemma [10]
originally discussed in the literature of Multi-Arm Bandit
(MAB) [11].

There has been intense research interest in understanding
the regret bound of online RL-based solutions for a time-
homogeneous MDP. For example, [12] talks about the
performance guarantees of a learned policy with polynomial
scaling in the size of the state and action spaces, while
Jaksch et al. give the regret bound of an RL algorithm during
the learning [13], which is more meaningful for online RL in
information processing scenarios. Specifically, Jaksch et al.
propose a UCRL2 algorithm (upper confidence bound
for reinforcement learning) for undiscounted reinforcement
learning in communicating MDPs. In other words, UCRL2
implements the paradigm of ‘‘optimism in the face of
uncertainty’’ by constructing plausible MDPs in confidence
interval based on the Hoeffding inequality [14] and proves
that the total regret of an RL algorithm concerning an optimal
policy could be bounded by Õ(DS

√
AT ), where Õ(·) hides

the logarithmic factors, S and A denote the size of the state
space and action space of the MDP, respectively. D is the
diameter of the communicating MDP, indicating the minimal
expected number of time steps from each state to another state
in the MDP. Besides, T denotes the iteration of learning time
steps. Based on UCRL2, many variants have been proposed
to generate tighter bounds. References [9] and [15] introduce
UCRL2B, a variant of UCRL2 that refines the confidence
bounds in the extended MDP using Bernstein’s inequality,
resulting in an improved regret bound of Õ(

√
DS0AT ),

indicating that the minimax lower bound is fairly tight,
where 0 denotes the maximal number of reachable states for
any state-action pair in the MDP. Reference [16] proposes
a non-parametric and data-dependent algorithm based on

the multiplier bootstrap for MAB. Later, [17] focuses
on an infinite-horizon undiscounted setting and uses an
exploration bonus to achieve the same regret bound as
UCCRL. Reference [18] introduces the UCRL3 algorithm,
an enhancement of UCRL2 that achieves improved regret
bounds of O

(
(D+

√∑
s,a(D2

sLs,a ∨ 1))
√
T log(T/δ)

)
by

incorporating state-of-the-art concentration inequalities and
adaptive exploration techniques, with Ls,a representing the
local effective support of p(·|s, a). In addition to UCRL-
based variants, there are many studies related to regret bound
analyses. For example, [19] proposes the first model-free and
simulator-free algorithm for constrained MDPs that achieves
sublinear regret bounds of Õ(

√
d3H4K ), where d , H , and

K denote the feature dimension, episode length, and number
of episodes, respectively. Reference [20] investigates regret
minimization in episodic MDPs with unknown transitions
and adversarially delayed feedback, and proposes policy
optimization algorithms that achieve near-optimal regret
bounds depending on the number of episodes and the total
delay.

Until recently, little light has been shed on MDP with
both endogenous and exogenous uncertainty. Reference [8]
proposes PUCRL2, PUCRLB, and their extensions for
unknown periods, addressing the problem of average reward
maximization in periodic MDP, and derives theoretical
regret bounds with respect to both the period and the
time horizon. Reference [21] proposes an algorithm for
the non-stationary stochastic multi-armed bandit problem,
where the reward distributions may change multiple times
during learning, and shows that it achieves a near-optimal
dynamic regret bound of Õ(

√
KN (S + 1)) over a time

horizon N without requiring prior knowledge of the number
of optimal arm switches S. Reference [22] investigates
online convex optimization in non-stationary environments
and proposes a two-layer collaborative framework that
achieves adaptive dynamic regret using only one gradient
query per iteration. Reference [23] and [24] talk about
online learning for MDP in this non-stationary environment
and provide the dynamic regret analysis for exogenous
uncertainty only. Based on the Hoeffding inequality, [25]
develops a variation-aware UCRL2 algorithm and provides
performance guarantees for the regret evaluated against the
optimal non-stationary policy. Besides, [26] and [27] discuss
the dynamic regret more comprehensively, and derive a
bound of Õ

(
(V T

r + V
T
p )

1/4S2/3A1/2T 3/4
)
, where V T

r and

V T
p are the dynamic budget (i.e., upper bound) of variations

in reward and transition probability functions for T time-
steps. Reference [28] also unveils a Õ

(
(V T

r + V
T
p )

1/3T 2/3
)

bound by a closed-box approach under conditions that either
the diameter D or the total variation is known. However,
most existing work on analyzing algorithm regret bounds
lacks experimental simulation evidence. Compared with the
abovementioned research, this paper’s contribution can be
summarized as follows.
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• We focus on the RL for MDP with both endogenous and
exogenous uncertainty, which has significant applica-
tions in information processing scenarios. In particular,
we talk about a Variation-aware Bernstein-based Upper
Confidence Reinforcement Learning (VB-UCRL)
algorithm, which restarts according to a schedule
dependent on the variations in the MDP and leverages
the empirical Bernstein inequality [29] to give a
tighter bound. Notably, compared to the work [25],
the empirical Bernstein inequality could additionally
capture second-order statistics.

• We prove that the VB-UCRL gives a regret bound
of Õ

(
(V T

r + V
T
p )

1/3T 2/3
√
0SA

)
, where 0 denotes the

maximal number of reachable states for any state-action
pair in the MDP. As discussed in Section IV-C1, for
0 < A, this bound is tighter than the classical results
in [25] and [27].

• Our simulation results show that our algorithm
VB-UCRL significantly outperforms other classical
MDP algorithms under a non-stationary environment
when the number of reachable states 0 is considerably
less than the size of the state space S, and is
still comparable with existing algorithms when 0

approaches S.

The remainder of the paper is organized as follows.
In Section V, we introduce some fundamentals of MDPs
and formulate the regret problem of RL for MDPs with
both endogenous and exogenous uncertainty, in Section III
and Section IV, we provide the VB-UCRL algorithm and
prove its upper confidence bound. Meanwhile, the theoretical
comparison with the state-of-the-art results is also presented.
In Section V, we demonstrate the performance of VB-UCRL
through extensive simulations. We conclude the paper in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In a time-homogeneous MDP M =< S,A, r, p, s1 > with
state space S, action space A and the initial state s1. For
simplicity of representation, the size of state and action space
is denoted as S = |S| and A = |A|, respectively. In the
time-homogeneous MDP, the mean rewards and transition
probabilities are only relevant to the current state and the
chosen action. Every state-action pair is characterized by
a reward distribution with mean r(s, a) ∈ [0, rmax] over
the next states, while the number of reachable states for a
state-action pair (s, a) is formulated as 0(s, a) = ∥p(·|s, a) >
0∥0 (where ∥ · ∥0 denotes an l0 norm of a vector) and 0 =
maxs,a 0(s, a). Besides, for an communicatingMDP, starting
in s ∈ S it is possible to reach another state s′ ∈ S with
positive probability, choosing appropriate actions.

Compared with the time-homogeneous MDP, we consider
a time-heterogeneous MDP with time-step-dependent mean
rewards and transition probabilities, that is, rt (s, a) and
pt (s′|s, a) respectively. Accordingly, the time-heterogeneous

MDP at time-step t can be written as Mt =<

S,A, rt , pt , s1 >. All MDPs Mt are communicating with
diameter Dt ≤ D, where D denotes a common upper bound.
Furthermore, we assume that the variations in mean rewards
and transition probabilities are bounded in the T time-steps,
that is, V T

r
def
=
∑T−1

t=1 maxs,a |rt+1(s, a)− rt (s, a)|, and V T
p

def
=∑T−1

t=1 maxs,a ∥pt+1(·|s, a)−pt (·|s, a)∥1, where ∥·∥1 denotes
an l1 norm of a vector.
We primarily focus on the infinite-horizon undiscounted

MDP settings and try to learn a policy π that maximizes

sup
π∈5

{
lim inf
T→+∞

Eπ

[
1
T

T∑
t=1

r(st , at )

∣∣∣∣s1 ∼ µ1

]}
(1)

where µ1 is the state probability of the starting state s1.
Eπ takes an expectation over trajectories with action at ∼
π (st ). For any Markov decision rule d , which maps states to
distributions over actions, the transition matrix Pd (s′|s)

def
=∑

a∈As
d(a|s)p(s′|s, a) ∈ RS×S and the associated reward

vector rd (s)
def
=

∑
a∈As

d(a|s)r(s, a) ∈ RS , for all s ∈
S, where d(a|s) is the probability to sample a in state
s when using d . Furthermore, the decision rule could be
repetitively updated along with the exploration progress of
the environment. We can approximately obtain a stationary
policy π as the limit of d ∈ DMR (i.e., (d)∞) when the
decision rule d ∈ DMR under an RL algorithm A involves
no further improvements. Furthermore, Chapter 9 of [30]
and Theorem 1 of [31] verify the existence of an optimal
stationary policy satisfying the Bellman evaluation equation
under some conditions.

B. PROBLEM FORMULATION
LetMt be the true time-heterogeneous MDP. We consider the
learning problem where S, A, and rmax are known, while
rewards rt and transitions pt are required to be estimated
online and time-evolving. However, we assume that the
variations of rewards and transitions in the T time-steps are
bounded and known as V T

r and V T
p , repsectively. We aim to

develop a learning algorithm A with appropriate policy π to
minimize its cumulative regret in T time-steps as

argmin
A
1(A,T ) (2)

where 1(A,T ) def
= v∗,T (s1) −

∑T
t=1 rt (st , at ) and v∗,T (s1)

denotes the optimal T -time-step average reward starting from
s1.1

III. THE VB-UCRL ALGORITHM
For the changing MDP settings, we introduce an RL
algorithm VB-UCRL, on top of UCRL2 [13]. Notably, VB-
UCRL implements the paradigm of ‘‘optimism in the face
of uncertainty’’ and constructs MDPs in confidence interval
based on the empirical Bernstein inequality (Theorem 1, [29])

1Interesting readers could refer to Page 338 of [30] for the relationship
between v and h.
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rather than the Hoeffding inequality for UCRL2 in Theorem
2.8 of [32].

To tackle the exploration-exploitation dilemma, VB-
UCRL proceeds through episodes k = 1, 2, · · · , each episode
consisting of multiple time-steps. Without loss of generality,
tk is the starting time of episode k . Nk (s, a) is the number
of visits in (s, a) before episode k . Here, consistent with
the doubling criterion in [13], VB-UCRL enters into a new
episode k + 1 once there exists one state-action pair (s, a)
having just been played satisfies νk (s, a) = N+k (s, a), where
νk (s, a) (resp. νk (s)) denotes the number of visits to (s, a)
(resp. s) in episode k and N+k (s, a) = max{1,Nk (s, a)}.
For episode k + 1, for all state-action pairs, Nk+1(s, a) =
Nk (s, a) + νk (s, a). Besides, tk is defined as the starting

time of episode k , that is, tk+1
def
= inf

{
T ≥ t > tk :∑t−1

τ=1 1{(sτ , aτ ) = (st , at )} ≥ max
{
1, 2

∑tk−1
τ=1 1{(sτ , aτ ) =

(st , at )}
}}

and t1 = 1. During this episode-driven procedure,

it remains essential to learn a policy πk to correspondingly
determine the taken action at at the state st for tk ≤ t < tk+1.
In this regard, VB-UCRL first constructs a set of plausible
MDPs for each episode, and then derives the policy for an
optimisticMDP therein via an extended value iteration (EVI).

A. THE CONSTRUCTION OF THE SET OF PLAUSIBLE MDPS
At the beginning of each episode k , VB-UCRL computes a
setM of statistically plausible MDPs given the observations
so far, that is,

Mk
def
=

{
M =< S,A, r̃, p̃ >: r̃(s, a) ∈ Br,k (s, a),

p̃(s′|s, a) ∈ Bp,k (s, a, s′),
∑
s′
p̃(s′|s, a) = 1

}
, (3)

where Br,k and Bp,k are high-probability (adapted) confi-
dence intervals on the rewards and transition probabilities of
the true MDP M . Specifically,

Bp,k (s, a, s′)
def
= [0, 1] ∩

[
p̂k (s′|s, a)− βsas

′

p,k −V̂p, p̂k (s
′
|s, a)+βsas

′

p,k +V̂p
]
(4)

where p̂k (s′|s, a) is set as an estimate of transitions corre-
sponding to the sample mean of an independent identical
Bernoulli random variable with mean p(s′|s, a), that is,

p̂k (s′|s, a) =
1

N+k (s, a)

tk−1∑
t=1

1{(st , at , st+1) = (s, a, s′)} (5)

and V̂p ≤ V T
p is an estimate of the variations on

the transition probabilities. Moreover, using the empirical
Bernstein inequality [29], we can derive partial confidence
intervals [9] for the transition probabilities of the true

MDP M ,

βsas
′

p,k
def
= 2

√√√√ σ̂ 2
p,k (s

′|s, a)

N+k (s, a)
ln
(6SAN+k (s, a)

δ

)
+

6 ln
( 6SAN+k (s,a)

δ

)
N+k (s, a)

(6)

where δ ∈ (0, 1) and the transition probability’s population
variance σ̂ 2

p,k (s
′
|s, a) can be approximately computed as

σ̂ 2
p,k (s

′
|s, a) = p̂k (s′|s, a)(1− p̂k (s′|s, a)).

Similarly,

Br,k (s, a)
def
=

[
r̂k (s, a)− βsar,k − V̂r , r̂k (s, a)+ β

sa
r,k + V̂r

]
∩ [0, rmax]

(7)

where r̂k is the empirical average of rewards, namely

r̂k (s, a) =
1

N+k (s, a)

tk−1∑
t=1

1{(st , at ) = (s, a)} · rt . (8)

and V̂r ≤ V T
r is an estimate of the variations on the mean

rewards.

βsar,k
def
= 2

√√√√ σ̂ 2
r,k (s, a)

N+k (s, a)
ln
(6SAN+k (s, a)

δ

)
+

6rmax ln
( 6SAN+k (s,a)

δ

)
N+k (s, a)

(9)

where the reward’s population variance σ̂ 2
r,k (s, a) can be

computed recursively at the end of every episode as

σ̂ 2
r,k+1(s, a)

def
=

1

N+k+1(s, a)

(
k+1∑
l=1

Sl(s, a)

)
−
(
r̂k+1(s, a)

)2
=

Nk (s, a)

N+k+1(s, a)

(
σ̂ 2
r,k (s, a)+

(
r̂k (s, a)

)2)
+
Sk+1(s, a)

N+k+1(s, a)
−
(
r̂k+1(s, a)

)2 (10)

with Sk (s, a)
def
=
∑tk−1

t=tk−1+1
1{(st , at ) = (s, a)} · r2t .

Furthermore, as pointed out by Section 3.1.1 of [13], any
bounded parameter MDP can be equivalently represented by
an extended MDP, which is defined as

M+k =< S,A, r̃, p̃, s1 > (11)

In other words, the extended MDP combines all plausible
MDPs constructed above into a single MDP with identical
state and action space. Therefore, we use the terminology
extend MDP and the set of plausible MDPs interchangeably.
Besides, Theorem 3.1 of [9] proves that the true MDPM falls
into the set of plausible MDPsMk with a high probability.
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B. THE EVI-BASED POLICY CALCULATION
Beforehand, some essential operators for the EVI are
provided. Recalling Theorem 9.4.5 of [30] and Theorem
7 of [13], for EVI with aperiodic transition matrices Pdn
(n ≥ 1) there exists h∗ ∈ RS such that the limit
of the value function limn→∞ vn = h∗ (where v is
defined using operators L : RS

→ RS as Lv(s) def
=

maxd∈DMR{rd + Pdv}) and Lh∗(s) = h∗(s) + g∗(s),
where gπ (s) = limT→+∞ Eπ

[
1
T

∑T
t=1 r(st , at )

∣∣∣ s1 = s
]

and h(s) def
= C– lim

T→+∞
Eπ

[∑T
t=1 (r (st , at)− g

π (st))
∣∣∣ s1 = s

]
defines the associated long-term average reward (or gain)
and bias function, respectively. Furthermore, the bias hπ (s)
measures the expected total difference between the reward
and the long-term average reward in Cesaro-limit (denoted
by C– lim).
Based on the definition of long-term average reward and

bias functions, an optimal Bellman operator Lk for the
extended MDP can be defined as

Lkhk (s)
def
= max

a∈As
{r(s, a)+

∑
s′∈S

p(s′|s, a)hk (s′)} (12)

where r(s, a) ∈ Br,k (s, a), p(s′|s, a) ∈ Bp,k (s, a, s′), and
As denotes the action sub-space under state s. Besides,
an extended decision rule dk ∈ DMR can be simultaneously
obtained during the maximization of the Bellman equation.
Notably, for all s ∈ S, we can further define the extended
Bellman operator with aperiodic transformation (Proposition
8.5.8, [30]) as

Lαk hk (s)

= max
a∈As
{r(s, a)+ α

∑
s′∈S

p(s′|s, a)hk (s′)} + (1− α) · hk (s)

(13)

where α is the coefficient of the aperiodic transformation.
One benefit of the aperiodic transformation lies in that,
as shown by Prop. 8.5.8 of [30], it does not affect the gain
of any stationary policy. In other words, for any π ∈ 5SR,
gα,π = gπ . Since the aperiodic transformedMDPMα exactly
meets the conditions in [13] and [30], the EVI in Alg. 1
is feasible while the Bellman operator is optimal. Notably,
by Prop. 2.7 of [9], if we run the EVI in Alg. 1 on M+k with
accuracy ϵk = rmax/tk , we have that

|gk (s)− g∗k (s)| ≤ ϵk/2 =
rmax

2tk
(14)

and

∥Lαk hk (s)− hk (s)− gk (s)∥∞ ≤ ϵk =
rmax

tk
(15)

where (gk , hk , πk ) = EVI(Lαk ,
rmax
tk
, 0, s1) and ∥ · ∥∞ denotes

an infinity norm of a vector.
Equivalently, VB-UCRL chooses an optimistic MDP Mk

(concerning the achievable average reward) among these
plausible MDPs Mk , and executes a policy πk which is

(nearly) optimal for the optimistic MDP Mk , that is,

max
π∈5SD

{
sup

M ′∈Mk

gπM ′

}
= sup

M ′∈Mk

{
max
π∈5SD

gπM ′

}
= sup

M ′∈Mk

g∗M ′

(16)

Furthermore, rk (s, a) and pk (s′|s, a) denote the opti-
mistic reward and state transition probability for Mk at
episode k .

We first summarize the VB-UCRL without variation-
aware restarts as Alg. 2. On top of that, to simultaneously
tackle the endogenous and exogenous uncertainty, we can
formally give VB-UCRL in Alg. 3. In particular, we restart
Alg. 2 in phases by continuously tuning the confidence
parameter δ

2t2
according to a schedule dependent on the

variations.

IV. REGRET BOUNDS OF VB-UCRL
In this section, we first derive the upper regret bound of
VB-UCRL without variation-aware restarts and then extend
it to VB-UCRL with restarts.

A. UPPER REGRET BOUND OF VB-UCRL WITHOUT
VARIATION-AWARE RESTARTS
The following theorem gives the limits of regret bound in (2)
for VB-UCRL without variation-aware restarts.2

Theorem 1: For any communicatingMDP, if V̂p and V̂r are
set as the true values V T

p and V T
r , with probability at least

1−δ, it holds that for all initial state distributions ν1 ∈ 1s (1s
denotes a S-dimensional simplex.) and for all time horizons
T ≥ SA

1(VB-UCRL,T )

≤ max(rmax,Drmax)
(
43

√
T ln

(T
δ

)∑
s,a

0(s, a)

+ 72S2A ln
(T
δ

)
ln(T )

)
+ DrmaxTV T

p + 2TV T
r (17)

where 0(s, a)
def
= ∥p(·|s, a)∥0 =

∑
s′∈S 1{p(s

′
|s, a) > 0} and

0
def
= maxs,a∈S×A 0(s, a).

Proof:ByLemma 10 of [25], which shows that under the
event where the true MDP falls into the scope of plausible
MDPs (M ∈ Mk ,∀k), the T -time-step reward in the
changing MDP settings could be bounded by the optimistic
average reward g∗ (for all k and all s, v∗,T (s) ≤ Tg∗k (s) + D
where g∗k

def
= maxπ,M∈Mk g

∗
k (M ).). So, we have

1(VB-UCRL,T ) = v∗,T (s1)−
T∑
t=1

rt (st , at )

≤

T∑
t=1

(
g∗(st )− rt (st , at )

)
+ Drmax (18)

2For simplicity of representation, in this part, we slightly abuse the
notations for VB-UCRL with and without variation-aware restarts.
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Algorithm 1 Extended Value Iteration

Input: Operators L : RS
→ RS , accuracy ϵ ∈ (0, rmax), value iteration (VI) record v0(s) ∈ RS as v0(s) = 0 for all s ∈ S,

reference state s̄ ∈ S ,
1: Initialize n = 0, v1

def
= Lv0

2: while maxs∈S {vn+1(s)− vn(s)} −mins∈S {vn+1(s)− vn(s)} > ϵ do
3: Increment n← n+ 1.
4: Update vn← vn − vn(s̄)e.
5: For s ∈ S, calculate VI record vn+1(s) from Lvn(s).
6: Compute stationary policy π (s) = argmaxa∈As

(Lvn).
7: end while
8: Set g def

=
1
2 (maxs∈S {vn+1(s)− vn(s)} +mins∈S {vn+1(s)− vn(s)}), h

def
= vn.

Output: Gain g ∈ [0, rmax], bias vector h ∈ RS and stationary policy π .

Algorithm 2 VB-UCRL Without Variation-Aware Restarts

Input: Confidence δ ∈ (0, 1), rmax, S, A+.
1: Initialize t def

= 1, s1 and for
(
s, a, s′

)
: N1(s, a) = 0,

p̂1
(
s′|s, a

)
= 0, r̂1(s, a) = 0, σ̂ 2

p,1

(
s′|s, a

)
= 0,

σ̂ 2
r,1(s, a) = 0.

2: for episodes k = 1, 2, . . . do
3: Set tk ← t and episode counters νk (s, a)← 0.
4: Compute the upper-confidence bounds (4) and (7)

and the extended MDP M+k as in (11).
5: Compute an rmax/tk -approximation πk of (16)

(gk , hk , πk ) = EVI
(
Lαk ,

rmax
tk
, 0, s1

)
.

6: Sample action at ∼ πk (·|st).
7: while tk = t or νk (st , at) ≤ max {1,Nk (st , at)} do
8: Execute at , obtain reward rt , and observe st+1.
9: Sample action at+1 ∼ πk (·|st+1).
10: Set νk (st , at)← νk (st , at)+1 and set t ← t+1.
11: end while
12: SetNk+1(s, a)← Nk (s, a)+ νk (s, a).
13: Update statistics i.e.,

(
p̂k+1, r̂k+1, σ̂ 2

p,k+1, σ̂
2
r,k+1

)
.

14: end for

Algorithm 3 VB-UCRL With Restarts
Input: State space S, action space A, confidence

parameter δ, variation terms V T
r and V T

p .

1: Initialization: Set current time-step τ def
= 1.

2: for phase i = 1, 2, . . . do
3: Perform VB-UCRL in Algorithm 2 with confidence

parameter δ/2τ 2 for θi
def
= ⌈

i2

(2V Tr +V Tp )2
⌉ time-steps.

4: Update τ ← τ + θi.
5: end for

where g∗ def
= mink g∗k , and g

∗
k

def
= maxπ,M∈Mk g

∗
k (M ).

By Lemma 1, which can be interpreted as removing all the
randomness due to the stochasticity of the observed rewards
and the executed policy, at the expense of Õ(

√
T ), with a

probability at least 1− δ6 ,1(VB-UCRL,T ) could be rewritten
as

1(VB-UCRL,T )

≤

T∑
t=1

(
g∗(st )− rt (st , at )

)
≤

T∑
t=1

(
g∗(st )−

∑
a∈Ast

πkt (st , a)r(st , a)
)

+ 2rmax

√
T ln

(4T
δ

)
=

kT∑
t=1

∑
s∈S

νk (s)
(
g∗(s)−

∑
a∈As

πk (a|s)r(s, a)
)

+ 2rmax

√
T ln

(4T
δ

)
(a)
=

kT∑
t=1

1k + 2rmax

√
T ln

(4T
δ

)
(19)

where the equation (a) comes after1k
def
=
∑

s∈S νk (s)
(
g∗(s)−∑

a∈As πk (a|s)r(s, a)
)
, and kt

def
= sup{k ≥ 1 : t ≥ tk} denotes

the integer-valued random variable indexing the current
episode at time-step t . By Prop. 18 of [13], kT ≤ SA log2

( 8T
SA

)
is bounded for T ≥ SA.
Next, we derive the bound for 1k with a high probability.

By Lemma 2 in Appendix, if M ∈ Mk ,∀k , 1k could be
upper bounded by

1k ≤ 1
p
k +1

r
k +

3ϵk
2

∑
s∈S

νk (s) (20)

where 1p
k

def
= α

∑
s∈S

νk (s)
( ∑
a∈As
s′∈S

πk (a|s)pk
(
s′|s, a

)
hk
(
s′
)
−

hk (s)
)
and 1r

k
def
=
∑
s∈S

∑
a∈As

νk (s)πk (a|s)
(
rk (s, a)− r(s, a)

)
.

We further decompose 1p
k into two parts 1p

k = 1
p1
k +

1
p2
k , where 1

p1
k

def
= α

∑
s,a,s′

νk (s)πk (a|s)
(
pk
(
s′|s, a

)
−

p
(
s′|s, a

))
hk
(
s′
)
and1p2

k
def
= α

∑
s
νk (s)

(∑
a,s′
πk (a|s)p

(
s′|s, a

)
·
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hk
(
s′
)
− hk (s)

)
, and bound them in Lemma 3, Lemma 4, and

Lemma 5 of Appendix. Accordingly, with a probability 1− δ
3 ,

kT∑
k=1

1
p
k ≤ Drmax

kT∑
k=1

∑
s,a

νk (s, a)(βsap,k + V
T
p )

+ 6Drmax

√
T ln

(6T
δ

)
+ kTDrmax

≤ Drmax

kT∑
k=1

∑
s,a

νk (s, a)βsap,k + DrmaxTV T
p

+ 6Drmax

√
T ln

(6T
δ

)
+ kTDrmax (21)

where βsap,k
def
=
∑

s′ β
sas′
p,k . Similarly, by Lemma 6 of Appendix,

with probability at least 1− δ
6 , we have

kT∑
k=1

1r
k

≤ 4 rmax

√
T ln

(4T
δ

)
+ 2

kT∑
k=1

∑
s,a

νk (s, a)βsar,k + 2TV T
r

(22)

As proved in Theorem 3.1 of [9], the event that M ∈

Mk ,∀k occurs with a probability at least 1− δ
3 . Merging (20),

(21), (22) into (19), with a probability at least 1− 5δ
6 , for all

T ≥ SA, we have (23), as shown at the bottom of the next
page.

As for the last three terms (i.e., ψ1, ψ2 and ψ3) in (23),
we have
• Since tk ≥ N

+

k (s, a) for all (s, a),

ψ1 = rmax

kT∑
k=1

3
2tk

∑
s

νk (s) =
3rmax

2

∑
s,a

kT∑
k=1

νk (s, a)
tk

≤
3rmax

2

∑
s,a

kT∑
k=1

νk (s, a)

N+k (s, a)

(a)
≤

3rmax

2

∑
s,a

2+ 2 ln
(
N+kT+1(s, a)

)
(b)
≤

3rmax

2
SA
(
2+ 2 ln

(∑s,a N
+

kT+1
(s, a)

SA

))
(c)
≤

3rmaxSA
2

(
2+ 2 ln

( T
SA

))
≤ 3rmaxSA

(
1+ lnT

)
(24)

where the equation (a) comes from Prop. 1 in Appendix,
while the inequality (b) leverages the concavity of a
logarithmic function and the Jensen inequality. The
equation (c) is due to that

∑
s,a N

+

k+1(s, a) ≤ T .
• Taking account of the definition of βsar,k ,

ψ2 = 2
kT∑
k=1

∑
s,a

νk (s, a)βsar,k

= 4
kT∑
k=1

∑
s,a

[
νk (s, a)

√√√√ σ̂ 2
r,k (s, a)

N+k (s, a)
ln
(6SAN+k (s, a)

δ

)
+ 3rmax ln

(6SAN+k (s, a)

δ

) νk (s, a)
N+k (s, a)

]
(a)
≤ 4 rmax

√
ln
(6SAT

δ

) kT∑
k=1

∑
s,a

[
νk (s, a)√
N+k (s, a)

]

+ 12rmax ln
(6SAT

δ

) kT∑
k=1

∑
s,a

νk (s, a)

N+k (s, a)

(b)
≤ 4 rmax

√
ln
(6SAT

δ

)∑
s,a

3
√
N+kT+1(s, a)

+ 12rmax ln
(6SAT

δ

)∑
s,a

[
2+ 2 ln

(
N+kT+1(s, a)

)]
(c)
≤ 12 rmax

√
SAT ln

(6SAT
δ

)
+ 24 rmaxSA ln

(6SAT
δ

)
(1+ lnT )

where the equation (a) comes from σ̂ 2
r,k (s, a) ≤ r

2
max and

ln
( 6SAN+k (s,a)

δ

)
≤ ln

( 6SAT
δ

)
, the inequality (b) comes

from Prop. 1, and the inequality (c) comes from similar
deduction as the previous term.

• Similarly, in terms of the definition of βsap,k , by applying
Prop. 2 and Cauchy-Schwartz inequality, we have

ψ3 = Drmax

kT∑
k=1

∑
s,a

νk (s, a)βsap,k

≤ 6Drmax

√
ln
(
6SAT
δ

)√√√√(∑
s,a

0(s, a)

)
T

+ 12DrmaxS2A ln
(
6SAT
δ

)
(1+ lnT )

In summary, (23) could be written as (25), as shown at the
bottom of the next page. By Prop. 3, (25) could be further
simplified as the conclusion in (17).

□

B. UPPER REGRET BOUND OF VB-UCRL
Theorem 2: After any T time-steps, the regret of VB-UCRL

with restarting in Algorithm 3 is bounded by

163max(rmax,Drmax)(V T
r + V

T
p )

1/3T 2/3

·

√√√√ln
(2T 3

δ

)∑
s,a

0(s, a)

+ 72max(rmax,Drmax)S2A ln
(2T 3

δ

)
ln(2T 3) (26)

Proof: Inspired by the proof of Theorem 2 of [25],
we write V (i)

r and V (i)
p for the variation of rewards and
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transition probabilities in Phase i and abbreviate V (i) def
=

2V (i)
r + V

(i)
p , V def

= 2V T
r + V

T
p and θi

def
= ⌈

i2

V 2 ⌉.
If the number of phases up to T is N . We have

N−1∑
i=1

⌈
i2

V 2 ⌉ < T ≤
N∑
i=1

⌈
i2

V 2 ⌉ (27)

Recalling that
∑N

i=1 i
2
=

1
6N (N + 1)(2N + 1) > 1

3N
3,

we have

T >
N−1∑
i=1

⌈
i2

V 2 ⌉ >

N−1∑
i=1

i2

V 2 >
(N − 1)3

3V 2 (28)

In other words, N < 1+ 3√3V 2T .
Denoting τi as the initial time-step of phase i and sτi as the

state visited by the optimal T-time-step policy at time-step τi,
we can decompose the regret as

1(VB-UCRL,T ) = v∗T (s1)−
T∑
t=1

rt (st , at )

=

N∑
i=1

E
[
v∗θi
(
sτi
)]
−

τi−1∑
t=τi

rt (st , at )


(29)

By Theorem 1 and a union bound over all possible values
for state sτi , the i-th summand (i = 1, · · · ,N ) in (17) with

probability 1− δ

2(τ i)2
is bounded by

max(rmax,Drmax)
(
43

√√√√ln
(2T 3

δ

)∑
s,a

0(s, a) ·
√
θi

+ 72S2A ln
(2T 3

δ

)
ln(2T 3)

)
+ DrmaxV (i)θi

If 3√3V 2T < 1, we have 3V 2T < 1 and hence 3V 2T 2 < T
and VT <

√
3VT <

√
T . Furthermore, in this case N =

1 with θ1 = T and V (1)
= V , so the regret bound is obtained

as (30), as shown at the bottom of the next page, which is
upper bounded by the claimed regret bound.

On the other hand, if 3√3V 2T ≥ 1, then N < 2 3√3V 2T
and summing over all N phases yields from (27) that with a
probability

∑
i

δ

2(τ (i))2
<
∑

t
δ

2t2
< δ, the regret is bounded

by

max(rmax,Drmax)
(
43

√√√√ln
(2T 3

δ

)∑
s,a

0(s, a) ·
N∑
i=1

√
θi

+ 72S2A ln
(2T 3

δ

)
ln(2T 3)

)
+ Drmax

N∑
i=1

V (i)(
i2

V 2 + 1)

Noting that using Jensen’s inequality
∑N

i=1
√
θi ≤

√
NT ≤

1.7 · V 1/3T 2/3,
∑N

i=1 V
(i)( i

2

V 2 + 1) ≤
∑N

i=1 V
(i)(N

2

V 2 + 1) ≤
N 2

V +V < 8.33 V 1/3T 2/3
+V , and V ≤ 2(V T

r +V
T
p ), we have

the bound. □

1(VB-UCRL,T )

≤ 2rmax

√
T ln

(4T
δ

)
+

kT∑
k=1

3ϵk
2

∑
s

νk (s)+ Drmax

kT∑
k=1

∑
s,a

νk (s, a)βsap,k + DrmaxTV T
p + 6Drmax

√
T ln

(6T
δ

)
+ kTDrmax + 4 rmax

√
T ln

(4T
δ

)
+ 2

kT∑
k=1

∑
s,a

νk (s, a)βsar,k + 2TV T
r

≤ 6rmax

√
T ln

(4T
δ

)
+ 6Drmax

√
T ln

(6T
δ

)
+ DrmaxSA log2

( T
SA

)
+ DrmaxTV T

p + 2TV T
r

+ rmax

kT∑
k=1

3
2tk

∑
s

νk (s)︸ ︷︷ ︸
ψ1

+ 2
kT∑
k=1

∑
s,a

νk (s, a)βsar,k︸ ︷︷ ︸
ψ2

+Drmax

kT∑
k=1

∑
s,a

νk (s, a)βsap,k︸ ︷︷ ︸
ψ3

(23)

1(VB-UCRL,T )

≤ 6rmax

√
T ln

(4T
δ

)
+ 6Drmax

√
T ln

(6T
δ

)
+ DrmaxSA log2

(8T
SA

)
+ DrmaxTV T

p + 2TV T
r

+ 3rmaxSA
(
1+ lnT

)
+ 12 rmax

√
SAT ln

(6SAT
δ

)
+ 24 rmaxSA ln

(6SAT
δ

)
(1+ lnT )

+ 6Drmax

√
ln
(
6SAT
δ

)√√√√(∑
s,a

0(s, a)

)
T + 12DrmaxS2A ln

(
6SAT
δ

)
(1+ lnT ) (25)
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C. DISCUSSIONS
1) REGRET BOUND ANALYSIS
Taking account of

∑
s,a 0(s, a) ≤ 0SA, the regret bound

of VB-UCRL could be Õ
(
Drmax(V T

r + V
T
p )

1/3T 2/3
√
0SA

)
as in Theorem 2 based on knowing the variations of
each episode. Meanwhile, [25] and [27] give the closest
regret bound of RL in MDP with both endogenous and
exogenous uncertainty. In particular, [25] shows that if we
ignore logarithmic terms (i.e., regarding the logarithmic
terms as a constant), up to a multiplicative numerical
constant, the regret bound of variation-aware UCRL in [25]
is bounded by Drmax(V T

r + V T
p )

1/3T 2/3S
√
A on the same

basis as ours. Meanwhile, [27] shows that a regret bound of
Õ
(
Drmax(V T

r + V
T
p )

1/4S2/3A1/2T 3/4
)
if we know the total

variation, slightly relaxing the assumption of [25]. Since by
definition 0 ≤ S, the regret bound of VB-UCRL is no greater
than that in [25]. However, as 0 is usually equal to O(1) and
significantly smaller than S, our bound is superior than [25]
and [27]. In particular, it can save at most

√
S than [25] and

S
1
6 T

1
12 than [27], respectively.

On the other hand, [28] also unveils a Õ
(
(V T

r + V
T
p )

1/3T 2/3
)

bound by a closed-box approach under conditions that either
the diameter D or the total variation is known. We believe the
Bernstein inequality-based performance improvement is also
applicable there.

2) COMPUTATION COMPLEXITY ANALYSIS
Here, we briefly analyze the computational complexity for
the three proposed algorithms.

• Algorithm 1 (Extended Value Iteration): This
algorithm iteratively updates the value function for all
state-action pairs until convergence to an ϵ-optimal
policy. Each iteration has a cost of O(SA), and the
number of iterations required to reach an ϵ-accurate
solution is O( rmax

ϵ
). Thus, the overall computational

complexity is O
(
rmaxSA
ϵ

)
.

• Algorithm 2 (VB-UCRL without Variation-Aware
Restarts): In each episode, the algorithm (i) constructs
confidence intervals for the rewards and transitions,
and (ii) solves an optimistic MDP via EVI. Con-
structing the confidence intervals across all state-action
pairs requires O(SA) operations, while solving the
optimistic MDP costs O( rmaxSA

ϵ
). Based on the dou-

bling trick, the total number of episodes up to time

T is O(SA logT ). Hence, the overall complexity is
O
(
SA logT ·

(
SA+ rmaxSA

ϵ

))
= O

(
rmaxS2A2 logT

ϵ

)
.

• Algorithm 3 (VB-UCRL with Restarts): This
algorithm repeatedly invokes VB-UCRL (Algorithm 2)
over a sequence of phases, each with a distinct
confidence level and length determined by the known
variation parameters V T

r and V T
p . Let θi denote the

duration of the i-th phase. Within each phase, VB-
UCRL is executed for θi steps with accuracy ϵi =

rmax
θi

.
The computational cost of VB-UCRL in each phase
consists of computing confidence intervals and solving
an optimistic MDP via EVI. The complexity per phase
is therefore given by: O

(
SA log θi ·

(
SA+ rmaxSA

ϵi

))
=

O
(
S2A2 log θi(1+ θi)

)
. Summing over all phases yields

the total complexity:
∑

i=1O
(
S2A2 log θi(1+ θi)

)
≤

O
(
S2A2 logT ·

∑
i=1(1+ θi)

)
= O

(
S2A2T logT

)
,

where we have used the fact that the total time steps∑
i θi ≤ T and log θi ≤ logT for all i. Hence, the overall

computational complexity of VB-UCRLwith restarts is:
O(S2A2T logT ).

V. NUMERICAL EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In this section, we evaluate the performance of VB-UCRL
and provide the comparison with several classical methods,
including Q-learning with ϵ-greedy (ϵ = 0.1), UCRL2
[13], and variation-aware UCRL [25]. Meanwhile, to stand
consistent with [24], we intentionally construct an initial
status of the underlying non-stationary MDP with S states
and A actions. In particular, the rewards and state transition
probabilities satisfy the following rules: (1) The initial reward
r1 for each state-action pair is randomly generated from an
independent and identically distributed uniform distribution
bounded in [0, 1] (i.e., Unif[0, 1]). Meanwhile, the initial
state transition probabilities p1 for all state-action pairs form
a sparse diagonal matrix, since the number of reachable states
0 ≤ S. In other words, regardless of the current state,
following any action, the environment can only be transferred
to a limited set of states. In addition, we adopt the cumulative
reward as the primary performancemetric in our experiments.
Specifically, the cumulative reward is defined as the total sum
of rewards collected over all time steps across all episodes
during training or evaluation, that is,

Rcum =
T∑
t=1

rt .

max(rmax,Drmax)
(
43

√√√√ln
(2T 3

δ

)∑
s,a

0(s, a) ·
√
T + 72S2A ln

(2T 3

δ

)
ln(2T 3)

)
+ DrmaxVT

≤ 43max(rmax,Drmax)

√√√√ln
(2T 3

δ

)∑
s,a

0(s, a) ·
√
T + Drmax

√
T + 72max(rmax,Drmax)S2A ln

(2T 3

δ

)
ln(2T 3) (30)
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This metric quantifies the agent’s overall performance by
measuring the total reward accumulated throughout its entire
interaction with the environment. (2) We introduce the
implementation methods of a drifting environment (i.e.,
variational rewards and transition probabilities), to simulate
the MDP with endogenous uncertainty. Specifically, the
reward rt+1 at time-step t+1 equals the reward rt at time-step
t plus a random drifting term ξr , that is, rt+1 = rt + ξr , with
ξr denoting a random value sampled from Unif[−0.02, 0.02]
in default. Similarly, pt+1 = pt + ξp, with

∣∣ξp∣∣ ≤ 0.02.
Afterwards, the agent randomly selects a state as the

starting state s1 in such a non-stationary MDP. At each time-
step, the agent can select an action and receive a reward, while
the environment is correspondingly transferred to the next
state following the transition probability matrix. We believe
such an MDP could manifest the challenging exploration
problem and effectively demonstrate the performance of
different reinforcement learning algorithms.

B. NUMERICAL RESULTS
Firstly, we evaluate the average cumulative rewards over
5 independent runs under a non-stationary environment with
state space size S = 10, maximal reachable states 0 = 3, and
action space size A = 3. The results are presented in Fig. 1,
where the X-axis represents the number of time steps, and
the Y-axis denotes the cumulative rewards averaged over the
5 runs. The legend identifies the different algorithms under
comparison, including our proposed VB-UCRL and several
representative baselines. As observed from Fig. 1, VB-UCRL
consistently achieves higher cumulative rewards than the
baselines throughout the learning process. This indicates its
superior adaptability to non-stationary environments, and is
aligned with the tighter upper regret bound established in our
theoretical analysis.

To further demonstrate the scalability of VB-UCRL,
we conduct comparative experiments in an environment with
a larger state and action space (S = 20, A = 10), as shown in
Fig. 2, where we perform five independent runs and evaluate
the cumulative rewards over 100,000 time steps. The results
show that ε-greedy Q-learning and the non-restarting UCRL2
exhibit noticeable performance degradation in the more
complex setting, indicating limited scalability. In contrast,
restart-based methods maintain stable growth, with the
Bernstein-based VB-UCRL achieving the highest cumulative
rewards, demonstrating superior robustness and adaptability.

Furthermore, Fig. 3 compares the cumulative rewards
obtained after 100, 000 time steps under different values of
0 (i.e., the number of reachable states), with S = 10 and
A = 3. In this figure, the X-axis represents different
algorithms, including VB-UCRL, variation-aware UCRL,
UCRL2, and ϵ-greedy. For each algorithm, two bars are
shown, corresponding to different values of 0 (0 = 3 and
0 = 10), as indicated in the legend. The Y-axis shows
the cumulative rewards. It can be observed that VB-UCRL
achieves the highest cumulative reward under both settings,
and the performance gain is more significant when 0 = 3,

FIGURE 1. Comparison of cumulative rewards for S = 10 and A = 3.

FIGURE 2. Comparison of cumulative rewards for S = 20 and A = 10.

FIGURE 3. Performance comparison under different numbers 0 of
reachable states for S = 10 and A = 3.

i.e., when the number of reachable states is much smaller
than the total number of states S. This observation supports
our intuition that in structured environments with limited
state transitions, the variation-aware exploration strategy
employed by VB-UCRL can better capture the underlying
dynamics and thus achieve superior performance.
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FIGURE 4. Cumulative rewards of VB-UCRL with respect to different sizes
of action space A.

In Fig. 4, we present the cumulative rewards of VB-UCRL
under different action space sizes A, with the X-axis denoting
A and the Y-axis showing the cumulative rewards. The three
curves correspond to different state space sizes S = 3, 5, and
10. Notably, the results exhibit a first-increase-then-decrease
trend with respect to the size of the action space A, with the
turning point occurring around A = 5. This is because, when
A increases from 2 to 5, the difference in cumulative rewards
between the optimal and sub-optimal actions gradually
narrows. For instance, when S = 3, the differences for
A = 2 to 5 are 33, 197, 24, 810, 20, 931, and 17, 096,
respectively. Similar patterns are observed for S = 5 and
S = 10. This narrowing gap offsets the increased difficulty in
action selection, allowing performance to improve. However,
as A continues to grow beyond 5, the difficulty of identifying
optimal actions becomes dominant, leading to performance
degradation. It is also worth noting that larger action spaces
exacerbate this effect, since the number of state-action pairs
grows more rapidly with increasing A in our case.

In Fig. 5, we evaluate the performance of VB-UCRL
under varying sizes of the state space S, with different
action space sizes A = 3, 4, 5. In this figure, the X-axis
represents the size of the state space, and the Y-axis shows
the cumulative rewards. Each curve corresponds to a different
value of A, as indicated in the legend. We observe that the
cumulative reward consistently decreases as S increases. This
performance degradation is attributed to the growing number
of state-action pairs, which makes efficient exploration more
challenging. Moreover, larger action spaces (e.g., A =

5) exhibit a steeper decline, highlighting the compounded
difficulty introduced by both large state and action spaces.

Lastly, we analyze the performance of VB-UCRL under
different drifting terms ξr and ξp with S = 10, 0 = 3 and
A = 3 in Fig. 6. In this 3D surface plot, the X-axis and

FIGURE 5. Cumulative rewards of VB-UCRL with respect to different sizes
of state space S.

TABLE 1. The numerical relation between drifting terms (i.e., ξp and ξr )
and the variation budgets (i.e., V T

p and V T
r ).

FIGURE 6. Cumulative rewards of VB-UCRL with different drifting terms.

Y-axis correspond to the values of ξp and ξr , respectively, and
the Z-axis represents the cumulative rewards. Each point on
the surface illustrates the performance of VB-UCRL under a
specific pair of drifting terms. It can be observed that as either
ξr or ξp increases, the cumulative reward decreases.This is
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because, as indicated in Table1, larger drifting terms result
in greater variation budgets (V T

r and V T
p ), which in turn lead

to reduced learning accuracy. These empirical results fully
support our theoretical analysis of VB-UCRL’s sensitivity to
environment dynamics.

VI. CONCLUSION
In this paper, we studied the problem of online RL for
MDP with both endogenous and exogenous uncertainty,
where the unknown reward and state transition distributions
vary within some variation budgets. We first proposed a
variation-aware Bernstein-based upper confidence reinforce-
ment learning algorithm. In particular, we allowed UCRL to
restart according to a schedule based on the variations and
replaced the commonly used Hoeffding inequality with the
Bernstein inequality. Our approach achieved tighter regret
bounds than some of the latest works in the literature. Given
the wide application of RL, our approach could contribute
to the understanding of RL-based optimization performance.
In the simulation, our algorithm VB-UCRL outperforms the
existing algorithms in the literature.

There are many interesting future directions, e.g., how
to change the method of estimating V̂p, V̂r to obtain
more accurate confidence intervals to improve performance.
In addition to that, we will try to extend the Bernstein
inequality-based performance improvement to the block-box
approach in [28].

APPENDIX
Lemma 1 (Lemma 3.1 of [9]): With a probability at least

1− δ
6 , ∀T ≥ 1,

−

T∑
t=1

rt ≤ −
T∑
t=1

∑
a∈Ast

πkt (st , a)r(st , a)

+ 2rmax

√
T ln

(4T
δ

)
(31)

Proof: The proof is a direct application of Azuma’s
inequality [9]. We leave it here for easier proof of the
following lemmas.

Define Xt
def
= rt (st , at ) −

∑
a∈Ast

πkt (st , a)r(st , a) ∀t ≥ 1.
It can be observed that Xt is bounded (i.e., |Xt | ≤ rmax)
and (Xt ,Ft )t≥1 is an MDS. Thus, by applying Azuma’s
inequality, we have

P
( T∑
t=1

(
rt (st , at )−

∑
a∈Ast

πkt (st , a)r(st , a)
)

≤ −2rmax

√
T ln

(4T
δ

))
≤ (

δ

4T
)2 ≤

δ

16T 2 (32)

Recalling that
∑
∞

n=1
1
n2
=

π2

6 and taking a union bound for
all T ≥ 1, we have the probability at least 1−

∑
∞

T=1
δ

16T 2 =

1− π2δ
96 ≥ 1− δ

6 and conclude the proof. □

Lemma 2: Under the event that M ∈ Mk ,∀k, 1k could
be upper bounded by

1k ≤ 1
p
k +1

r
k +

3ϵk
2

∑
sS
νk (s) (33)

where 1p
k

def
= α

∑
s∈S

νk (s)
( ∑
a∈As
s′∈S

πk (a|s)pk
(
s′|s, a

)
hk
(
s′
)
−

hk (s)
)
and 1r

k
def
=
∑
s∈S

∑
a∈As

νk (s)πk (a|s)
(
rk (s, a)− r(s, a)

)
.

Proof: The proof is analogous to that in Section 3.5.2
of [9].

The event that M ∈ Mk implies g∗ ≤ g∗k . By Prop.
2.7 of [9], for an EVI produced by an optimal Bellman
operator with aperiodic transformation, |gk − g∗k | ≤

ϵk
2 .

Therefore, gk ≥ g∗ −
ϵk
2 . Hence, we have

1k ≤
∑
s∈S

νk (s)
(
gk (s)−

∑
a∈As

πk (a|s)r(s, a)+
ϵk

2

)
(34)

Given the extended optimal Bellman operator defined in (13),
we have ∀s ∈ S

Lαk hk (s) =
∑
a∈As

πk (a|s)

{
rk (s, a)+ α

∑
s′
pk (s′|s, a)hk (s′)

}
+ (1− α) · hk (s) (35)

By Prop. 2.7 of [9], ∥Lαk hk − hk − gk∥∞ ≤ ϵk . Therefore,∑
a∈As

πk (a|s)

{
rk (s, a)+ α

∑
s′
pk (s′|s, a)hk (s′)

}
− α · hk (s)− gk (s) ≥ −ϵk (36)

It can be rewritten as(
gk (s)−

∑
a∈As

πk (a|s)rk (s, a)
)

≤ α

( ∑
a∈As

πk (a|s)
∑
s′
pk (s′|s, a)hk (s′)− hk (s)

)
+ ϵk

(37)

So,

1k ≤
∑
s∈S

νk (s)
(
gk (s)−

∑
a∈As

πk (a|s)rk (s, a)+
ϵk

2

)

+

∑
s∈S

νk (s)
∑
a∈As

πk (a|s)
(
rk (s, a)−

∑
a∈As

r(s, a)
)

≤ α
∑
s∈S

νk (s)
( ∑
a∈As

πk (a|s)
∑
s′
pk (s′|s, a)hk (s′)− hk (s)

)

+

∑
s∈S

νk (s)
∑
a∈As

πk (a|s)
(
rk (s, a)−

∑
a∈As

r(s, a)
)

+
3ϵk
2

∑
s∈S

νk (s) = 1
p
k +1

r
k +

3ϵk
2

∑
sS
νk (s) (38)

which concludes the proof. □
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Recalling that 1p1
k

def
= α

∑
s,a,s′ νk (s)πk (a|s)

(
pk (s′|s, a) −

p(s′|s, a)
)
hk (s′). If we define1

p3
k

def
= α

∑
s,a,s′

νk (s, a)
(
pk
(
s′|s, a

)
−

p
(
s′|s, a

))
hk
(
s′
)
, pk (s′|s)

def
=
∑

a πk (a|s)pk (s
′
|s, a), p̄k (s′|s)

def
=∑

a πk (a|s)p(s
′
|s, a), and p̄k (s′|s)

def
=

∑
a πk (a|s)p(s

′
|s, a),

we can have the following lemma.
Lemma 3: Under the case that M ∈ Mk ,∀k, with

probability at least 1 − δ
6 , we have

kT∑
k=1

1
p1
k ≤

kT∑
k=1

1
p3
k +

4Drmax

√
T ln

( 6T
δ

)
.

Proof: The proof is similar to that of Lemma 1. Thus,
only a proof sketch is given here.

For a defined stochastic process Xt
def
= α

∑
a,s′ πkt (a|st ) ·

pkt (s
′
|st , a)hkt (s

′) − α
∑

s′ pkt (s
′
|st , at )hkt (s

′), since a given
st ,
∑

a,s′ πkt (a|st )pkt (s
′
|st , a) = 1 and

∑
s′ pkt (s

′
|st , at ) = 1,

we have

Xt = α
∑
a,s′

πkt (a|st )pkt (s
′
|st , a)wt (s′)

−α
∑
s′
pkt (s

′
|st , at )wt (s′),

where wt
def
= hkt + λte with λt being any constant and e being

an all-one vector.
Next, we show that Xt is bounded. Theorem 2.1 of [9]

shows that the aperiodic transformation could update the
diameter of a communicating MDP as Dαk =

D
α
≤

D. Furthermore, Theorem 4 of [14] proves that for a
communicating MDP with non-negative rewards, under a
stationary policy π , the solution (g∗, h∗) of the Bellman
optimality equation (i.e., Lh∗ = h∗ + g∗) satisfies h∗(s′) −
h∗(s) ≤ maxs (g∗(s))Eπ [τ (s → s′)|s]. Combining these
observations, together with gα∗k = g∗ ≤ rmax, sp(hαk ) ≤
Drmax
α

. Therefore, if we take λt
def
= −

1
2 (min hkt + max hkt ),

∥wt (s′)∥∞ ≤
sp(hαkt )

2 =
Drmax
2α , we have |Xt | ≤ 2α∥wt (s′)∥∞ ≤

Drmax for all t .
On the other hand

T∑
t=1

Xt=α
kT∑
k=1

∑
s,a,s′

(νk (s)πk (a|s)−νk (s, a)) pk (s′|s, a)hk (s′)

(39)

Therefore, similar to the proof of Lemma 1, by applying
Azuma’s inequality and taking a union bound, we have the
lemma. □
Lemma 4: Under the case M ∈Mk ,∀k, if V̂p is set as the

true value V T
p , 1

p3
k ≤ Drmax

∑
s,a
νk (s, a)(βsap,k + V T

p ), where

βsap,k
def
=
∑

s′ β
sas′
p,k .

Proof:We bound 1p3
k as

1
p3
k = α

∑
s,a,s′

νk (s, a)
(
pk
(
s′|s, a

)
− p

(
s′|s, a

))
hk
(
s′
)

(a)
= α

∑
s,a,s′

νk (s, a)
(
pk (s′|s, a)− p(s′|s, a)

)
wsk
(
s′
)

(b)
≤ α

∑
s,a

νk (s, a)∥pk (·|s, a)− p(·|s, a)∥1∥wsk (·)∥∞

(c)
≤
Drmax

2

∑
s,a

νk (s, a)∥pk (·|s, a)− p(·|s, a)∥1

(d)
≤ Drmax

∑
s,a

νk (s, a)(βsap,k + V
T
p )

where the equation (a) comes by applying a constant shift
same as in Proof of Lemma 3 with λk

def
= −

1
2 (min hkt +

max hkt ) and wk
def
= hk + λke. The inequality (b) comes

from the Hölder inequality and the inequality (c) is due to
∥wk∥∞ ≤

Drmax
2 . Based on the following inequality, we have

the inequality (d).

∥pk (·|s, a)− p(·|s, a)∥1
(e)
≤ ∥pk (·|s, a)− p̂k (·|s, a)∥1 + ∥p(·|s, a)− p̂k (·|s, a)∥1
(f )
≤ 2βsap,k + V̂p + V

T
p = 2βsap,k + 2V T

p (40)

where the inequality (e) comes from the triangle inequality.
Meanwhile, by construction pk (·|s, a) ∈ Bp,k , for any s′ ∈
S, |pk (s′|s, a) − p̂k (s′|s, a)| < βsas

′

p,k . Hence, ∥pk (·|s, a) −
p̂k (·|s, a)∥1 < βsap,k + V̂p. On the other hand, since M ∈

Mk ,∀k , p(·|s, a) ∈ Bp,k , we have ∥p(·|s, a)− p̂k (·|s, a)∥1 <
βsap,k + V T

p . Therefore, if V̂p is set as the true value V T
p ,

we obtain the inequality (f ).
The conclusion comes. □
Lemma 5: Under the case M ∈Mk ,∀k, with probability

at least 1− δ
6 , we have

kT∑
k=1

1
p2
k ≤ 2Drmax

√
T ln

(6T
δ

)
+ kTDrmax

Proof:

kT∑
k=1

1
p2
k

= α

kT∑
k=1

∑
s

νk (s)
(∑

a,s′
πk (a|s)p

(
s′|s, a

)
hk
(
s′
)
− hk (s)

)
(a)
= α

kT∑
k=1

∑
s

νk (s)
(∑

a,s′
πk (a|s)p

(
s′|s, a

)
wk
(
s′
)
− wk (s)

)

= α

kT∑
k=1

tk+1−1∑
t=tk

(∑
a,s′

πk (a|s)p
(
s′|s, a

)
wk
(
s′
)
− wk (st )

)

= α

kT∑
k=1

tk+1−1∑
t=tk

(∑
a,s′

πk (a|s)p
(
s′|s, a

)
wk
(
s′
)
− wk (st+1)

)

+ α

kT∑
k=1

(
wk (stk+1 )− wk (st )

)
(41)
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where the equation (a) comes by applying a constant shift
same as in Proof of Lemma 3 with λk

def
= −

1
2 (min hkt +

max hkt ) and wk
def
= hk + λke.

Applying similar methodology in Lemma 1 and 3, we have

α
∑kT

k=1
∑tk+1−1

t=tk

(∑
a,s′
πk (a|s)p

(
s′|s, a

)
wk
(
s′
)
−wk (st+1)

)
≤

2Drmax

√
T ln

( 6T
δ

)
with a probability at least 1 − δ

6 . On the

other hand, wk (stk+1 )− wk (st ) ≤
Drmax
α

.
The conclusion comes. □
Lemma 6: Under the case where M ∈Mk ,∀k, if V̂r is set

as the true value V T
r , with probability at least 1−

δ
6 , we have

kT∑
k=1

1r
k ≤ 4 rmax

√
T ln

( 4T
δ

)
+ 2

kT∑
k=1

∑
s,a
νk (s, a)(βsar,k + V

T
r ).

Proof: The proof is similar to that of Lemma 3.
Denote 1r1

k
def
=

∑
s∈S,a∈As

νk (s, a)
(
rk (s, a) − r(s, a)

)
.

By Azuma’s inequality [9],
kT∑
k=1

1r
k ≤

kT∑
k=1

1r1
k +

4 rmax

√
T ln

( 4T
δ

)
. Meanwhile, analogously to Lemma 4,

1r1
k ≤ 2

∑
s,a
νk (s, a)(βsar,k + V

T
r ). □

Proposition 1: For a sequence z1, · · · , zi, · · · with 0 ≤
zi ≤ Zi−1

def
= max

{
1,
∑k−1

i=1 zi
}
, we have for n ≥ 1,

n∑
i=1

zi
Zi
≤ 2+ 2 ln(Zn+1) (42)

and
n∑
i=1

zi
√
Zi
≤ 3

√
Zn+1 (43)

Proof: The proposition can be easily proven by induc-
tion. □
Proposition 2: For all (s, a, s′) ∈ S ×A× S:∑

s′∈S

√
p̂(s′|s, a)(1− p̂(s′|s, a)) ≤

√
0(s, a)− 1 (44)

Proof: The proposition can be proven by applying the
Cauchy-Schwarz inequality and taking the fact that 0(s, a)−
1 =

∑
s′∈S (1− p̂(s

′
|s, a)). □

Proposition 3: (25) could be further simplified as

1(VB-UCRL,T )

≤ max(rmax,Drmax)
(
43

√
T ln

(T
δ

)∑
s,a

0(s, a)

+ 72S2A ln
(T
δ

)
ln(T )

)
+ DrmaxTV T

p + 2TV T
r (45)

Proof: For T < 6SA, we can directly have

1(VB-UCRL,T ) ≤ rmaxT = rmax
√
T
√
T

≤ rmax
√
6SAT ≤

√
6T
∑
s,a

0(s, a) (46)

Also, if 1 ≤ T ≤ 432A log
(T
δ

)
, we have T 2

≤

432AT log
(T
δ

)
(orT ≤

√
AT log

(T
δ

)
), thus1(VB-UCRL,T )

≤ rmax

√
AT log

(T
δ

)
.

For T ≥ 6SA, we have 6SAT ≤ T 2, thus ln
( 6SAT

δ

)
≤

ln
(T 2

δ

)
≤ 2 ln

(T
δ

)
. Similarly, if T ≥ 432A log

(T
δ

)
, we have

A ≤

√
AT log

(
T
δ

)
43 log

(
T
δ

) . Together with log(8T ) ≤ 2 log(T ),

log( 8TSA ) ≤
2
43

√
AT log

(T
δ

)
Thus, we can simplify (25) as

1(VB-UCRL,T )

≤ max(rmax,Drmax)
(√

T ln
(T
δ

)∑
s,a

0(s, a)

× (6
√
2+ 6

√
2+ 12

√
2+

2
43

) (47)

+ S2A ln
(T
δ

)
ln(T )(24+ 48)

)
+ DrmaxTV T

p + 2TV T
r

≤ max(rmax,Drmax)
(
43

√
T ln

(T
δ

)∑
s,a

0(s, a)

+ 72S2A ln
(T
δ

)
ln(T )

)
+ DrmaxTV T

p + 2TV T
r

Replacing δ′ = 5
6δ, and taking account of log

( T
δ′

)
=

log
( 6T
5δ

)
< 2 log

(T
δ

)
, we have the conclusion. □
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