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ABSTRACT Intelligent control of Uncrewed Aerial Vehicles (UAVs) swarms has emerged as a critical
research focus, and it typically requires the swarm to navigate effectively while avoiding obstacles and
achieving continuous coverage over multiple mission targets. Although traditional Multi-Agent Reinforce-
ment Learning (MARL) approaches offer dynamic adaptability, they are hindered by the semantic gap in
black-boxed communication and the rigidity of homogeneous role structures, resulting in poor generalization
and limited task scalability. Recent advances in Large Language Model (LLM)-based control frameworks
demonstrate strong semantic reasoning capabilities by leveraging extensive prior knowledge. However, due
to the lack of online learning and over-reliance on static priors, these works often struggle with effective
exploration, leading to reduced individual potential and overall system performance. To address these
limitations, we propose a Role-Adaptive LLM-Driven Yoked navigation algorithm RALLY. Specifically, we
first develop an LLM-driven semantic decision framework that uses structured natural language for efficient
semantic communication and collaborative reasoning. Afterward, we introduce a dynamic role-heterogeneity
mechanism for adaptive role switching and personalized decision-making. Furthermore, we propose a Role-
value Mixing Network (RMIX)-based assignment strategy that integrates LLM offline priors with MARL
online policies to enable offline training of role selection strategies. Experiments in the Multi-Agent Particle
Environment (MPE) and a Software-In-The-Loop (SITL) platform demonstrate that RALLY outperforms
conventional approaches in terms of task coverage, convergence speed, and generalization, highlighting its
strong potential for collaborative navigation in agentic multi-UAV systems.

INDEX TERMS Intelligent UAV swarm control, large language model, multi-agent reinforcement learning,
role-heterogeneous network, agentic AI.

I. INTRODUCTION
Nowadays, Uncrewed Aerial Vehicles (UAVs) have demon-
strated significant potential in multi-agent pursuit-evasion
game (e.g., disaster responses [1]). Typically, the UAV swarm
shall have the capability to avoid pursuing enemies and
environmental obstacles while moving towards multiple tar-
get areas in certain formations, which is often known as
a Dynamic Swarm coordination with Cooperative Evasion

and Formation Coverage (DS-CEFC) task [2]. By enabling
UAVs to adjust their functions in response to real-time en-
vironmental conditions, dynamic role adaptation often leads
to optimized coordination, improved task coverage, and en-
hanced robustness in complex and unpredictable scenarios [3],
[4]. Nevertheless, the underlying difficulty in coordinat-
ing roles and decision-making across multiple agents in
swarms poses significant challenges. For example, traditional

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 2693

https://orcid.org/0009-0007-0778-3676
https://orcid.org/0000-0003-4297-5060
https://orcid.org/0009-0005-9205-1853
https://orcid.org/0000-0002-5479-7890
https://orcid.org/0000-0003-1492-1364
mailto:zhaozf@zhejianglab.org


WANG ET AL.: ROLE-ADAPTIVE LLM-DRIVEN YOKED NAVIGATION FOR AGENTIC UAV SWARMS

control-based algorithms [5], [6] are contingent on fully
connected topologies and lack the required adaptability and
scalability to large-scale dynamic environments, thus degrad-
ing the practicality in the real world [7]. Meanwhile, despite
the incorporation of inter-agent communications [8], [9] and
cooperation [10], [11], it still remains inevitable for decentral-
ized Multi-Agent Reinforcement Learning (MARL) to yield
conflicting roles and decisions [12], [13]. Given the inher-
ent semantic reasoning capabilities and pretrained experience
of Large Language Models (LLMs) [14], [15], they offer a
promising alternative to mitigate the critical issues of conflict-
ing roles and inconsistent decision-making that plague purely
MARL-based approaches.

A. RELATED WORKS
1) MARL-BASED UAV SWARM CONTROL
Deep Reinforcement Learning (DRL) [16] has significantly
enhanced agent adaptability in complex tasks. However, in
Multi-Agent Systems (MAS), critical challenges, such as en-
vironmental non-stationarity, rapidly expanding state spaces,
and difficulty in credit assignment, hinder the ability of
traditional methods to learn effective cooperative policies.
To address this problem, the Centralized Training with De-
centralized Execution (CTDE) paradigm is introduced with
exemplary algorithms like MADDPG [17] and MAPPO [18].
During training, it also involves techniques such as pol-
icy distillation [19] and imitation learning [20] to improve
coordination in complex obstacle-laden environments. Nev-
ertheless, these approaches struggle to assess an individual
agent’s contribution, as they typically optimize a global value
function while neglecting the importance of localized utility.
Value decomposition methods (e.g., VDN [10], QMIX [21],
QTRAN [22]) ameliorate this issue by decomposing the joint
value function, thereby enabling analysis of individuals’ con-
tributions to cooperative decision-making. Furthermore, more
advanced attention mechanisms or neural communication pro-
tocols (e.g., TarMAC [11], IMANet [23], DAACMP [24]) can
boost the effectiveness of filter messages. However, the direct
communication of numerical vectors [11], [23], [24], which
lacks interpretability and cannot convey task semantics, leads
to information redundancy and bandwidth bottlenecks [8],
[9], [25], [26], and greatly limits algorithm generalization.
Although the leader–follower architecture [27] enables role
differentiation, its static role assignments lack the flexibility
to adapt to dynamic environmental conditions and varying
formation sizes. Therefore, researchers resort to integrating
hierarchical control with consensus inference [2], [28], [29],
so as to simplify the inference interpretability and boost con-
vergence speed. However, agents in these methods commonly
remain homogeneous, and the policy networks learned via
CTDE cannot inherently leverage the advantages of the nat-
ural heterogeneity in swarms. Therefore, building a scalable,
efficient, dynamically adaptive, and interpretable heteroge-
neous multi-agent collaboration mechanism for UAV swarm
control remains an open problem.

2) LLM-BASED MULTI-AGENT SYSTEMS
LLMs have demonstrated near-human performance [14] in
complex reasoning and planning tasks, providing new impe-
tus for environment understanding and decision explainability
in UAV swarms [15]. Leveraging vast prior knowledge,
LLMs can not only be used for single-agent path plan-
ning (e.g., CoNavGPT [30], RoCo [31]), but also facilitate
high-level communication with low-level trajectory planning,
significantly improving task efficiency, adaptability, and gen-
eralization [32], [33], [34]. Moreover, in MetaGPT [35],
CAMEL [36] and ChatDev [37], LLMs can decompose
complex missions into a number of subtasks handled collabo-
ratively by different agents, thereby reducing “hallucinations”
[38] and enhancing the ability to solve complex problems.
More importantly, these LLM-driven Multi-Agent (LLM-
MA) systems [39], [40], [41] often customize LLMs into
specialized or personalized roles. Therefore, through multi-
agent collaboration, they replicate human-like collective intel-
ligence and further enhance overall situational understanding
and decision explainability, making inter-agent interactions
more meaningful. However, LLM-based decision-making still
heavily relies on prior knowledge and lacks exploration, often
getting stuck in local optima [42]. Additionally, these methods
leverage individual memory and self-evolution mechanisms
to optimize agents independently, while neglecting potential
synergistic effects arising from multi-agent interactions. Fur-
thermore, applying LLM-MA to build global consensus for
DS-CEFC remains scarce, though some studies [41] start to
focus on consensus negotiation among agents in a simplified
scenario. On the other hand, some approaches [39] utilize
diverse “personalities”, empowered by the LLM, for creative
collaboration; nevertheless, the underlying fixed definitions of
roles still struggle to accommodate dynamic task switching in
DS-CEFC. In other words, enabling dynamic role adaptation
with balanced exploration and exploitation remains a critical
challenge for DS-CEFC.

3) INTEGRATION OF MARL AND LLM
There has been some light shed on deeply integrating MARL
and LLMs [43]. Prominently, semantic capabilities in LLMs
can be leveraged as natural language interfaces to bridge
human feedback and MAS [44], but the consensus infer-
ence therein often relies more on human supervision than on
autonomous collaboration. Other studies distill LLM knowl-
edge into smaller executable models or empower LLMs with
human-in-the-loop feedback for policy generation, so as to ac-
celerate MARL training and improve performance in complex
environments [45], [46], [47]. Nevertheless, these methods
often depend on offline human annotations and feedback,
making them ill-suited for dynamic real-time changes; mean-
while, agent roles remain homogeneous, with only the number
of agents being scaled up. Some recent work treats LLMs
as the core of heterogeneous agents in MARL [14], assign-
ing different “personalities” to agents. But these roles tend
to be fixed and cannot adapt to environmental changes in
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DS-CEFC. Additionally, deploying LLMs in UAV swarms
significantly strains computational resources and energy, lim-
iting their practical use [48]. Thus, it is meaningful to calibrate
superior means to integrate MARL and LLMs, thus better
harnessing heterogeneous swarm intelligence for improved
generalization and adaptability in DS-CEFC.

B. CONTRIBUTIONS
To accomplish consensus inference of multiple UAVs with
heterogeneous roles for DS-CEFC, we propose a novel LLM-
MARL-integrated framework called RALLY (Role-Adaptive
LLM-Driven Yoked navigation). Built on our previous
work [2], which unifies target selection, obstacle-avoidance
navigation, and flight-control execution, RALLY serves as a
significantly enhanced high-level consensus inference mod-
ule towards establishing role-adaptive cooperative navigation.
Specifically, RALLY comprises two core modules: an LLM-
based two-stage semantic reasoning module and a Role-value
Mixing Network (RMIX)-based credit-distribution mecha-
nism. The integration of semantic reasoning in LLM and
policy learning in MARL makes it qualified for coordinating
roles and decision-making across swarms for DS-CEFC. The
main contributions of this work can be summarized as follows:
� We introduce RALLY, which consists of an LLM-driven

semantic reasoning architecture for goal inference along-
side a RMIX-based credit-distribution mechanism for
role selection. RALLY accelerates consensus formation,
improves convergence speed, and optimizes cooperative
behaviors within the UAV swarm to fulfill DS-CEFC.

� We implement a two-stage LLM-based semantic rea-
soning of intention and consensus inference. Replacing
traditional numerical vector-based methods with more
interpretable text contributes to the consensus inference
efficiency.

� Unlike static role assignment, RMIX dynamically as-
signs agents’ roles during cooperative navigation. By
integrating offline LLM experiences with online MARL
training, RMIX optimizes credit assignment and accel-
erates group coordination across diverse scenarios.

� To meet the distributed deployment and parallel infer-
ence demands on edge devices, we propose a capacity-
migration algorithm that significantly reduces runtime
memory footprint. We validate RALLY in the Multi-
Particle Environment (MPE) [49] and the Software-In-
The-Loop (SITL) platform [50] based on Gazebo-ROS-
PX4. Experimental results demonstrate that RALLY
outperforms the latest MARL [2] and pure LLM-driven
approaches [30], [51] in terms of task completion, con-
vergence speed, generalization, and interpretability.

C. PAPER STRUCTURE
The remainder of this paper is organized as follows. Section II
introduces the system model and formulates the problem.
Section III outlines the algorithmic framework of RALLY
by elaborating on the RMIX role assignment mechanism and

TABLE 1. Mainly Used Notations in This Paper

context-migration algorithm. Section IV presents experimen-
tal results and discussion. Finally, Section V summarizes this
work with possible research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
Beforehand, commonly used variables are summarized in
Table 1.

Hereinafter, we consider a DS-CEFC task, wherein n
communication-limited UAVs in set N cooperatively cover
multiple target regions T , with 2D positions pt

tr and urgency
levels κt

tr that decreases over coverage time, tr ∈ T , alongside
the blocking from static obstacles and chasing from PPO-
based [52] adversarial “enemy”. Therefore, during navigation,
agents shall dynamically change the target region from a
set of candidate target goals Gt ⊂ T to balance evasion and
coverage efficiency. Due to the partial observability and com-
munication limitation within the observation range δobs, as
illustrated in Fig. 1, each agent i obtains an environmental
observation as

ot
i := {(pt

i , v
t
i ), (pt

e, v
t
e), (pt

tr, κ
t
tr )tr∈T }, (1)

where pt
i = [pt

xi
, pt

yi
] and vt

i = [vt
xi
, vt

yi
] are the 2D

position and velocity of agent i, respectively, while
pt

e = [pt
xe
, pt

ye
], vt

e = [vt
xe
, vt

ye
] are those of enemy agent.

Based on its local observation ot
i , agent i first generates

a target intention gt
i ∈ T and role assignment kt

i ∈
K = {Commander,Coordinator,Executor} (i.e.,
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FIGURE 1. A typical DS-CEFC scenario: Agents 2, 5, and 7 communicate
directly within their neighborhood and then form a formation to cover
target region A, while agents 1, 3, 4, 6, and 8 use indirect, multi-hop
communication via reachable neighbors to form a formation and move
toward target region B.

FIGURE 2. The multi-layer policy architecture in distributed cooperative
systems for UAVs.

at
i = (gt

i, kt
i )), and then exchanges these proposals and ob-

servation (denoted as Mt
i = (at

i , ot
i )) within its neighborhood

set N t
i ∈ N , ultimately forming a collective consensus

gt
i ∈ T through semantic negotiation. Notably, different

roles are associated with distinct decision-making strategies:
Commander focuses on maximizing individual rewards
through independent decision-making, tending to select
points yielding the highest personal return; Coordinator
balances team and individual gains, giving priority to the
Commander’s choices whenever necessary; Executor
primarily adheres to the Coordinator’s guidance,
reverting to its own strategy if necessary for task reliability. As
discussed later, the heterogeneous role assignment contributes
to the consensus inference of large-scale swarms.

As shown in Fig. 2, we further adopt a hierarchical pol-
icy structure. The mid-layer policy πM guides the obstacle
avoidance and formation Fc, consisting of different numbers
c ∈ [Cmin,Cmax] via MARL-based navigation, while the low-
layer standard PID [53] πL steers the flight control of UAV
dynamics. In this paper, we assume the availability of πM

and πL [2], and focus on the learning of the high-level pol-
icy πH only, which is responsible for the inferred consensus
Gt := {gt

i,∀i ∈ N }.

B. PROBLEM FORMULATION
We define the DS-CEFC task as Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) extended
to a multi-agent setting with heterogeneous roles and hierar-
chical semantics. The joint system state at time t is

st := {
(pt

i , v
t
i )i∈N , (pt

e, v
t
e),

(
pt

tr, κ
t
tr

)
tr∈T

}
. (2)

The state evolves stochastically according to st+1 ∼P (st+1 |
st , at ), where the joint action of all N := |N | agents is de-
noted as at := (at

1, . . . , at
N ). By contrast, each agent i only

has a local observation ot
i given by (1). Due to its long-lasting

impact, the reward Rt at time t is formulated as a weighted
sum of formation reward Rt

f, navigation reward Rt
n, mission

completion Rt
tc, interference penalty Rt

e, and collision penalty
Rt

c. In other words,

Rt (st , at ) = ωfR
t
f + ωnRt

n + ωtcRt
tc − ωeRt

e − ωcRt
c, (3)

with nonnegative scalars Rt
f,Rt

n,Rt
tc,Rt

e,Rt
c ≥ 0 and respec-

tive weights ωf, ωn, ωtc, ωe, ωc. For each reward component,
we adopt the consistent definition as in Ref. [2]. Then the total
expected return under a joint policy πH := (π1, . . . , πN ) is
given by

J (πH ) = E

[ ∞∑
t=0

γ t Rt

]
, (4)

where 0 < γ ≤ 1 is a discount factor. Contingent on the readi-
ness of πM and πL [2], the objective is to find decentralized
policies πH that maximize J under a partially observable
environment.

III. ROLE-ADAPTIVE LLM-DRIVEN YOKED NAVIGATION
In this section, we focus on the hierarchical design of RALLY
for yielding the high-layer policy πH . Notably, RALLY
primarily includes an LLM-based personalized consensus
generation framework LLMHC and a credit-based role assign-
ment mechanism RLHI as shown in Fig. 3.

A. TWO STAGE LLM-BASED CONSENSUS INFERENCE
The high-level consensus generation strategy LLMHC
employs a two-stage structured prompting approach—local
intention generation LLMinit followed by neighborhood
consensus refinement LLMcons—to realize an LLM-driven
personalized semantic decision mechanism. By integrating
role definitions, threat analysis, and formation coverage
requirements into natural language prompts, numerical obser-
vations are mapped into interpretable intentions. This design
deeply couples the LLM’s semantic reasoning with various
role logics. Notably, the LLM reasoning currently does not
rely on historical memory and solely on the given context.

Firstly, each agent i uses its current local observation ot
i

to generate initial intent through the LLM. Accordingly, we
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FIGURE 3. Flowchart of the RALLY algorithm. (a) Taking formation F4 as an example, UAVs 1, 3, 4, and 7 adaptively form the team. (b) Based on local
observations ot

i , each agent selects target intention g′t
i and role ki . Based on background prompt descriptions Xtask, reasoning logic MCoT, and local

observation prompts Yinit (ot
i ), UAVs generate target intentions via policy LLMinit, and then determine roles ki through a role selection policy RLHI. (c) After

neighborhood communications, LLMcons refines the goal to reach a final, converged consensus decision gt
i (e.g., Region A), incorporating individual role

preferences. (d) The resulting formation F4 then collectively navigates toward Region A.

design a task-specific instruction Xtask that outlines agents’
mission requirements and task conditions, and craft the
prompt Yinit to capture the observation ot

i of agent i. The
LLM’s natural-language output is then parsed into numeric
goals g′ti as

g′ti = LLMinit(Xtask,Yinit(o
t
i ),MCoT). (5)

Next, the Role Selection Policy RLHI takes the current obser-
vation ot

i as input to optimize the role selection for each agent.
The final selected role kt

i is given as

kt
i = RLHI

(
ot

i; g′ti
)
, (6)

which determines the agent’s action strategy based on its role.
After communication with neighbors j within a range δobs

(i.e., ‖pt
i − pt

j‖ < δobs,∀ j ∈ N t
i ), the local information avail-

able to agent i at time t can be denoted as:

zt
i =

(
ot

i ,
{

(pt
j, v

t
j, g′tj, kt

j )
}

j∈N t
i

)
. (7)

On this basis, each agent i constructs a new prompt Ycons

describing its intents, RLHI-produced role kt
i , neighbors’

roles, as well as environmental constraints. We further incor-
porate task-driven Chain-of-Thought (CoT) prompts MCoT,
such as “Cluster or disperse based on the threats from enemy”
and “needs cluster with other two teammates”, to strengthen
the LLM’s reasoning and minimize hallucinations. The LLM
is instructed to output a refined consensus like “I recommend
going to target [x, y]” which is converted into the final nu-
meric target:

gt
i = LLMcons(Xtask,MCoT,Ycons(zt

i )). (8)

This refinement embeds a balance between maximizing
swarm utility and ensuring safe avoidance of enemy under
adversarial and coverage requirements.

Example prompts for Xtask and MCoT are illustrated in
Fig. 4, while more prompt details, such as Yinit and Ycons, are
provided in the Appendix. Notably, as evidenced in Fig. 19 of
the Appendix, the design of prompts shows considerable sen-
sitivity to the environmental changes and yields significantly
different responses.

For occasional illegal LLM outputs, we implement hierar-
chical contingency strategies: Commander maintains initial
intent; Coordinator defers to valid Commander (else
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FIGURE 4. Example prompts used as inputs to the LLM.

self-reverts); Executor follows any available Comman-
der/Coordinator. This design eliminates performance
dips, and stabilizes system bounds by preventing collective
deviations.

We compare the two-stage coordination policy πtwo
H =

(LLMcons ◦ LLMinit)→ gt
i against a one-stage baseline pol-

icy πone
H = L̃LMHC → g̃t

i, where the symbol ◦ marks a
strategy synergy operation. Beforehand, we introduce the fol-
lowing definition and assumption.

Definition 1 (Joint Policies Definition): For agent i, the
action-value function at time t is:

Qi(ot
i , at

i ) = E

[ ∞∑
t ′=t

γ t ′−t R(st ′ , at ′ )

∣∣∣∣ ot
i , at

i

]

= E

[ ∞∑
t ′=t

γ t ′−t R(st ′ , at ′ )

∣∣∣∣ ot
i , kt

i , gt
i

]
. (9)

For global state st and all agents’ goal decisions gt :=
(gt

1, . . . , gt
N ), the global value function Qtot is defined by a

mixing network f , which will be detailed in Section III-B:

Qtot(st , a) = f (Q1,Q2, . . . ,QN ; st , at ). (10)

Assumption 1 (Monotonic Value Factorization): Under a
monotonic value factorization [21], every weight in f is
constrained to be non-negative, which guarantees the mono-
tonicity property:

∂Qtot(st , g)

∂Qi
≥ 0, ∀i. (11)

Assumption 2 (Performance Improvement of Extra Con-
textual Reasoning): Similar to [54], [55], [56], the extra

contextual reasoning helps guide the decision-making process
toward more robust and effective outcomes, which leads to
higher-quality Q-values.

Theorem 1 (Two-Stage Superiority): Under Assumption 1
and Assumption 2, the two-stage policy achieves strictly
higher expected return:

J (πtwo) > J (πone), (12)

provided there exists at least one reachable context where
LLMcons improves upon L̃LMHC.

Proof: Under Assumption 2, for any (ot
i , kt

i ), the two-stage
consensus step selects

Qi(ot
i , kt

i , gt
i ) ≥ Qi(ot

i , kt
i , g′ti ),∀g′ti (13)

by construction of LLMcons. In contrast, the one-stage pol-
icy outputs g̃i = L̃LMHC(ot

i , kt
i ) without refinement. In other

words, Assumption 2 implies

Qi(ot
i , kt

i , gt
i ) ≥ Qi(ot

i , kt
i , g̃t

i ). (14)

Under Assumption 1, increasing any individual agent’ value
Qi cannot decrease the total value, which implies:

Qtot(st , g∗) ≥ Qtot(st , g̃), (15)

with strict inequality if any agent achieves improvement. �
Theorem 1 shows that under Assumptions 1 and 2, the two-

stage policy πtwo
H = (LLMcons ◦ LLMinit) achieves strictly

higher expected cumulative reward than the one-stage base-
line πone

H = L̃LMHC. In other words, while it may not guaran-
tee the optimal goal decision, the two-stage consensus process
provides a more comprehensive evaluation than the initial
decision, potentially leading to an improved target decision.
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Algorithm 1: Credit-Assignment Enhanced Intention
Generation Strategy (RMIX).
Require: Role candidate set
K = {Commander,Coordinator,Executor},

RMIX parameters θ , target network θ̄ ,
Discount factor γrmix, learning rate α, batch size
b,
Experience replay buffer BR.

1: Step 1: Offline Experience Collection via LLM
2: for episode = 1 to Npre do
3: Initialize environment, observe {ot

i}ni=1;
4: for each agent i do
5: kiGPT ← πGPT(ot

i ); � GPT assigns role
6: end for
7: Execute actions, receive reward R, state s;
8: Store 〈s, {oi, kiGPT},R〉 into buffer BR;
9: end for

10: Step 2: Online Cooperative RMIX Training
11: for episode = 1 to Nepoch do
12: Reset environment, observe {o0

i }Ni=1;
13: for t = 0 to T − 1 do
14: for each agent i do
15: Qi(ot

i , k)← MLPθ (ot
i );

16: kt
i ← arg maxk∈K Qi(ot

i , k);
17: end for
18: Execute roles {kt

i }, receive Rt , st+1, {ot+1
i };

19: Store 〈st , {ot
i , kt

i },Rt , st+1〉 into BR;
20: if |BR| ≥ b then
21: Sample batch {(s j, {o j

i , k j
i },R j, s j+1)}bj=1;

22: Compute target values as follows:
y j = R j + γrmix maxk′ Q̄

(
s j+1, k′; θ̄);

23: Compute RMIX outputs Qtot according to
(17);

24: Update: θ ← θ − α∇θ
∑

j (y
j − Q j

tot )
2;

25: Periodically update target:
θ̄ ← τθ + (1− τ )θ̄ .

26: end if
27: end for
28: end for
29: return Trained RMIX network RLHI for

decentralized role selection

Next, we introduce role-based credit-assignment mechanism
to ensure that Assumption 1 always holds.

B. CREDIT-ASSIGNMENT MECHANISM BASED ON
ROLE-VALUE MIXING NETWORK
The underlying distributed nature of the DS-CEFC task makes
a direct fine-tuning of LLM incompetent for reasonable multi-
agent collaboration. As illustrated in Fig. 5, each distributed
agent i feeds its current local observation ot

i , and computes the
obtainable optimal role satisfying:

kt
i = argmax

kt
i∈K

Qi

(
ot

i , kt
i ; g′ti

)
. (16)

FIGURE 5. The training of the RMIX-based role selection mechanism. Each
UAV employs a fully distributed role selection policy, using local
observation ot

i to selects role kt
i , and computes corresponding Qi (ot

i , kt
i ).

These Qi are aggregated into the global action-value Qtot via the RMIX
network and stored in a prior offline experience replay buffer. Function
evaluation cost is computed using the buffer data, followed by gradient
backpropagation to update both the RMIX network and role selection
policies.

By (9), in dynamic multi-agent adversarial tasks, instanta-
neous reward R cannot directly reflect the contribution from
the choice of role kt

i . To address this issue, we propose an
RMIX-assisted credit-assignment mechanism to evaluate each
agent’s role choices. Also, we consider the significant in-
ference latency of LLM, which results in higher costs for
acquiring training samples. In particular, with 8 agents and
3 roles each, the dimension of joint role space turns 38,
and when combined with sparse, adversarial rewards, this
makes pure online exploration extremely difficult. Therefore,
we resort to an offline learning approach to improve sample
efficiency. Similar to Curriculum Learning (CL) [57], we first
exploit the zero-shot capability of LLM (e.g., GPT-4o [58])
via API to obtain its role assignment strategy πGPT. To clarify,
πGPT refers to the online GPT4o-API version, rather than
any locally fine-tuned large model. By interacting with the
environment under local observation ot

i , the mid-layer policy
πM and the physical flight controller πL, we record GPT’s
preliminary role suggestions kiGPT and store the related transi-
tion quadruple 〈oi, kiGPT , s′,R〉 into a replay buffer BR, where
s′ denotes the transitioned state. This offline data collection
runs in parallel with LLM consensus reasoning and seeds the
replay buffer with sensible role assignments, enabling RMIX
to assist the LLM in understanding role assignments and re-
ducing the cold-start overhead from ineffective exploration.

Inspired by [21], RMIX aggregates individual role-
value estimates Qi(ot

i , kt
i ) into a global value Qtot via

a two-layer Multi-Layer Perceptron (MLP). Let Qt =
[Q1(ot

1, kt
1), . . . ,QN (ot

N , kt
N )]. A small hypernetwork condi-

tioned on the global state st produces nonnegative weights, by
enforcing:

Qt
tot = ReLU

(
W�2

(
ReLU(W 1Qt + b1)

)+ b2
)
, (17)

where the two nonnegative weight vectors W 1 ∈ RE×N and
W 2 ∈ RE×1, while biases b1 ∈ RE×1 and b2 ∈ R, with E
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Algorithm 2: Context Transfer Enhanced Lightweight
Large Model Consensus Inference Algorithm.

Require: Task prompt Xtask, prompt generator Y(oi ),
GPT-4o API, target set Ga, rewards R, thresholds
{τr,Lmin,Lmax}, weights {w1,g, . . . ,w4,g},
minimum samples M, batch size B, LoRA params ψ .

1: BLLM ← ∅
2: while |BLLM| < M do
3: Observe (oi );
4: (g∗i ,I

∗
i )← GPT4o(Xtask, Y(oi ))cf. Eq. (20);

5: Append (oi, ki, g∗i , I∗i ,R) to BLLM;
6: end while
7: Bfil←{x ∈ BLLM | Check(x) ≥ 1}cf. Eq. (21);
8: for epoch=1 TO Nepoch do
9: Sample batch B ⊂ Bfil of size B;

10: Compute loss via Eq. (22);
11: Update ψ ← ψ − η∇ψ ;
12: end for
13: return Fine-tuned LLMψ

denoting the hidden layer dimension of RMIX. ReLU(·) indi-
cates the ReLU nonlinear activation function. Eq (17) ensures
the monotonic mapping between Qt

tot and Qt , thus satisfying
the Assumption 1.

Subsequently, we proceed to the standard CTDE online
training. RMIX jointly learns from both offline and newly
collected online samples to continuously explore and refine
cooperative behaviors among agents. Generally, RMIX can
be solved by a classical Stochastic Gradient Descent (SGD)
approach, with the cost function of RMIX being formulated
as:

L(θ ) =
|BR|∑
i=1

[(
ytot

i − Qtot(st , kt ; θ, gt )
)2

]
, (18)

where θ denotes the concatenation of W 1, W 2, b1 and b2

while |BR| denotes the number of samples sampled from the
empirical memory BR. As an approximate estimation of the
cumulative returns under the global state st , ytot is given as:

ytot = Rt + γrmix max
k′

Q̄
(
s′, k′; θ̄ , gt ) , (19)

where for the transitioned state s′ and the taken action k′,
Q̄(s′, k′; θ̄ ) denotes the target network parameterized by θ̄ and
γrmix is the discount factor.

Finally, Algorithm 1 summarizes the procedure of RMIX.

C. CONTEXT-BASED LLM FINE-TUNING
Albeit the proficiency of LLMs like GPT-4o [58], a
lightweight version is preferred by resource-constrained
multi-agent system. Therefore, through self-generated in-
struction tuning [59], we introduce a capacity-migration
augmentation, so as to improve a smaller model’s reasoning
ability. Through a concerted effort, we successfully trans-
fer task-understanding capabilities from a State-Of-The-Art

(SOTA) foundation model to a local version, and subsequently
compress the model to under 5 GB of memory usage, thus
potentially enabling distributed inference of the consensus
reasoning module on onboard UAV GPUs [60].

Due to the limited dataset in DS-CEFC, we call an online
GPT-4o model to generate samples as:

Xtask,Y(ot
i )→ g∗i ,I

∗
i , (20)

where g∗i denotes the manually labeled decision, and I ∗i con-
stitutes additional consensus inference outputs, stored beyond
Eq. (7), specifically for training purposes. In particular, to
guide the generation of desired output in (8), human-annotated
instructions, similar to those in Fig. 4 and 11, are provided.
On this basis, GPT-4o’s output gi serves as RALLY’s con-
sensus decision for selecting the agent’s target region. We
then interact with the mid-layer policy πM and the physical
flight controller πL to obtain the next local observation ot+1

i
and role kt+1

i . This process repeats until acquiring a dataset
BLLM with sufficient inference samples and trajectory data
(oi, ki, g∗i , I∗i ,R).

The raw datasets BLLM may contain low-quality or invalid
outputs. Therefore, we apply a filtering mechanism to retain
a high-quality subset Bfil. To weed out low-quality samples,
we check whether the yielded target region g∗i belongs to
the target set T , the length of the inference content I ∗i is
illegal with anomalous symbols, and it conforms to the task
constraints based on the ri. Mathematically,

Check
(
g∗i ,I

∗
i ,R

) = I
(
g∗i ∈ Ga

) · w1,g

+ I
(
I ∗i ∩
 = ∅

) · w2,g

+ I
(
Lmin ≤

∣∣I ∗i ∣∣ ≤ Lmax
) · w3,g

+ I (R ≥ τr ) · w4,g, (21)

where I(·) is an indicator function that returns 1 when the
condition is established and 0 otherwise; w1,g, w2,g, w3,g, w4,g

are the indicator importance weights;
 is a pre-defined set of
anomalous characters; Lmin and Lmax denote the minimum and
maximum inference result lengths, respectively.

Notably, the fine-tuning aims to minimize the mean squared
error (MSE) between model outputs and GPT-4o reference
samples, that is:

LMSE= 1

|Bfil|
∑

(g∗i ,I
∗
i )∈Bfil

(
LLMψ

(
Xtask, Y(oi )

)−(g∗i ,I
∗

i )
)2
,

(22)

where ψ denotes the low-rank adaptation parameters. To
reduce computation and storage requirements, we use the
LLaMA-Factory framework [61] with LoRA [62] to fine-
tune a smaller, ψ-parameterized LLM (e.g., Qwen2.5 or
Llama3.1).

Finally, the pseudocode is presented in Algorithm 2.
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TABLE 2. Key Environmental and Reward Function Parameter
Configurations

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETTINGS
In this section, we evaluate the effectiveness and superiority
of RALLY on DS-CEFC tasks in MPE [49] and a fully
distributed, high-fidelity SITL [50] simulation built on
Gazebo–ROS–PX4. Concretely, each simulation runs for
1,000 steps, wherein every 50 steps, UAVs select their
target regions according to πH . The set of possible targets
is Ga = {(px, py)|px, py ∈ {−8, 0, 8}} with both coordinates
initialized uniformly in [−8, 8] m and re-sampled when
a region’s urgency reaches zero. The urgency level κt

tr is
initialized as 1. Whenever there exists a formation of UAVs
covering the region tr ∈ T , κt

tr will decrease linearly with a
scale ωd until zero; otherwise, it remains unchanged. The
pursuer’s speed is set to be twice that of the evader to ensure
it has the necessary mobility to chase down and capture
the evaders effectively. Other key environment and mission
parameters are listed in Table 2.

For RALLY, the RMIX network is implemented as a two-
layer MLP with a hidden layer size of 16. During training,
we use a batch size of 256, and update the target network
with soft updates at a rate of 0.01. For the capacity-migration-
augmentation strategy, we create L = 50 manually labeled
examples to serve as the few-shot corpus. Given the inference
latency, we set the few-shot sample count to ρ = 1. During
the API-driven data collection, the GPT-4o model is leveraged
to provide high-quality inferences. After simulation and fil-
tering, we accumulate |Bfil| = 8, 231 samples for fine-tuning
the local model Qwen2.5-7B. The adversary uses a PPO pol-
icy [52] with the same network structure as πM , learning to
chase the nearest cluster of at least three agents while avoiding
obstacles.

We compare RALLY against three representative baselines,
CIHRL [2], CoNavGPT [30], and DITTO [51], to evaluate its
effectiveness on the DS-CEFC task. CIHRL [2], which does
not incorporate role assignment, incorporates multi-agent
communication and belongs to the SOTA MARL approach

FIGURE 6. Performance comparison between RALLY and baselines.

for DS-CEFC. CoNavGPT [30] employs an LLM as a global
planner without any training process, achieving high suc-
cess rates and efficiency on the navigation task. DITTO [51]
achieves good collaboration based on LLM, demonstrating
strong role-based heterogeneity. All the non-API LLMs are
deployed in a distributed fashion on 8 NVIDIA GeForce RTX
4090 GPUs (24 GB each).

B. PERFORMANCE COMPARISON WITH BASELINES
1) OVERALL PERFORMANCE
Fig. 6 presents the average rewards1 over 30 test episodes and
demonstrates the impact of consensus mechanisms on task
completion. Particularly, RALLY attains the highest mean
reward and the narrowest variance distribution, indicating
minimal variance, fastest convergence, and consistent task
completion across various episodes. In contrast, CIHRL be-
haves conservatively, yielding stable but modest rewards.
CoNavGPT achieves higher average rewards than CIHRL,
confirming the LLM’s strong environmental understanding
and decision-making, but it lacks online exploration and can
get stuck in local optima. DITTO slightly outperforms CIHRL
by using LLM-based self-cognition for role and action selec-
tion, yet its greedy role choices and absence of reinforcement
feedback lead to high variance and unstable consensus. These
results demonstrate that RALLY’s integration of RL–based
environmental feedback and LLM-driven semantic decision
making effectively guides the multi-UAV swarm to reach
robust consensus and execute high-quality collaboration in
complex dynamic environments.

Next, we study the convergence of the credit-based role
assignment mechanism. Particularly, “RMIX” uses the MLP-
based fusion network for joint utility estimation detailed
in Section III-B, while “VDN” aggregates Qi via a sim-
ple weighted sum Qtot =

∑n
i=1 wiQi(oi, ki ). Fig. 7 presents

1Consistent with our previous works Ref. [2], due to the large negative
values of interference penalty Rt

e, and collision penalty Rt
c, the reward defined

in RALLY is generally negative as well.
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FIGURE 7. Training based on RMIX.

FIGURE 8. Fine-tuning of Qwen2.5-7B.

FIGURE 9. Generalization of RALLY to varying numbers of agents.

the corresponding results. Although both methods converge,
RMIX converges faster and yields more accurate cumulative
return estimates. Fig. 8 shows the LoRA fine-tuning loss
curve, while the validation starting from step 500 indicates
successful convergence.

2) GENERALIZATION
As depicted in Fig. 9, we evaluate RALLY and CIHRL with
changing swarm sizes from 8, 9, 10 to 11 on the DS-CEFC
task. As the swarm grows beyond this training configuration,
CIHRL’s performance degrades substantially. In other words,
without retraining for larger formations, the involved agents
fall into “habitual grouping” patterns that repeatedly form the
learned clusters, preventing effective coverage of additional
targets and leading to significant score losses. In contrast,
RALLY, which encodes the maximum permitted formation
size into its prompt, dynamically forges a split consensus to
avoid excessive clustering. More importantly, RALLY pre-
serves high scoring ability even as the swarm size increases to

FIGURE 10. Generalization of RALLY to varying target areas.

9, 10, and 11. This clear contrast underscores RALLY’s supe-
rior generalization to larger, unseen formations than CIHRL.

We further evaluate RALLY across three different target
area configurations: the original 3× 3 grid, a 2× 4 grid, and a
4× 2 grid. The target locations in each scenario are randomly
generated, ensuring dynamic and diverse environments. As
shown in Fig. 10, RALLY performs consistently well across
all three scenarios, with no significant difference in reward
performance, reinforcing its ability to adapt to varying envi-
ronmental conditions.

C. PERFORMANCE ANALYSIS OF RALLY
1) CONTRIBUTION OF RMIX
To illustrate how RMIX enhances LLM semantic decision
making, we examine the differences between the initial inten-
tion and inferred consensus of Agent #6, as shown in Fig. 11.
In the initial LLM-only phase, Agent #6 computes its distance
to the adversary (≈ 6.86 m), and driven by “safe aggregation”
and “maximal scoring”, greedily adopts the Commander role
with target (-8,8). While this choice yields short-term points,
it overlooks team coordination and can destabilize consen-
sus under complex threats. Therefore, the role-selected policy
overrides this role to Coordinator, shifting the agent’s mo-
tive from individual dominance to supporting and scheduling.
Receiving a neighbor’s intent (also (−8, 8)), the LLM then
recommends (−8, 8) again. Moreover, the LLM also issues
explicit role alignment that maintains both proximity to the
Executor and collaboration with the Commander. This
refined decision reuses the initial safety assessment and inte-
grates multi-party communication via role mapping, yielding
a more holistic trade-off between individual scoring and team
consistency. By correcting the LLM’s isolated “Commander”
bias, RALLY preserves LLM’s semantic planning strengths
while injecting MARL’s distributed division of responsibility
and information fusion. Consequently, the two-stage output
achieves superior policy stability and collaborative perfor-
mance in the dynamic DS-CEFC task.
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FIGURE 11. A two-phase decision-making procedure executed by Agent #6, where both stages are derived from the LLM outputs.

FIGURE 12. Impact of four different role configurations, including single
role (Executor), two roles (Commander–Executor), three roles
(Commander–Coordinator–Executor), and four roles
(Commander–Coordinator–Executor–Decoy).

2) IMPACT OF ROLE NUMBER
Fig. 12 illustrates RALLY’s reward distributions under
four different role configurations, including single role
(Executor), two roles (Commander–Executor), three
roles (Commander–Coordinator–Executor), and four
roles (Commander–Coordinator–Executor–Decoy),
where the Decoy role is specifically designed to divert
enemy attention. The single-role setup achieves the lowest
mean reward (≈ −3, 000), or severely limited performance

due to the absence of task decomposition and limited
exploration–coverage trade-off. Introducing a dual-role
hierarchy (Commander–Executor) yields a slight
increase in mean reward but greatly enlarged whiskers,
indicating that overreliance on the Commander’s decisions
amplifies fluctuation and undermines group synergy. In
contrast, the three-role configuration combines high average
performance with smaller variance, demonstrating that
introducing a Coordinator role effectively mediates the
semantic planning benefits from the LLM while enhancing
consistency and robustness through MARL’s exploration and
credit-assignment. Unfortunately, adding a fourth Decoy role
reduces average reward and inflates variance, suggesting that
excessive role granularity raises coordination overhead and
consensus costs, thereby detracting from overall effectiveness.
Overall, the three-role (Commander – Coordinator –
Executor) architecture strikes the optimal balance between
performance and stability within our two-phase LLM–MARL
convergence framework, fully leveraging semantic decision
making and reinforcement-driven exploration to achieve
superior formation coverage and convergence stability.

3) LLM FINETUNING
Fig. 13 present the fine-tuning performance for RALLY
and compare with other models. It can be observed from
Fig. 13 that a non-fine-tuned Qwen2.5-7B base model deliv-
ers markedly lower performance, while due to its occasional
illegal outputs (e.g., “I suggest going to target point #8, #8.” or
“region 8”), a direct calling of GPT-4o for online interaction
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FIGURE 13. Inference performance comparison after model fine-tuning.

FIGURE 14. Impact of model parameter scale.

TABLE 3. Running Performance of Mainstream LLMs on an NVIDIA RTX
4090

possibly result in significant latency and network instabil-
ity issues, degrading the performance. By contrast, RALLY,
which fine-tunes Qwen2.5-7B base model under the dataset
Bfil, harmonizes the high-quality inference of API-GPT-4o
with the efficiency and stability of a smaller model.

Next, we evaluate the performance after fine-tuning a
LoRA-based family of Qwen2.5 models with varying parame-
ter counts (0.5-B, 1.5-B, 3-B, and 7-B) on the DS-CEFC task.
Fig. 14 summarizes the post-fine-tuning performance and
demonstrates substantial performance gains. Furthermore, Ta-
ble 3 reports the Average Inference Time (AIT), Memory
Footprint (MF), and Runtime Overhead (RO) after running
these models on an NVIDIA RTX 4090. It can be found that
a Qwen2.5-1.5-B version strikes the balance by delivering
robust decision quality with minimal inference overhead.

FIGURE 15. Task overview in Gazebo Simulator for SITL.

D. SOFTWARE-IN-THE-LOOP VALIDATION
To assess RALLY’s real-world viability, we integrate it into a
ROS-based SITL environment featuring Gazebo-Classic and
the PX4 autopilot, as illustrated in Fig. 15. Furthermore, each
UAV follows standard quadrotor dynamics [63]. Consistent
with the mainstream MARL-based UAV studies, we assume
fixed-altitude flight that uz ≡ 0. Given the desired horizontal
acceleration u = [ux, uy] from πM , the PX4 flight controller
will uses a PID scheme [53] to compute thrust and angu-
lar rate commands, followed by a physics simulator which
integrates the Newton–Euler equations [63] to update each
UAV’s pose and dynamic state. Unlike prior open-source
frameworks such as XT-Drone, our setup enforces fully dis-
tributed decision-making: each quadcopter node operates on
local observations within a limited communication radius
amid multiple obstacles, scoring zones, and predator–prey
interactions. Concretely, UAV #1 (and each peer) runs an inde-
pendent off-board Python controller. The high-level RALLY
consensus module adopts the aforementioned 1.5-B fine-
tuned Qwen2.5 model, while the mid-level and low-level
PX4 flight-control modules execute on a ground server to
generate navigation commands. Using MAVROS over UDP,
each UAV publishes its state and sensory data (including
adversary, obstacle, target, and neighbor information) and
subscribes to receive pertinent updates. The desired target
region, output by RALLY, is then converted into horizontal
accelerations and broadcast to PX4 via ROS topics. PX4,
connected to Gazebo through TCP, receives these acceleration
demands, computes motor and actuator setpoints via its PID
controllers, and returns updated UAV poses and sensor read-
ings for the next simulation step. This tightly coupled loop
in Fig. 17 contributes to validating RALLY’s distributed con-
sensus and navigation performance under realistic quadcopter
constraints.
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FIGURE 16. Four typical cooperation scenarios in one episode of SITL. (a), (b), (c), and (d) stand for snapshots at high-level decision steps 17, 39, 43, and
62, respectively.

FIGURE 17. Initialization of the Gazebo-ROS-PX4 simulation environment.

Fig. 16 illustrates four representative consensus-building
steps in the SITL environment, overlaid on each UAV’s flight
path derived from Gazebo-Classic. Each simulation time-step
corresponds to one decision frame for consensus refinement.
At the time-step 17 (Fig. 16(a)), UAV #2—being closest
to Target #2 and farthest from the enemy—assumes the
Commander role and selects the upper-right scoring zone.
All teammates comply and proceed toward Target #2. At the
time-step 39 (Fig. 16(b)), the approaching enemy forces a
reconfiguration: UAVs 3, 5, and 8 split off as a three-agent
squad (F3), with UAV #5 promoted to Commander and
guiding its group to Target #1. The remaining five UAVs
form a separate F5 team; UAV #4 takes on the Commander
role and, alongside UAV #1 acting as Coordinator, leads
its squad toward the same goal. UAV #7 selects to serve as

Coordinator, deliberately positioning itself between the
adversary and the cluster to divert attention and safeguard its
peers. At the time-step 43 (Fig. 16(c)), UAV #7’s unexpected
directional shift effectively confuses the enemy’s pursuit
vector, causing it to veer off and granting the other drones
a clear corridor to bypass the threat and reorient toward
the next target. Finally, at the time-step 62 (Fig. 16(d)),
after successive rounds of LLM-driven intent generation
and RMIX-guided role reassignment, both sub-clusters
successfully evade the enemy and complete coverage of their
respective scoring regions. This sequence confirms RALLY’s
ability to orchestrate dynamic role adaptation and robust
distributed consensus in complex, adversarial scenarios.

V. CONCLUSION AND FUTURE WORKS
This paper introduces RALLY, an advanced LLM-MARL-
integrated framework for UAV swarm control that combines
LLM-driven semantic reasoning with MARL-based explo-
ration. By integrating autonomous intent understanding, dy-
namic role assignment, and decentralized consensus building,
RALLY enables each UAV to interpret local observations,
select functional roles, and collaboratively decide on navi-
gation goals under communication constraints. We validate
RALLY via the MPE simulation environment and a high-
fidelity Gazebo-ROS-PX4 SITL platform, demonstrating its
superior task completion, collaborative effectiveness, and gen-
eralization compared to existing methods in the DS-CEFC
scenario.
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FIGURE 18. Part of the prompts used in RALLY.

FIGURE 19. Specific prompts and corresponding responses by different agents running their distributed models in parallel. For brevity, we have omitted
the repeated structural prompts and CoT reasoning, while retaining only the key data-containing components of the input and output.
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Looking forward, we plan to optimize the lightweight LLM
for faster inference and reduced communication latency, and
enhance system robustness through more large-scale settings
and advanced communication strategies. In addition, we will
address the possible local optima issue in CoT reasoning by
exploring test-time training strategies and diversifying reason-
ing paths to improve reasoning diversity, reduce convergence
to suboptimal solutions, and enhance generalization. We also
aim to investigate multimodal fusion and theoretical guar-
antees for rapid semantic consensus in larger UAV swarms.
These efforts will pave the way for deploying intelligent,
collaborative UAV systems in complex, resource-constrained
missions.

APPENDIX
In the Appendix, we provide the detailed prompts in Fig. 18
and give the reasoning sensitivity in Fig. 19.
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