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Alternate Learning-Based SNR-Adaptive Sparse
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Abstract— Semantic Communication (SemCom) demonstrates
strong superiority over conventional bit-level accurate trans-
mission, by only attempting to recover the essential semantic
information of data. Nevertheless, most SemCom works train the
whole system in an End-to-End (E2E) way, with the assumption
of a differentiable channel which is rare in reality applications.
In this paper, to tackle the non-differentiability of channels,
we propose an alternate learning-based sparse SemCom system
with an SNR-adaptive capability for visual transmission, named
SparseSBC-SADM. Specially, SparseSBC-SADM leverages two
separate Deep Neural Network (DNN)-based models at the
transmitter (TX) and receiver (RX), respectively. It alternates
between learning the encoding and decoding processes, rather
than the joint optimization commonly found in existing literature,
to solve the non-differentiability in the channel. In particular,
a “self-critic” training scheme is leveraged for stable training.
Moreover, the DNN-based TX generates a sparse set of bits in
deduced “semantic bases”, by further incorporating a binary
quantization module by combining Compressive Sensing (CS)
and DNN on the basis of minimal detrimental effect to the seman-
tic accuracy. Furthermore, enlightened from the denoising steps
in the Denoising Diffusion Model (DDM), a lightweight, SNR-
Adaptive Denoising Module (SADM) is provisionally deployed at
RX to improve data reconstruction with a gate mechanism to
determine the activation under poor channel conditions. Exten-
sive simulation results validate that SparseSBC-SADM shows

Received 14 May 2024; revised 17 September 2024 and 3 December
2024; accepted 3 December 2024. Date of publication 13 December 2024;
date of current version 13 February 2025. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2024YFE0200600, in part by the National Natural Science Foundation
of China under Grant 62071425, in part by Zhejiang Key Research and
Development Plan under Grant 2022C01093, in part by Zhejiang Provincial
Natural Science Foundation of China under Grant LR23F010005, in part by
the National Key Laboratory of Wireless Communications Foundation under
Grant 2023KP01601, and in part by the Big Data and Intelligent Computing
Key Laboratory of Chongqing University of Posts and Telecommuni-
cation (CQUPT) under Grant BDIC-2023-B-001. An earlier version of
this paper was presented in part at the IEEE PIMRC 2023 [DOI:
10.1109/PIMRC56721.2023.10293971]. The associate editor coordinating the
review of this article and approving it for publication was F. Chiariotti.
(Corresponding author: Rongpeng Li.)

Siyu Tong, Xiaoxue Yu, and Rongpeng Li are with the College
of Information Science and Electronic Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: tongsiyu@zju.edu.cn; sdwhyxx@zju.
edu.cn; lirongpeng@zju.edu.cn).

Kun Lu was with the College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou 310027, China. He is now
with Huawei Technologies Company Ltd., Shenzhen 518129, China (e-mail:
22060598@zju.edu.cn).

Zhifeng Zhao is with Zhejiang Lab and the College of Information Science
and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
(e-mail: zhaozf@zhejianglab.com).

Honggang Zhang was with Zhejiang Lab and the College of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou 310027,
China. He is now with the Faculty of Data Science, City University of Macau,
Macau, China (e-mail: honggangzhang@zju.edu.cn).

Digital Object Identifier 10.1109/TWC.2024.3512652

efficient and effective transmission performance under various
channel conditions, and outperforms typical SemCom solutions.

Index Terms— Sparse semantic communication, visual trans-
mission, non-differentiable channel, alternate self-critic learning,
denoising diffusion model.

I. INTRODUCTION

RECENTLY, faced with the advent of the Internet of Intel-
ligence (IoI) [2], Semantic Communication (SemCom)

[3], [4], which puts more emphasis on the semantic-level accu-
racy, emerges as a novel and promising solution and attracts
significant research interest, as the classical bit-level accuracy-
oriented communication techniques approach the Shannon
limit and fail to satisfy stringent requirements in the IoI era.
In line with implementation maturity to extract semantic fea-
tures from the source, SemCom could be generally classified
as text transmission [5], [6], [7], speech transmission [8], [9],
image transmission [10], [11], [12], [13], [14], [15] and video
transmission [16], [17].

Notably, SemCom concentrates on semantics rather than
bits’ correction in communication transmission, which pro-
motes the application of Artificial Intelligence (AI) technology
in communication in recent years. In this regard, a series
of Joint Source-Channel Coding (JSCC) communication sys-
tems [10], [11], [18] emerge with communication quality
getting enhanced than traditional systems. Nevertheless, most
SemCom works adopt an End-to-End (E2E) approach to train
the corresponding Deep Neural Network (DNN) structures,
and implicitly assume the differentiability in the channel
layer [10]. In large-scale and realistic wireless communication,
the gradient is unable to be fully backpropagated through a
multi-path physical channel. Therefore, the strong assumption
of the differentiable channel in JSCC schemes might not
hold in practice [3], which poses a significant challenge for
these models. Instead, alternately learned transmitter (TX) and
receiver (RX), which separate the learning procedure in JSCC
structure, can be more competent to deal with this challenge
in visual transmission. Additionally, this kind of separation
fosters an easier implementation means to add or replace
modules at both TX and RX sides if necessary.

Besides, given the widespread application demands for
images, there has been significant development in signal
processing techniques specifically for image compression. As a
sub-Nyquist sampling framework, Compressive Sensing (CS)
has been introduced into communication for efficient com-
pression [19], [20]. Unfortunately, in the literature, there
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TABLE I
SUMMARY AND COMPARISON WITH RELATED LITERATURE

shed little light on explicitly investigating the sparsity into
semantic image transmission. However, considering the suc-
cessful applications of CS, it remains worthwhile to effectively
combine the latest sparsity-driven techniques and advanced
DNNs towards SemCom for image transmission. In addition,
RX typically experiences performance loss due to channel
noise, making further enhancements to robustness a valuable
pursuit. Due to the great achievements of the Denoising Diffu-
sion Model (DDM) [21], [22] in the field of visual generation,
numerous valuable applications have emerged in wireless
communications [23], [24], [25]. Considering the capability
of DDM to fit the observed data to mitigate the negative
effects of noise in SemCom [23], continuing exploration in
this area is highly worthwhile. Nevertheless, the introduction
of large-scale modeling may bring about a reduction in effi-
ciency. Inspired by the task-level Mixture of Experts (MoE)
mechanism [26], which splits a system skillfully into multiple
independent networks, each corresponding to one task, we can
also design a gating mechanism to accommodate the received
Signal-to-Noise Ratio (SNR) and decide whether to activate
the Denoising Module (DM) or not.

In this paper, we put forward SparseSBC-SADM, an alter-
nate learning-based sparse SemCom framework for visual
transmission. In particular, SparseSBC-SADM involves a TX
and a RX to learn the transmission scheme by turns, thus
obtaining the applicability for both differentiable and non-
differentiable channels. In addition, SparseSBC-SADM adopts
a “self-critic” scheme to overcome the divergence of seman-
tic decision space in the training procedure. Furthermore,
SparseSBC-SADM deduces semantic bases that can describe
all semantic embeddings with calibrated DNN-driven modules.
On top of that, SparseSBC-SADM quantizes the sparsely
represented bits from the space of semantic bases for trans-
mission. Conversely, by jointly taking account of sparse signal
recovery and JSCC-based decoding, SparseSBC-SADM recon-
structs the image from the received noisy bits. Apart from
this, drawing on the idea of task-level MoE, we propose
an SNR-adaptive DM (SADM), which can be provisionally
activated under poor channel conditions to enhance the decod-
ing performance. Furthermore, a lightweight U-Net [27] for
DDM is designed to improve the decoding efficiency. In brief,
after tabulating the differences among similar literature in
Table I, we summarize the major contribution of our work as
follows:
• We put forward SparseSBC-SADM, an alternate learning-

based sparse SemCom framework for visual transmission,

by effectively combining the concept of CS and the
advance of DNNs. In particular, a “self-critic” scheme is
introduced into the training procedure to achieve better
exploration and a stable learning process.

• Within SparseSBC-SADM, at TX, besides the encoder,
we additionally transform semantically encoded bits into
the space of semantic bases and quantize the results
by building up non-linear mapping for efficient channel
transmission. Meanwhile, similar operations are applied
to RX as well.

• At RX of SparseSBC-SADM, an SNR-adaptive gat-
ing mechanism decides the necessity of activating the
DDM-derived DM according to the channel condition,
ensuring enhanced efficiency and performance. Besides,
it incorporates a lightweight U-Net architecture, which
leads to optimized resource utilization.

• Through extensive simulations in various channel con-
ditions, we validate that SparseSBC-SADM shows
superior performance than “BPG+LDPC [28]” and
JSCC-schemes [13], [29], [30], in terms of the recon-
struction performance under the same ratio of the Energy
per Bit to Noise Power Spectral Density (Eb/N0). The
ablation experiments demonstrate the denoising ability of
SparseSBC-SADM in poor channel environments.

The remainder of the paper is organized as follows.
Section II introduces recent related works and demonstrates
the necessity of our work. In Section III, we present the
framework of SparseSBC-SADM. In Section IV, we explain
the details of implementations of DNN-based modules, and
show the alternate learning training scheme. Section V gives
the corresponding simulation results. Section VI concludes the
paper.

II. RELATED WORKS

A. Deep Joint Source-Channel Coding

As traditional image compression methods, JPEG [31] and
JPEG2000 utilize quantization and entropy coder to compress
images for transmitting fewer bits. Meanwhile, HEVC [32]
and MPEG adopt the hybrid coding framework based on
transform coding and prediction. Better Portable Graphics
(BPG) [33] leverages technology from HEVC to achieve
superior compression ratios compared to JPEG, without sac-
rificing image quality. On the contrary, the latest studies
in JSCC transmission schemes have promised significant
improvements in text [5], [6], speech [8], image [30], [34], [35]
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and video [16] communication methods. For example, Long
Short-Term Memory (LSTM) and Transformer [36]-based
natural language processing techniques have been extensively
leveraged to design JSCC [29] for text transmission [5], [6],
[7]. Meanwhile, to understand emotions and tunes of speech
more thoroughly, attention-based squeeze-and-excitation [8]
and symbol recognition modules [9] have been added to the
basic JSCC structure for speech transmission.

Furthermore, as for visual transmission, limited to the
storage of equipment and capability of transmission chan-
nel, JSCC-based image transmission methods [10], [11] are
often contingent on image compression works. In that regard,
swin transformer [34] demonstrates astonishing performance
in (lossy) image compression. Besides, by integrating the
principles of the information bottleneck method with JSCC,
AIB-JSCC [35] reduces the requirements for image transmis-
sion rate while enhancing the reconstruction quality. Based on
an adaptive deep learning framework and JSCC structure, [37]
optimizes data rate and quality based on channel conditions
and image content. Nevertheless, contemporary JSCC-based
visual communication systems, which directly transmit embed-
dings, lack superiority in terms of the performance under the
same Eb/N0.

B. Compressive Sensing in Visual Domain

As a classical framework, CS has gained significant atten-
tion in the image processing domain and has been employed
to capture the sparsity in images and boost the performance
of imaging applications [38]. By designing a special mea-
surement matrix for better CS process and encryption, [39]
guarantees the reconstruction of high-quality images. On the
other hand, CS is useful in communication systems where
traditional sampling methods may be costly or unfeasible.
Reference [19] proposes an E2E communication system with
the integration of CS and traditional image compression
techniques, achieving competitive image compression perfor-
mance, especially in low-bit rate scenarios. By formulating
active user detection and channel estimation approaches within
the framework of CS, [20] achieves rapid detection of active
users and accurate estimation of channels. Nevertheless, the
integration of CS with SemCom for image transmission is still
relatively under-explored.

C. AIGC in Communication System

Artificial Intelligence Generated Content (AIGC) has been
widely applied in image transmission research, which is
attributed to its robustness and high-quality image generation
ability. A GAN-based method [15] achieves real-time image
compression performance based on an adversarial training
procedure. Besides, a VAE-based communication system [40]
shows greater robustness to degradation than auto-encoders for
image transmission in wireless channels. On the other hand,
the application of DDM in wireless communication is still
being explored. In [25], DDM on RX uses spatially adap-
tive normalizations from such denoised semantic information,
ensuring that the details of the scenes are consistently filled.
Reference [24] proposes a hybrid communication system

TABLE II
NOTIONS USED IN THIS PAPER

based on DDM and JSCC. In addition to the transmission
of coarsely compressed images by traditional methods, noisy
images generated by the forward process of DDM are also
transmitted to improve reconstructed image quality. Refer-
ence [23] focuses on the superiority of the denoising procedure
in Denoising Diffusion Probabilistic Models (DDPM) [41]
and applies it after channel equalization to learn channel
input signal, the distribution of which is further utilized
recover images from noisy data. Furthermore, [42] targets
finite-precision wireless communications, and designs DDPMs
with the account of more realistic channel factors like Hard-
Ware Impairments (HWI), channel distortions and quantization
errors.

III. SYSTEM MODEL

A. General Framework of SemCom

As illustrated in Fig. 1, we primarily consider the SemCom
framework encompassing an encoder and a decoder as TX and
RX respectively, as well as a noisy channel H. Both encoder
and decoder, which are implemented by DNNs, are mutually
contingent. Specifically, the encoder is logically comprised of
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Fig. 1. Typical block structure of SemCom.

two DNN-based modules (i.e., a semantic source encoder Ts

and a channel encoder Tc) to extract low-dimensional features
from the original image and encode them into symbols for
channel transmission, respectively. Without loss of generality,
an image I, with d1 × d2 pixels, can be downscaled to
lower-dimension embeddings x ∈ RM as

x = Tc (Ts (I)) . (1)

At RX, the received signals y can be formulated as

y = hx + n, (2)

where h denotes the channel coefficient, n represents the
independent and identically distributed (i.i.d.) noise in the
channel, following a circularly symmetric Gaussian distri-
bution. In that regard, the channel could be modeled as a
non-trainable layer to fit the training process. Typically, the
Additive White Gaussian Noise (AWGN) channel and the
Phase-Invariant Fading (PIF) channel are generally considered
in most typical studies [3]. Mathematically, the channel can
be considered as an AWGN channel when h is set to a
scalar, while in PIF channel h is assumed to follow a constant
distribution. Furthermore, 3GPP Technical Report (TR) 38.901
[43] also incorporates a non-differential, more practical Tapped
Delay Line (TDL) channel model, which characterizes the
propagation characteristics of multi-path signals by adopting a
finite number of discrete paths with random time-varying taps
and stochastic Doppler shifts.

Conversely, RX utilizes a semantic channel decoder Rc and
an image reconstruction module Rs to recover from noisy
signals. Besides, with a denormalization layer, the value of
each pixel for every color channel is restored to (0, 255).
Mathematically,

Î = Rs (Rc (y)) , (3)

where Î denotes the reconstructed image. Basically, to further
evaluate the quality of the reconstructed image, we adopt the
L1-norm difference between pixels in the original image and
the reconstructed one. In other words,

L =
1

2d1d2

∑d1,d2

i,j
|Ii,j − Îi,j |, (4)

where Ii,j denotes the pixel (i, j) of a d1 × d2 image I, and
the smaller L yields higher semantic similarity between I and
Î.

B. Framework of SparseSBC-SADM

Fig. 2 presents the framework of SparseSBC-SADM.
Notably, compared to SemCom in Fig. 1, SparseSBC-SADM
prominently adds a CS-consistent DNN module QT to further
map x to x̂ ∈ ZN

2 , where Z2 = {0, 1}. Since each image can

be fully described by semantic bases, through the process of
QT, an image can be expressed sparsely in terms of a specific
set of bases, and thus transformed into a sequence of bits with
a larger compression ratio. Correspondingly,

x̂ = QT(x) = QT (Tc (Ts (I))) . (5)

In other words, this quantization step, which implements a
code rate CBR = k/(d1d2), encodes all possible embeddings
into a fixed sequence of 0s and 1s, and such a binary quantiza-
tion method is advantageous for transmission. Notably, such
a transformation also bypasses the necessity of pre-channel
quantization at the TX.

After receiving the sparse quantization signal x̂, RX uses the
DM D to remove noises from the received signals ŷ = hx̂+n,1

and to generate ẑ for dequantization module QR, namely

ẑ =

{
D(ŷ), if Activate;
ŷ, otherwise,

(6)

where Activate is a boolean gate to ascertain whether to
activate DM. The implementation details of Activate will be
discussed in Section IV-B.

Subsequently, the dequantization module and decoders
transform ẑ to embeddings and recover the images like the
reverse process of the encoder, that is,

Î = Rs (Rc (QR (ẑ))) . (7)

In resemblance to CS [38], QT and QR are somewhat
equivalent to nonlinear mapping and reconstruction matrices.
Besides, for simplicity of representation, we denote TX as
T = QT (Tc (Ts(·))) and RX as R = Rs (Rc (QR(D(·))))
hereafter.

Apart from adopting L (i.e., L1-norm) to measure the
semantic similarity, a sparse factor Ls will be used to impose
the sparsity of the transmitted bits. In other words,

Lfull =
1

2N

∑d1,d2

i,j
|Iij − Îij |︸ ︷︷ ︸

L

+ ε
∑N

i=1
|x̂i|︸ ︷︷ ︸

Ls

, (8)

where x̂ = [x̂1, · · · , x̂N ] and ε denotes the sparsity weight.
In the next section, we will discuss the individual modules

and implementation details of SparseSBC-SADM.

IV. IMPLEMENTATION DETAILS OF SPARSESBC-SADM

In this section, we will talk about how to develop
DNN-based modules (e.g., the SNR-adaptive denoising mod-
ule) of SparseSBC-SADM. We also explain how to use
the alternate learning self-critic scheme to bypass the
non-differentiable issue of channels.

A. DNN Structure

In SparseSBC-SADM, we adopt the following DNN struc-
ture and provide one viable means while leaving the utilization
of other DNN structures (e.g., transformer [36]) as future
works. Besides, we denote the parameters in the encoder and
decoder DNNs (excluding the DM) as ϕ and θ, respectively.

1We slightly abuse the notation ŷ with y in (2) to maintain the statement
consistency.
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Fig. 2. Framework of SparseSBC-SADM.

1) Design of Source & Channel Encoder and Decoder:
At the TX side, the joint encoder encompasses multiple
convolutional layers with LeakyReLU activation functions to
extract semantic features from an image I and reshape the
features to an M -length vector x. Similarly, the decoder at
RX contains de-convolutional layers to restore the images.
The details of convolutional layers are summarized in
Fig. 5.

2) Design of Quantization and Dequantization Module:
The DNN for both QT and QR consists of a fully connected
layer with Tanh activation function, to transform semantically
encoded bits to a sequence of numbers ranging from −1 to
1. Afterward, a binary quantization is performed to obtain
N -length binary bits vector x̂ (i.e., containing 0s or 1s only).
Notably, such a fully connected layer resembles the mapping
and reconstruction matrices (to map and reconstruct from
semantic bases) in CS; while the latter Tanh function and
quantization module capture non-linear transformations.

3) Lightweight DM Structure: With reference to DDPM,
we also choose U-Net [27], [41], an Encoder-Decoder structure
network, as the backbone of SADM. Stacked by multiple
layers of the same number of encoder blocks and decoder
blocks on each side, U-Net also contains attention blocks and
residual blocks. The down-sampling block comprises convo-
lutional layers and attention blocks that can better compress
data, while in the up-sampling period, the input is derived
from both the previous decoder block and the co-level encoder
block, ensuring that decoders would not lose information in
the inference and reconstruction process. Specifically, time-
embeddings are obtained by Multi-Layer Perceptron (MLP).
We leave the details in Section IV-B. Considering a large
number of parameters in the classical U-Net, we reduce the
number of encoder blocks and decoder blocks to fit in the com-
munication system. As illustrated in Fig. 3, we set the number
of encoders and decoders to 2 in the developed lightweight
U-Net and will clarify its advantage in Section V-B.2.

Fig. 3. The structure and details of lightweight U-Net in SparseSBC-SADM.

B. SNR-Aware Denoising Module Design

The output obtained through the noisy channel in (2) can be
interpreted as the consequence of a noise-influence process.
In other words, within SparseSBC-SADM, we consider the
effect of the channel as a sequence of stages where noise is
progressively superimposed on the transmitted signal, similar
to the way that noise is incrementally added in the forward
process of DDPM [41], as illustrated in Fig. 4. Correspond-
ingly, we incorporate a DDPM-alike DM to incrementally
and provisionally denoise the noisy signal, thus improving the
overall signal quality and reliability of data transmission.
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Fig. 4. The training representation of the DM based SNR-adaptive denoising
module.

Specifically, the prediction of each step in the denoising
procedure of DM anticipates a Gaussian noise ϵυ(ŷt, t) param-
eterized by υ for the subsequent iteration, and the denoising
process systematically iterates the data from the noisy state
ŷT = ŷ. After progressively eliminating noise to obtain ŷt,
∀t ∈ {T, · · · , 0}, the original data is obtained as ẑ = D(ŷ) =
ŷ0. Mathematically, we can sample ŷt−1 from p(ŷt−1|ŷt) and
ϵυ as [41]

ŷt−1 =
1
√

αt

(
ŷt −

1− αt√
1− ᾱt

ϵυ(ŷt, t)
)

+
√

(1− αt)ϵt,

(9)

where ϵt ∼ N (0,E) denotes the random noise for image
reconstruction at each step t, and ᾱ =

∏t
i=1 αi and α0 ≥

αi ≥ αT ∈ (0, 1) is a hyper-parameter decreased over t.
As the inference time of DM can be prohibitively long,

it impacts the operational efficiency of SemCom. To address
this challenge, we draw inspiration from task-level MoE [26],
which demonstrates the capability to dynamically allocate
computational resources when handling diverse tasks, and
adopt a similar approach to the design of DM. Specifically,
we introduce a novel SNR-adaptive DM, and the decision
to activate DM is based on the performance gain measured
by one of the image quality metrics ∆S. When the average
performance gain ∆S upon the activation of DM exceeds a
predefined threshold k, DM is engaged, that is,

Activate =

{
TRUE, if ∆S ≥ k;
FALSE, otherwise.

(10)

where k serves as a performance-driven threshold to decide
whether to activate SADM for a better denoising function.
Meanwhile, ∆S, which may include but not limited to Peak
Signal-to-Noise (PSNR) [10], Structural Similarity Index Mea-
sure (SSIM) [44] and Fréchet Inception Distance (FID) [45],
is ascertained from simulation outcomes corresponding to
different tasks and channel conditions. ∆S is determined
computationally during the training phase in Section IV-D,
rendering it a constant under the specified channel condi-
tions for practical communications. Subsequently, during the
inference phase, we leverage this MoE-alike component to
determine the activation of SADM appropriately. In other
words, SADM can intelligently adjust itself according to the
prevailing conditions by (6) and (10), and the evaluation results
are illustrated in Section V-B.2.

C. Integration of Alternate Learning and SemCom

Most typical SemCom schemes discuss the differentiable
objective optimization, but such a stringent assumption on

transmission channels might not always hold in practice.
Therefore, we consider an alternate learning scheme into
SemCom to deal with the non-differentiability of random
channels and help to turn the whole learning system into a
collaborative semantic transceiver.

To better illustrate the idea of alternate learning, we define
the input of T and R at each batch l respectively. That
is, for TX, it encodes I(l) ∈ Rd1×d2 to x̂(l) ∈ ZN

2 , and
at RX, it decodes ŷ(l) ∈ RN to Î(l) ∈ Rd1×d2 . Both
TX and the RX target reconstruct images as close as the
original signals. Meanwhile, TX shall impose the sparsity of
encoded embeddings. Hence, if only considering the encoder
parameterized by ϕ and the decoder parameterized by θ while
temporarily neglecting the impact of the DM, the alternate
learning reward can be formulated by semantic similarity as

r
(l)
ϕ = Θϕ(I(l), Î(l), x̂(l)) = 1− Lfull, (11a)

r
(l)
θ = Θθ(I(l), Î(l)) = 1− L. (11b)

Different from JSCC systems, to maximize the learning
reward, we train the encoder and decoder alternately by
taking a batch of B samples (i.e., image transmissions) as
a mini-batch to optimize the following objective function

J = E
x̂(1),··· ,x̂(B)

[∑B

l=1
r(l)

]
, (12)

where r takes the formula in (11a) and (11b) for ϕ and θ,
respectively. As the terminology “alternate learning” implies,
we freeze θ and thus the objective function is only parameter-
ized on ϕ, that is, J (ϕ) and rϕ. The convergence of “alternate
learning” has been theorectically establised in the following
theorem [46].

Theorem 1 (Theorem 3 of [46]): In the context of alternate
learning where TX is parameterized by θ and RX is parame-
terized by ϕ for their policy updates, the reward approaches a
steady-state value.

To further overcome the difficulty of divergence in training
for high-dimensional semantic space, inspired by the method-
ology in Reinforcement Learning (RL), we adopt a simpler and
quicker scheme named “self-critic” [47] based on the Gaussian
policy gradient, which will be given in-depth in Section IV-D.

D. Training Procedures

In this part, we will explain the details of the training
procedure for the whole system SparseSBC-SADM, which is
primarily divided into three stages.

1) Training Encoder and Decoder by Alternate Learning:
We first introduce the training procedures of the alternate
learning process of SparseSBC, that is, the first training stage.
Specifically, we explain TX in-depth as a detailed example.
In particular, we attempt to learn an optimal policy ϕ∗ for
TX:

ϕ∗ = arg max
T

Θϕ(I,R(H︸ ︷︷ ︸
no grad

(T (I)))). (13)

Notably, instead of training the model to estimate the baseline
directly, we use the average return from a group of parallel
samples as the baseline [47]. Specifically, we repetitively
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Fig. 5. The details of TX and RX in the training period, which both adopt the alternate learning scheme.

generate the encoding results from the input I(l) m times
according to the Gaussian distribution,

x̂(l)
j ∼ S

(
N
(
µ

(l)
ϕ = x̂(l),Σ

))
,∀j = {1, · · · , m}, (14)

where S denotes the parallel sampling following the Gaussian
distribution N . Σ =

(
σ2E

)
∈ RN×N is a covariance matrix

set by the identity matrix E and a scale factor σ, which can
be regarded as an exploration factor to get more abundant
expression of embeddings. Since a constant σ may not be
well realized for exploration and exploitation, we can adjust
the value of σ in different stages of the training procedure
dynamically, similar to the simulated annealing algorithm [48],
wherein the value of σ gradually decreases along with the
increase of epochs (denoted as “Annealed”). Furthermore,
we also consider Σ = diag [σ1, · · · , σN ] to be a learnable
matrix (denoted as “Learnable”), which can be determined by
a sigmoid function of the encoded bits, that is,

σi = Sigmoid (x̂i) , i ∈ {1, 2, · · · , N}. (15)

Following the decoding operation at RX, we can obtain
m rewards, that is, Θj , j ∈ {1, · · · , m} taking a value Θϕ.
Without loss of generality, for any j, by regarding the average
of the remaining m− 1 outputs as the bias term, we calculate
the difference between Θj and the bias term for its parameter
update. On the other hand, following our previous work [49],
we have the following theorem to demonstrate the result of
the policy gradient propagation for TX.

Theorem 2: Let T̃ (I(l)) be one of the multi-sampled
embeddings in TX at batch l. With the self-critic Gaussian
policy gradient defined in (14), the gradient propagation for

TX is given as

∇ϕ log
(
π

(l)
ϕ

)
=
[
T̃ (I(l))− T (I(l))

]⊺
Σ−1

[
∇ϕT (I(l))

]
.

(16)

Therefore, the calculation of the semantic policy gradient
can be summarized as

∇J (ϕ)

≈ 1
mB

m∑
j=1

[
B∑

l=1

∇ϕ log π
(l)
j;ϕ

(
Θj − avg

k∼m;k ̸=j
(Θk)

)]
,

(17)

where avg(·) calculates the mean value. Finally, we update ϕ
with a learning rate lr, as

ϕ← ϕ− lr · ∇J (ϕ) . (18)

Notably, such a “self-critic” training scheme, which lever-
ages m outputs parallelly in (17), can alleviate the high
variance problem of the plain policy gradient and keep a
stable training procedure [47]. It also avoids the need to train
additional networks for state value estimation, especially those
that are unstable in high dimensional spaces. In addition, the
computational complexity for the self-critic method can be
denoted as O(m(N3 + N2)B + m2), which only adds a
constant order and is on par with conventional gradient descent
methods.

Similarly, in the training period of θ, ϕ is frozen as well and
the Gaussian policy gradient-based “self-critic” is identically
adopted to reconstruct images from the received embeddings.
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Afterwards, the objective of RX can be optimized as

θ∗ = arg max
R

Θθ(I,R(H(T (I))︸ ︷︷ ︸
no grad

)). (19)

Specifically, it can be deemed as a form of unsupervised
learning, which is independent of channel influence. It cir-
cumvents the complexities introduced by channel, and allows
RX to learn directly from the data without the need for labeled
outcomes.

2) Training of the Denoising Module: In the second stage,
based on the well-trained encoder and decoder, we fix the
parameters ϕ, θ and train DM separately, while presumably
excluding the impact of channel in the whole system. Specif-
ically, each sample from the dataset intentionally undergoes a
noise schedule, incrementally perturbed by Gaussian noise ϵ.
Afterward, U-Net-based DM adaptively learns to predict the
distribution of channel noise ϵt at each step t and counteracts
the emulated channel noise. Notably, the training procedure
of DM comprises two processes (i.e., the forward process and
the reverse process), which is summarized in Algorithm 1.
• The forward process involves multiple steps to simulate

the gradual introduction of noise to the signal x̂, as if the
signal were transmitted through the channel and became
increasingly noisy. By the reparameterization trick, the
transformation [21] of the reverse transfer probability at
each step can be expressed as

x̂t =
√

ᾱtx̂0 +
√

1− ᾱtϵt, (20)

where ϵt ∼ N (0,E) is a Gaussian noise. In other words,
the t-th data can be defined by Gaussian distribution as
q(x̂t|x̂t−1) ∼ N (x̂t;

√
αtx̂t−1, (1−αt)E). Therefore, the

t-th distribution of noisy data in the forward process can
be organized by the original data x̂0 as

q(x̂t|x̂0) ∼ N (x̂t;
√

ᾱtx̂0, (1− ᾱt)E). (21)

• The reverse process in DM is consistent with DDPM to
counteract the effect of noise, so as to reconstruct the
original signal from the noisy observations.
To regain the original data, DM learns to predict the
distribution of each step, that is, q(x̂t−1|x̂t) by Gaussian
distribution p(x̂t−1|x̂t) at each step, which can be unrav-
eled by Bayesian inference. To evaluate the prediction of
noise, we can use Variational Lower Bound (VLB) to
optimize the negative log-likelihood as [50]

LD = LVLB = Eq(x̂0:T )

[
log

q(x̂1:T |x̂0)
p(x̂0:T )

]
= Eq[DKL(q(x̂T |x̂0) ∥ p(x̂T ))︸ ︷︷ ︸

LT

+
∑T

t=2
DKL(q(x̂t−1|x̂t, x̂0) ∥ p(x̂t−1|x̂t))︸ ︷︷ ︸

Lt−1

− log p(x̂0|x̂1)︸ ︷︷ ︸
L0

], (22)

where DKL denotes the Kullback–Leibler (KL)-
divergence, which is used to measure the similarity
between two Gaussian distributions. Moreover, LD can

Algorithm 1 Training Algorithm of SADM
Input: Training data x̂, hyper-parameter T , hyper-parameters

αt, random noise ϵt.
Output: The trained SADM parameters υ.

1: repeat
2: Sample x̂0 ∼ q(x̂) from training data x̂.
3: Sample t from set (i.e., t ∼ Uniform({1, 2, . . . ,T})).
4: Sample random Gaussian noise ϵt (i.e., ϵt ∼ N (0,E)).

5: Take gradient descent step on LD referred to (23).
6: until convergence
7: return The parameters υ.

also be represented as a sum of Lt across each timestep
t, denoted by the subscript. Since LT is a constant and
L0 is considered as a decoder to regain the origin form
for the dequantization module, they can both be omitted
from consideration during training and be approximated
and simplified by a constant C. In this case, by ignoring
the weighting term [41], we have

LD =
∑T−1

t=1
Lt + C

:= Et,x̂0,ϵt

[∥∥ϵt − ϵυ(
√

ᾱtx̂0 +
√

1− ᾱtϵt, t)
∥∥2
]
,

(23)

which guides gradient descent and updates network
weights to minimize future prediction errors, iteratively
refining the denoising model.

In addition, during the training process, we integrate the early
stopping process to mitigate overfitting of DM.

3) Fine-Tuning of Modules in SparseSBC-SADM: After
separately training the encoder, decoder and DM, the third
training stage typically involves fine-tuning these components
to work coordinately. In detail, the previously fixed encoder
ϕ and decoder θ during training the DM module are no
longer constrained, allowing for simultaneous optimization
of all three models. Notably, we still follow an alternative
learning approach for fine-tuning, which first immobilizes RX
and focuses on fine-tuning ϕ at TX. Afterward, we fix TX
to optimize the DM and the decoder θ at the RX. Incorpo-
rating DM as part of the RX for SemCom and re-engaging
the alternate learning self-critic method for fine-tuning can
contribute to performance improvement without sacrificing the
possibly unrealistic assumption of differentiability in channels.
Specifically, this phase leverages ŷ, which may contain noise
or corruption and needs to be corrected before being effec-
tively decoded. Therefore, training in this phase involves the
sampling steps of DM, which are invoked to progressively
denoise the data, as depicted in Algorithm 2.

Finally, the whole training details of SparseSBC-SADM are
summarized in Algorithm 3.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of
SparseSBC-SADM with different metrics under AWGN,
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Algorithm 2 Sampling Algorithm of SADM
Input: Noisy data ŷ, hyper-parameter T , hyper-parameters

αt.
Output: Denoised data ẑ.

1: ŷT = ŷ.
2: for t = T − 1, . . . , 1, 0 do
3: if t > 0 then
4: Sample ϵt ∼ N (0,E).
5: else
6: ϵ = 0.
7: end if
8: Sample ŷt−1 according to (9).
9: end for

10: return ẑ = ŷ0.

PIF and 3GPP TR 38.901 TDL2 channels respectively, and
compare it with previous works like JSCC [10], Multi-Level
Semantics-aware Communication system (MLSC-image)
[13], SwinJSCC [30] and traditional “BPG+LDPC [28]”.

A. Simulation Settings

We adopt the popular dataset Cifar-10 [51] containing
60, 000 RGB images with the fixed sizes of 32 × 32 and a
high-resolution dataset DIV2K [52] with 1, 000 images. Other
typical experimental settings are summarized in Table III.

In addition, we evaluate the performance in terms of metrics
like the number of transmitted bits, PSNR, SSIM and FID. The
number of transmitted bits evaluates transmission efficiency
in channel transmission, and the other metrics evaluate the
recovered images objectively and subjectively. In particular,
PSNR [10] measures the ratio between the maximum possible
power of signal and noise that corrupts the signal, and can be
defined as

PSNR = 10 log10

MAX2

MSE
(dB), (24)

where MSE = 1
d1d2

∑d1,d2
i,j

(
Ii,j − Îi,j

)2

denotes the mean
squared-error, and MAX is the maximum value of pixels in
the image of interest (i.e., 255 for 24-bit depth RGB images).
Meanwhile, SSIM [44], which can be calculated as

SSIM = ρl

(
I, Î
)λ1 · ρc

(
I, Î
)λ2 · ρs(I, Î

)λ3 ∈ [0, 1], (25)

captures luminance, contrast and structural differences
between images by ρl, ρc and ρs with exponential coefficients
λ1, λ2 and λ3. Besides, FID [45] quantifies the distance
between two distributions of feature points extracted from
images using a pre-trained Inception model. The FID score
is calculated as

FID = ∥µ1 − µ2∥+ tr
(
Σ1 + Σ2 − 2 (Σ1Σ2)

1
2

)
, (26)

where µ1 and µ2 are the mean vectors, while Σ1 and Σ2 are
the covariance matrices of the two sets of feature points. The
FID score provides a comprehensive measure of the similarity
between the generated images and the real dataset. Notably,

2https://nvlabs.github.io/sionna/api/channel.wireless.html

Algorithm 3 The Training Algorithm of SparseSBC-SADM
Input: Batch size B = 64, initial learning rate lr = 1e−4,

self-critic samples m = 5, epoch E1 = 200, E2 =
100, E3 = 5, semantic similarity metric Θ, scale factor
σ.

Output: Encoder parameter ϕ, decoder parameter θ,
DM parameter υ.

1: for epoch = 1 : E1 do
2: %Training TX
3: For each batch, TX encodes each sample image into

its sparse binary embedding, on the basis of frozen
parameters θ at the RX.

4: TX samples m random samples according to (14), and
sends the encoded bitstreams through the channel.

5: RX decodes with the semantic policy gradient (17), thus
yielding the objective function with reward (11a).

6: TX takes gradient propagation towards ϕ, and updates
ϕ with lr (18).

7: %Training RX
8: For each batch, TX encodes m image samples into its

sparse binary embeddings, based on its trained policy.
9: TX sends encoded bit streams through the channel.

10: RX samples a sequence of random symbols from the
channel with the Gaussian distribution, decodes and
calculates the objective function with reward (11b).

11: RX updates θ with Gaussian policy.
12: end for
13: for epoch = 1 : E2 do
14: %Training DM
15: For each batch, freeze encoder and decoder parameters

ϕ, θ. Remove the wireless channel in the whole com-
munication system and train SADM with Algorithm 1.

16: end for
17: for epoch = 1 : E3 do
18: %Alternate Learning-Based Fine-Tuning
19: For each batch, repeat steps 2 to 6 to fine-tune TX on

the basis of frozen parameters θ of decoder and υ of
DM at RX.

20: For each batch, TX transmits m quantified binary bit
streams from encoder through the channel, and sends it
into DM to sample denoised data with Algorithm 2.

21: Repeat steps 7 to 11 to fine-tune decoder θ on the basis
of frozen parameters ϕ at TX and υ of DM.

22: DM update υ.
23: end for
24: return The parameters ϕ, θ, υ

we evaluate the performance (i.e., PSNR and SSIM) of the
Cifar-10 dataset for all methods, and exclusively consider FID
for comparisons within Deep Learning (DL)-based models,
due to its subjectivity.

We conduct the performance comparison between
SparseSBC-SADM and the following communication systems
including

• JSCC [10]: JSCC scheme shares the same DNN structure
as SparseSBC-SADM, with a joint training procedure of
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Fig. 6. Performance comparison of SparseSBC-SADM with “BPG+LDPC”, JSCC and MLSC in terms of PSNR, SSIM and FID in AWGN channel of the
Cifar-10 dataset.

Fig. 7. Performance comparison of SparseSBC-SADM with “BPG+LDPC”, JSCC and MLSC in terms of PSNR, SSIM and FID in PIF channel of the
Cifar-10 dataset.

encoder and decoder. Notably, JSCC is a widely used
training strategy in semantic communication.

• MLSC-image [13]: MLSC-image is a multi-level seman-
tic communication system, and it fully extracts high-level
or low-level semantics in images containing text seman-
tics, segmentation semantics and spatial semantics.

• SwinJSCC [30]: SwinJSCC integrates the Swin Trans-
former [53] into deep joint source-channel coding,
enhancing the efficiency and adaptability of data trans-
mission in cognitive communication networks.

• BPG+LDPC [28]: The BPG codec3 offers efficient
image compression, while the LDPC codec provides
powerful error correction capabilities. In the simulation,
we follow standard 5G LDPC codes4 with Quadrature
Amplitude Modulations (QAM).

B. Numerical Results and Analysis

1) Comparative Analysis With Baselines: We first testify
the performance of SparseSBC-SADM, and present the perfor-
mance comparison with other baselines like “BPG+LDPC”,
JSCC and MLSC in Fig. 6 and Fig. 7. It can be observed
from Fig. 6 and Fig. 7 that, under different channels,
SparseSBC-SADM achieves better performance compared to
JSCC-scheme. Meanwhile, our method outperforms the tradi-
tional “BPG+LDPC” method under poor channel conditions.

3https://github.com/def-/libbpg
4https://github.com/NVlabs/sionna/tree/main/sionna/fec/ldpc

TABLE III
SIMULATION SETTINGS

In other words, the “BPG+LDPC” method can not work
stably in harsh environments while our method retains the
performance to resist poor channels. Furthermore, SparseSBC-
SADM leads to superior performance than MLSC, especially
in the AWGN channel, which further demonstrates its advan-
tages.

On the other hand, Table IV summarizes the average num-
ber of transmitted bits under different techniques in AWGN
channels when SNR = 10 dB as an example. Specifically,
“Float Resolution” refers to the precision of data transmission
in terms of the amount of data being transmitted, which
can determined by multiplying the amount of embedding
data and corresponding float resolution. It can be observed
that SparseSBC-SADM compresses every Cifar image to the
fixed 625 bytes. As a comparison, JSCC needs approximately
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TABLE IV
COMPARISON OF SPARSESBC-SADM WITH GENERAL SEMCOM SYSTEM JSCC AND MLSC IN TERMS OF PERFORMANCE

AND THE BITS OF ONE IMAGE TO BE TRANSMITTED (Eb/N0 = 5 DB)

Fig. 8. Examples of visual comparison of Cifar-10 dataset under AWGN channel at SNR = 10 dB.

Fig. 9. Performance comparison of SparseSBC-SADM, SwinJSCC, JSCC and “BPG+LDPC” on the DIV2K dataset under both AWGN and PIF channel
conditions.

Fig. 10. Example of visual comparison of DIV2K dataset under AWGN channel at SNR = 10 dB.

2, 300 bytes to reach a similar PSNR as SparseSBC-SADM.
Meanwhile, SparseSBC-SADM outperforms MLSC in both
transmitted bits and performance. In a nutshell, SparseSBC-
SADM is rather communication efficient. In addition, the
visual comparisons are illustrated in Fig. 8, taking AWGN
channel with SNR = 10 dB as an example. We further inves-
tigate the performance differences between our method and

baselines under the same coding rate CBR, and the comparison
shown in Table V indicates that SparseSBC-SADM exhibits
superior performance under the same CBR.

We also conduct evaluations on the DIV2K dataset to
further assess the performance of our models under different
channel environments, as illustrated in Fig. 9. To handle
the high-resolution dataset, we have incorporated the sliding
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TABLE V
COMPARISON OF SPARSESBC-SADM WITH GENERAL SEMCOM SYSTEM

JSCC AND MLSC IN TERMS OF PERFORMANCE WHEN
CODING RATE CBR = 0.1 (Eb/N0 = 5 DB)

TABLE VI
PERFORMANCE OF SPARSESBC-SADM IN 3GPP

TR38.901 TDL CHANNEL MODEL

Fig. 11. Performance comparison between SparseSBC-SADM, JSCC and
MLSC methods in the 3GPP-compliant TDL channel model.

window [54] to divide the image into segments for
compression. The findings indicate that SparseSBC-SADM
demonstrates superior performance across all Eb/N0 than
the JSCC system under both AWGN and PIF channels.
Besides, SparseSBC-SADM outperforms SwinJSCC in terms
of PSNR, especially under low Eb/N0. Compared with
“BPG+LDPC”, it also shows increased stability and improved
performance at low Eb/N0 levels. Consistently, the visual
contrast in the fine details of performance is showcased in
Fig. 10, in which SparseSBC-SADM achieves better visual
quality.

Additionally, to substantiate the stability of SparseSBC-
SADM, we further conduct simulation experiments on the
TDL channel model, as illustrated in Table VI and Fig. 11.
Specifically, we approximate the channel as a single-path
channel for JSCC and MLSC methods in simulation. It can
be observed that the approximation error leads to more severe
performance degradation of JSCC and MLSC. In contrast,
SparseSBC-SADM manifests itself in the robustness and
adaptability of the more real and complex channel.

2) Lightweight Network and SNR-Aware Denoising Module
Evaluation: Fig. 12 shows the PSNR performance of the
ablation experiment of SparseSBC with DM and without DM
in AWGN and PIF channels as examples. The incorpora-
tion of DM demonstrates improved performance, particularly
under conditions of low SNR ratios. The advantage is not

Fig. 12. Ablation experiment of SparseSBC with DM and without DM, take
PSNR as an example.

Fig. 13. Comparison of lightweight U-Net and ordinary U-Net in perfor-
mance.

Fig. 14. The SSIM performance of different quantization length N of x̂ in
SparseSBC-SADM system.

as pronounced in high SNR scenarios, since the transmitted
data is not significantly affected by channel noise. Based on
the simulation results, we choose ∆S = ∆PSNR, and the
activation of DM is triggered when the value of threshold
k is set to 0.3. When ∆S surpasses k (i.e., ∆PSNR ≥
0.3), the intervention of DM can enhance the quality and
reliability of data transmission; otherwise, a de-activation of
DM helps save computational resources. Furthermore, the
shaded area represents SparseSBC-SADM, and it can be
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Fig. 15. (a) Testing performance of models trained under some specific channel condition. (b) The training reward of the encoder and decoder. (c) The
sensitivity of the scale factor σ.

TABLE VII
COMPARISON OF LIGHTWEIGHT U-NET AND

STANDARD U-NET(SNR=10DB)

observed from Fig. 12 that under PIF channel, DM is activated
when SNR is over 15 dB. Conversely, under AWGN channel,
DM is activated when SNR does not exceed 12 dB. Besides,
at elevated SNR, the channel noise is sufficiently low, which
paradoxically reduces the efficacy of DDM in learning and
fitting the noise characteristics. In these instances, the condi-
tional activation strategy for DM can facilitate the balance of
the trade-off between the desired performance and computa-
tional efficiency. As a result, the performance improvement
of SparseSBC-SADM is more pronounced under low SNR
conditions, reflecting our deliberate approach to activating
DM under such circumstances with potentially significant
performance benefits.

Additionally, we also compare the PSNR performance
and parameters of lightweight U-Net and ordinary U-Net
in Fig. 13. It can be observed from Fig. 13, at interme-
diate SNR levels of 5 dB to 10 dB, a slight performance
drop is observed for the lightweight module, while in other
scenarios the performance loss is not significant. Besides,
through the lightweight design, the parameter count of U-Net
has been significantly reduced from 8.80 MB to 4.02 MB,
representing a decrease of storage resource usage over 50%.
Moreover, this lightweight design also leads to a decrease
in Floating Point Operations (FLOPs), which is shown in
Table VII. Specifically, the computational complexity has been
reduced from 120.24 GFLOPs to 114.07 GFLOPs. Despite
this reduction, the performance only marginally degrades from
27.72 dB to 27.66 dB, indicating that the lightweight U-Net
maintains comparable performance while offering substantial
improvements in computational efficiency. The simulation
results indicate the effectiveness of the lightweight module
in maintaining performance with reduced complexity.

3) Performance Sensitivity Evaluation: We perform simula-
tion experiments on different lengths of quantized bit streams
N and give the corresponding results in Fig. 14 and Table IV.
As Fig. 14 shows, as the value of N increases, the SSIM

performance of SparseSBC-SADM improves, especially in
poor channel conditions. PSNR and SSIM of different N
in Table IV demonstrate the stability of SparseSBC-SADM
in small transmission bytes, and validate the superiority of
SparseSBC-SADM. Different quantization lengths yield vary-
ing performance, while longer length typically correlates with
improved transmission performance. When the value of N is
set to 5, 000, the performance slightly surpasses that of JSCC
methods, with a substantial reduction from 9, 216 to 625 in the
number of transmitted bytes. Furthermore, this value is also
the one utilized in practical applications.

Next, we conduct experiments to assess the robustness of
our model under various channel conditions. Each curve in
Fig. 15(a) is derived from training on a particular channel
condition, and the performance of each is assessed on test
datasets across a range of Eb/N0 values. When the channel
parameters during training do not perfectly align with the
actual conditions, the performance of model remains relatively
stable without significant fluctuations. Furthermore, to demon-
strate the convergence of alternate learning, we illustrate
the progression of rewards for the encoder and decoders
across training epochs in Fig. 15(b). It can observed that
both the encoder and decoder ultimately obtain convergence.
We also explore the sensitivity of Σ discussed in Section IV-D,
as shown in Fig. 15(c). It can be observed that a learnable
Σ which is determined by scale factor σ shows superior
performance in the training period, which outperforms the
constant and annealed settings.

In addition to the thorough analysis of our self-critic
method in various scenarios, we further conduct a comparative
study with the Proximal Policy Optimization (PPO)-based
algorithm [55], a well-established RL. Our results in Fig. 16(a)
indicate that the self-critic method matches the performance of
the PPO-based algorithm, but exceeds its efficiency. Fig. 16(b)
records transmitted bits for Cifar-10 test images, and clearly
demonstrates the sparsity of transmitted bits, since “1”s
account for less than 20% of the whole transmitted bits.
Besides, Fig. 16(c) demonstrates the relationship between the
sparse weight ε and the performance of our model, indicating
that higher weights lead to better performance but result in
less sparse transmission of bits. Notably, the experiments in
this part have been conducted with a fixed random seed value
(i.e., 1985) to ensure reproducibility and consistency across
different runs.
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Fig. 16. (a) Performance comparison of self-critic scheme and PPO scheme. (b) The sparsity of transmitted bits in SparseSBC-SADM for image and video
transmission. (c) Model performance under different configurations of the sparse weight ε.

Fig. 17. Examples of differential images extracted by temporal difference
from the video clip and reconstructed video frame.

4) Extension to Video Transmission: SparseSBC-SADM
can be easily adapted to support video transmission by
converting a video to a sequence of images [16], [17].
Moreover, as depicted in Fig. 17, subsequent images in a
video can be obtained by further computing the difference in
the corresponding pixels between the two frames and taking
the absolute values. This sequence of differential images,
which only records the moving parts in a video, is easier
to compress due to the inherent sparsity. Fig. 17 illustrates
the process of temporal difference for video transmission and
presents the preliminary result to reconstruct the second frame
based on temporal difference-involved SparseSBC-SADM,
which demonstrates the stable performance. Specifically, when
Eb/N0 = 5 dB, our system achieves a PSNR of 29.57 dB and
the SSIM reaches a value of 87%. Furthermore, consistent
with the image transmission, Fig. 16(b) also unveils a sparsity
of less than 30% for the video transmission.

VI. CONCLUSION

In this paper, we have proposed a sparse SemCom system
for visual transmission, named SparseSBC-SADM, which
capably learns the DNN-based encoder and decoder deployed
on TX and RX alternately, so as to adapt to the non-
differentiable channel. In particular, a “self-critic” scheme has
been leveraged into the training procedure to guarantee a stable
process. In addition, by extracting a set of semantic bases

and implementing binary quantization, semantic information
is converted into sparse bit streams, thus effectively bridging
the potential combination between semantic communications
and compressive sensing. Besides, in order to reduce impacts
from wireless channel noise, an SNR-aware denoising module
inspired by DDPM is employed at the receiver, wherein we
specially incorporate a lightweight U-Net model. Moreover,
SparseSBC-SADM introduces a performance-driven gating
mechanism to adaptively determine the activation of the
denoising module, thus improving computational efficiency.
Extensive simulation results validate that for visual trans-
mission, SparseSBC-SADM outperforms “BPG+LDPC” and
JSCC schemes with efficiency and effectiveness under various
channel conditions, and demonstrates its robustness under poor
channel conditions. In the future, we will extend our research
to full video processing, high-fidelity simulations, and even
real-world deployment, with the anticipation of providing a
broader spectrum of analyses.
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