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Abstract— Semantic communication (SemCom) has been
deemed as a promising communication paradigm to break
through the bottleneck of traditional communications. Nonethe-
less, most of the existing works focus more on point-to-point
communication scenarios and its extension to multi-user scenar-
ios is not that straightforward due to its cost-inefficiencies to
directly scale the joint source-channel coding (JSCC) framework
to the multi-user communication system. Meanwhile, previous
methods optimize the system by differentiable bit-level supervi-
sion, easily leading to a “semantic gap”. Therefore, we delve
into multi-user broadcast communication (BC) based on the
universal transformer (UT) and propose a reinforcement learning
(RL) based self-critical alternate learning (SCAL) algorithm,
named SemanticBC-SCAL, to capably adapt to the different
BC channels from one transmitter (TX) to multiple receivers
(RXs) for sentence generation task. In particular, to enable
stable optimization via a non-differentiable semantic metric,
we regard sentence similarity as a reward and formulate this
learning process as an RL problem. Considering the huge decision
space, we adopt a lightweight but efficient self-critical supervision
to guide the learning process. Meanwhile, an alternate learn-
ing mechanism is developed to provide cost-effective learning,
in which the encoder and decoders are updated asynchronously
as independent agents. Notably, the incorporation of RL makes
SemanticBC-SCAL compliant with any user-defined semantic
similarity metric and simultaneously addresses the channel
non-differentiability issue by alternate learning. Besides, the con-
vergence of SemanticBC-SCAL is also theoretically established.
Extensive simulation results have been conducted to verify the
effectiveness and superiorness of our approach, especially in low
signal-to-noise ratio regions.
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I. INTRODUCTION

WITH the rapid development of communication tech-
nologies and the rise of artificial intelligence (AI),

tremendous intelligent applications, such as extended reality
(XR), holographic communication and autonomous driving,
flourish and impose stringent communication requirements
[1], which are beyond the capabilities of 5G. In order to
deal with this performance dilemma, researchers are resorting
to reap the merits of AI, and deep learning (DL) enabled
semantic communication (SemCom) emerges as one of the
promising solutions. In particular, targeted at the semantic
and/or effectiveness level communications [2], SemCom has
attained intense research interest [3] with encouraging results
in text transmission [4], [5], [6], [7], [8], speech/audio trans-
mission [9], [10], [11], and image/video transmission [12],
[13], [14], [15], [16].

However, it is noteworthy that most of the literature predom-
inantly focuses on point-to-point communication scenarios,
while shedding little light on exploring one-to-many semantic
broadcast communication (BC). For example, [17] proposes
to estimate the signal-to-noise ratio (SNR) at the decoder
before adaptively decoding transmitted images. Reference [18]
extends the unidirectional and bidirectional decoders to a
degraded broadcast channel, and RXs therein decode the text
in different languages yet with the same meanings as needed.
Similarly, [19] designs a semantic recognizer DistilBERT to
distinguish different receivers according to emotional prop-
erties (i.e., positive or negative). Different from [17], [18],
and [19] that broadcast all extracted features, the semantic
encoder in [20] extracts disentangled semantic features and
only broadcasts the receiver’s intended semantic informa-
tion to further improve transmission efficiency. Apparently,
these efforts on semantic BC lay the very foundation for
resource-efficient transmission to multiple receivers requiring
the same content [21].

Besides, existing semantic BC schemes [17], [18], [19],
[20], [21] continuously adopt JSCC to optimize the end-to-end
(E2E) deep neural networks (DNNs) encompassing multiple
receivers. Hence, it is cost-ineffective to directly scale the
JSCC framework to multi-user communication systems (e.g.,
semantic BC), due to the awful size of parameters correspond-
ing to exponentially increased receivers. Instead, an alternative
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framework, which is built on top of a state-of-the-art trans-
former DNN structure (e.g., universal transformer [UT] [22])
and capably separates the training of TX and RXs, is highly
essential. In this regard, alternate learning between TX and
RXs sounds intuitive, but its convergence could be question-
able. Furthermore, in existing works, the objective function
commonly leverages a differentiable function, such as cross-
entropy (CE) or mean square error (MSE), so as to facilitate
direct gradient backpropagation. This kind of bit-level metric,
despite being feasible in most cases, inevitably introduces a
“semantic gap” [3] due to inconsistencies between evaluation
metrics and optimization objectives, i.e., the training stage is
optimized by the differentiable CE or MSE function, while
the test stage is evaluated by non-differentiable semantic
metrics, such as BLEU, CIDEr [3]. Meanwhile, the difficulty
of dealing with the non-differentiability of semantic similarity
metrics could be exaggerated by the large dimension of
sequence decoding space, which demands a simple algorithm.
In addition, most of these SemCom approaches impractically
assume the channel is known and differentiable to enable direct
backpropagation through the channel. It remains challenging
to solve the non-differentiability issue in SemCom.

In summary, the design of a semantic BC with one TX and
multiple RXs is still hindered by the following critical issues:

Q1: (Scalability) How to design a cost-effective semantic BC
framework?

Q2: (Compatibility) How to compatibly deal with the
non-differentiability of semantic similarity metrics as
well as practical channel propagation, so as to develop
a learning-efficient algorithm?

Q3: (Convergence) How to establish a theoretical guidance
for alternate learning and calibrate the convergent
hyperparameters correspondingly?

In this paper, we jointly address these critical yet chal-
lenging issues and propose a convergent semantic BC
framework based on self-critical alternate learning (SCAL),
named SemanticBC-SCAL. In particular, SemanticBC-SCAL
employs the UT [22] as the backbone to more efficiently adjust
the number of processing steps according to the complexity of
each token. Furthermore, SemanticBC-SCAL capably adapts
to different channel environments from one TX to multiple
RXs and competently solves the non-differentiability issue in
the objective function (i.e., semantic similarity metrics) by
incorporating RL techniques that regard the semantic similarity
as the reward rather than computing the gradient. Mean-
while, considering the difficulty of handling large semantic
decision space, SemanticBC-SCAL utilizes a lightweight self-
critical supervision [23], which capably provides a simple and
expedited baseline estimation with low variance, to yield a
stable and efficient gradient policy from pre-trained candi-
dates. Furthermore, SemanticBC-SCAL is equipped with an
asynchronous alternate learning mechanism to unify TX &
RXs, swiftly adapting to different numbers of RXs, and
also addresses the non-differentiable channel. The primary
contributions of our work are summarized as follows:

• We propose a semantic BC framework, named
SemanticBC-SCAL, comprising one TX and multiple

RXs, built upon the universal transformer (UT)
architecture [22], the superiority of which has been
widely validated in [24] and [6]. Notably, the decoders
in SemanticBC-SCAL share a consistent structure with
trained parameters, which facilitates further adaptive
learning. Thus, it allows the trained decoder model to
readily expand to additional RXs at a reasonable cost,
effectively addressing the Q1.

• Within this proposed SemanticBC-SCAL framework,
in order to enable stable optimization via a
non-differentiable semantic similarity metric, we regard
semantic similarity as a reward and formulate it as an
RL problem, which is compliant with any semantic
metric [8]. Meanwhile, we adopt self-critical supervision
to provide simple and efficient gradient estimation.
This becomes especially suitable for complex SemCom
systems with large semantic decision space and partially
addresses the mentioned Q2.

• Combining the above approaches, a self-critical based
alternate learning mechanism is devised to alternately
train the encoder at TX and multiple decoders at
RXs, as the conventional supervised training can
not directly perform backpropagation through non-
differentiable channels. In particular, under self-critical
supervision, when the TX remains fixed, multiple
RXs locally update their parameters according to their
unique channel properties. After certain iterations, the
RXs are fixed, and the TX updates itself by aggregating
the information of multiple RXs uniformly. This alter-
nate learning mechanism addresses the non-differentiable
channel in Q2. Moreover, we carefully investigate the
theoretical convergence and validate the performance.
The results show that the RXs can adapt to different
channels, and yield superior performance compared to
traditional communication method [25] and JSCC-based
semantic model [5]. This addresses the mentioned Q3.

The rest of this paper is mainly organized as follows.
Section II briefly explains the recent works and clarifies
the novelty of our work. In Section III, we introduce the
preliminaries of the semantic BC model and formulate the
optimization problem. In Section IV, we describe the alter-
nate learning mechanism and self-critical supervision of the
SemanticBC-SCAL framework and analyze the theoretical
convergence. In Section V, the numerical results are illustrated
and discussed. Finally, conclusions are drawn in Section VI.

II. RELATED WORKS

SemCom primarily concentrates on the source informa-
tion reconstruction based on the received information. For
text-based SemCom systems, Farsad et al. [4] propose the
initial JSCC based on the recurrent neural network (RNN)
codecs for fixed length sentences, which shows that the
DL-based codecs are capable of achieving lower word error
rate and preserve semantic information by embedding sen-
tences into a semantic space. Inspired by this success,
Xie et al. [5] design a transformer-based SemCom system,
named DeepSC, which aims to recover the semantics for
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TABLE I
SUMMARY AND COMPARISON OF SEMANTIC BC SCHEMES

arbitrary lengths of sentences under varying channels. Since
then, SemCom has attracted a lot of attention and many works
utilize JSCC frameworks to transmit sentence semantics [6],
[7], [26], such as UT [22] based semantic coding system [6],
[24], and mutual information (MI) based performance opti-
mization between semantic compression and semantic fidelity.
Moreover, Wang et al. [27] and Seo et al. [28] adopt knowl-
edge graph (KG) and probability distribution respectively to
infer semantics information explicitly. In addition to text,
Weng et al. [9] design an attention-based E2E SemCom
system for speech transmission. Tong [10] et al. develop
a federated learning (FL) trained model to deliver audio
semantics between multiple devices and the server. Besides,
Bourtsoulatze et al. [12] initially extend the JSCC framework
and apply it to the deep image SemCom system, which
provides graceful degradation as SNR changes. Correspond-
ingly, Kurka et al. in [13] consider the channel feedback to
enhance the image reconstruction quality based on the JSCC
scheme. Moreover, the authors in [15] and [16] introduce
the semantics and transmit some key motion points to max-
imize overall visual quality, thus improving transmission
efficiency.

Apart from the achievements in semantic level SemCom,
some results are achieved at the effectiveness level as well,
by transmitting essential semantics timely for successful task
accomplishment. For example, Jankowski et al. [29], [30]
target the identification of individuals or vehicles and design
two alternative (digital and analog communications-based)
schemes to enhance retrieval accuracy. Kountouris et al. [31]
develop a communication paradigm, in which smart devices
sample the “semantics of information” to steer their traf-
fic for real-time remote actuation. Additionally, in [32],
a transformer-based framework is designed to unify the DNN
structure of the transmitter for different tasks with differ-
ent types of data (i.e., single-modal data and multi-modal
data), wherein many-to-many and many-to-one scenarios are
exemplified. Similarly, [33] also presents a unified E2E
framework that can serve different tasks with multiple modal-
ities by dynamically adjusting feature dimensions and DNN
layers. Commonly, existing works in SemCom focus more
on point-to-point or multiple-encoder-single-decoder JSCC
frameworks. Furthermore, as explained earlier, there emerge
several works [17], [18], [19], [20] on Semantic BC, and the
related drawbacks are summarized in Table I. Notably, these
semantic BC works tend to encounter challenges related to
scalability, compatibility, and convergence issues.

In addition, there exist some efforts to combine RL and
SemCom to improve the communication efficiency of multi-
agent systems [27], [34], [35], [36], [37]. For example, in order
to alleviate information bottleneck (IB) and improve the
effectiveness of the multi-round communication process, [34]
applies an attention-based sampling mechanism to the graph
convolution network for multi-agent cooperation. Different
from the aforementioned works that utilize SemCom for
effective transmission, [37] considers an RL-based semantic
bit allocation to implement task-driven semantic coding for a
traditional hybrid coding framework. Specifically, they design
semantic maps for different tasks to extract the pixel-wise
semantic fidelity and leverage RL to integrate the seman-
tic fidelity metric into the in-loop optimization of semantic
coding. It can be seen that RL is capable of improving
communication efficiency and has demonstrated considerable
advantages. Nevertheless, there are relatively few works using
RL to develop an in-depth optimization for the SemCom sys-
tem, despite its potential effectiveness in addressing scalability
and compatibility issues.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the basic UT [22] based
semantic BC model and also give a brief description of related
semantic metrics for performance evaluation. Beforehand,
we summarize mainly used notations in Table II.

A. System Model

As illustrated in Fig. 1, the proposed BC system mainly
includes three parts, that is, one TX, N random channels,
and N RXs. Generally speaking, at TX side, the message m
is first converted to an embedding by the embedding layer.
Then the embedding is sent to implement semantic encoding,
including a semantic encoder for feature extraction and a
dense layer for channel encoding. Then, the quantization layer
quantifies x as b to facilitate the subsequent transmission
and this extracted valuable information is broadcast through
different physical channels to reach RXn (n ∼ N ).1 Likewise,
at RXn side, the de-quantization layer detects and reconstructs
the received symbol b̂n from the received noisy signals,
and the semantic decoding, i.e., including channel decoder
and semantic decoder, estimate and recover the source as
m̂n based on the knowledge base (KB). Different from the

1The ∼ operator implies n ∈ {1, 2, · · ·N}.
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Fig. 1. The system model for semantic BC system.

TABLE II
NOTIONS USED IN THIS PAPER

classic SemCom [5], we adopt the UT [22] based seman-
tic encoder/decoders to achieve semantic coding/decoding.
Besides, RXs share the same structure but have individual

DNN parameters accommodating to channel properties, so as
to recover the original information as accurately as possible.

Mathematically, for a source message m =
{w(1), · · · , w(i), · · · , w(T )}, where T is the sequence
length, and w(i) can be regarded as a word from dictionary
Wm (i.e., w(i) ∈ Wm). The encoding process FTX (·)
(parameterized by θ) for TX consists of semantic encoding
SCen (·) and quantization Q (·). The semantic encoding is
given by

x = SCen(m; θen), (1)

where x ∈ RT×D, D is the dimension of each symbol in x,
SCen(·) is the combination of semantic encoder and channel
encoder parameterized by θen.

After that, the embedding x is quantified by a θq-induced
quantization Q(·) as

b = Q(x; θq), (2)

where b ∈ RT×B , B is the number of bits for each quantified
symbol of x. Then TX broadcasts b to multiple physical
channels.

At the RXn side, different from the point-to-point transmis-
sion with a single receiver, the transmitted data in semantic
BC experience heterogeneous channel conditions correspond-
ing to different receivers. Analogously, the decoding process
FRXn

(·) (parameterized by ϕn) for RXn involves the reverse
steps, including dequantization and semantic decoding, which
are represented as Q−1

n (·) and SCn,de(·) respectively. With the
aid of channel state information (CSI), the semantic decoder
can be dynamically adjusted to achieve adaptive decoding.
As such, the decoding message m̂n of RXn can be denoted
as

m̂n = SCn,de

(
Q−1

n (Hn(b); ϕn,dq); ϕn,de

)
, (3)

where Hn(·) (n ∼ N ) is the channel layer and is usually
modeled as additive white Gaussian noise (AWGN) channel
or multiplicative Rayleigh fading channel [12].
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As such, RXn recovers the source message by predicting
the probability distribution of the next word in the dictionary.
In the end, a complete decoded message can be denoted as
m̂n = {ŵ(1)

n , ŵ
(2)
n , · · · , ŵ(T̂n)

n }, where T̂n is the length of
decoded message for RXn.

B. Problem Formulation

Given the described system model, our goal is to maximize
semantic similarity for RXn by learning the optimal parame-
ters for the system ⟨FTX,FRXn

⟩, that is,

⟨θ∗, ϕ∗n⟩ = arg max
FTX,FRXn

Θ(m, m̂n), (4)

where Θ(·) can be any reasonable semantic similarity metric,
and we do not assume its differentiability. Therefore, in this
paper, bilingual evaluation understudy (BLEU) scores [38],
BERT (bidirectional encoder representation from transform-
ers) [39] based similarity metric (i.e., BERT-SIM) and word
accuracy rate (WAR) are adopted to measure the degree of
consistency between the input m and output m̂n [3], [5].

Nevertheless, the problem defined in (4) for semantic BC is
challenging to solve by traditional JSCC frameworks. The dif-
ficulties are twofold. On the one hand, to address the inherent
“semantic gap”, the commonly used differentiable objective
will no longer be applicable as the gradient cannot be directly
propagated backward through the channel. On the other hand,
along with the number of RXs increases, the scalability issue
emerges, primarily as the commonly used point-to-point opti-
mization method becomes invalid and untenable. Furthermore,
to alleviate the “semantic gap”, we formulate (4) as an RL
problem by regarding non-differentiable semantic similarity
as a reward. In addition, we adopt an alternate learning
mechanism to cope with the scalability issue by iteratively
updating the encoder and decoders, in which the encoder and
decoders are all conceptualized as independent agents.

Alternate learning mechanism: Specially, upon freezing
the parameters of FTX (i.e., θ), FRXn is locally updated κ
iterations. In contrast, when FRXn (i.e., ϕn) is constant, FTX

is updated once independently by averaging the decoders’
results. It is worth emphasizing that the encoder updates once,
while each decoder locally updates κ iterations, collectively
forming a single update cycle. Corresponding to this alternate
learning mechanism, the objective functions for the TX and
RXn diverge intrinsically. In this regard, the overall optimiza-
tion objective outlined in (4) is formulated into the following
two parts

θ∗ = arg max
FTX(·)

Θ(m, avg(FRXn
(︸ ︷︷ ︸

no grad

Hn(FTX(m))))); (5a)

ϕ∗n = arg max
FRXn (·)

Θ(m,FRXn(Hn(FTX(m)︸ ︷︷ ︸
no grad

))), (5b)

where avg(·) is to get the mean value.
In this paper, we talk about how to alternately optimize (5a)

and (5b) on top of RL, the details of which shall be presented
in the next section.

IV. SEMANTICBC-SCAL SCHEME WITH ALTERNATING
LEARNING MECHANISM

In this section, we first elaborate on how to formulate a
Markov decision process (MDP) to facilitate the application
of RL, optimizing the semantic BC system with semantic-level
supervision. Afterward, we talk about the self-critical alternate
learning-based algorithm, SemanticBC-SCAL, to produce a
solution. Furthermore, we also investigate its convergence.

A. The Markov Decision Process (MDP) Framework

Following this multi-user semantic BC system, where the
encoder is formulated as one agent at TX while the decoders
are modeled as N independent agents at RXs, which interacts
with the environment (i.e. the text dictionary Wm) by taking
actions on the basis of states and receiving the rewards from
the environment.

Without loss of generality, the MDP setting can be denoted
as (S,A, P, R, γ), where S and A is the state space and
the action space respectively, P is the state transition prob-
ability, and R denotes reward function with discounted
factor γ ∈ (0, 1]. Since actions (i.e., word generation pro-
cesses) are implemented at the decoders, the state space
and action space are determined by RXn and shared for
the encoder. As such, we define the state space as S =
{s1, · · · , sn, · · · , sN}, n ∼ N and action space (i.e., vocab-
ulary) as A = {w1, · · · , wn, · · · , wN}, wn ∈ Wm, where
the dimension of dictionary Wm is M . Moreover, the state
transition function is denoted as P = {Pπθ

, Pπϕn
}, while

the reward for TX and RXn are distinctly parameterized
by πθ and πϕn

respectively, which are further delineated as
R = {Rπθ

, Rπϕn
}.

In particular, the MDP can be detailed as follows.
• Action. The definition of action is to generate the next

token a
(t)
n = ŵ

(t)
n from the dictionary Wm at RXn,

where the sequence generation process starts with token
“<SOS>” and ends with “<EOS>”. In contrast to tra-
ditional communication where there exists a one-to-one
relationship with the source message m, SemCom allows
the existence of multiple candidate interpretations. Hence,
the state-action space can be larger than traditional meth-
ods.

• State. We define the state s
(t)
n as a combination of the

sequential state s
(t)
n,de of decoder n at step t and decoded

tokens (e.g., generated words for the text task) until
step t, i.e., s

(t)
n = {s(t)

n,de, ŵ
(1)
n , ŵ

(2)
n , · · · , ŵ(t)

n } ∈ S.
It merits emphasis that our goal is to interpret messages
at the semantic level, which may lead to variations in
length between the decoded sentences and their original
counterparts. Here, for different RXn, the maximum
length of the decoded sentence is T̂n. Meanwhile, once
the next token ŵ

(t+1)
n is generated, the state transition is

deterministic between any adjacent state.
• Policy. Notably, the policies for TX and RXs shall be

independently calibrated, since the semantic encoder at
TX aims to optimize the encoding process in (5a), while
the semantic decoder at RXn is responsible for generating
semantically accurate messages by maximizing (5b).
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Specifically, for TX side, the semantic encoding of the
encoder is continuous and only needs to be implemented
once for each sample. In this sense, we model this process
as a continuous Gaussian distribution with the mean value
µ = FTX(m) ∈ R1×D, and the covariance matrix
Σ = (σI)2 ∈ RD×D (where σ is typically set to 0.1)
[8]. In other words, some Gaussian noise is intentionally
added to the semantic encoding process, to encourage a
certain exploration. Mathematically, the encoder policy
can be written as

πθ := Sample
(
N
(
µ = FTX(m), Σ = (σI)2

))
, (6)

where N indicates a Gaussian distribution.
For RXn, instead of one deterministic distribution, the
input of the decoder is decoded by K times and the
output likelihood is modeled as a probabilistic multi-
nomial distribution (termed as MD) under self-critical
supervision (it will be detailed in Section IV-B), which
means RXn can obtain a group of different output from
K views, so as to better reap the potentially diversi-
fied semantics of the same sentence. As such, sampling
from this kind of multinomial distribution ensures the
collection of samples with the maximum likelihood from
multi-view. For each multinomial distribution, it is mod-
eled by the “softmax” function [8] that is parameterized
on the ϕn. Then for step t, one has

π
(t)
ϕn

: = Sample(MD([pn(ŵ(t)
1 ), pn(ŵ(t)

2 ),

· · · , pn(ŵ(t)
M )])). (7)

• State transition probability. According to the above-
mentioned definitions, the state transition function P
is deterministic between two adjacent states. Formally,
we have P (s(t+1)

n |s(t)
n , ŵ

(t)
n ) = 1.

• Reward. We use the semantic similarity as a reward
and denoted as Θ(m, m̂n). In the sentence generation
model, the reward can only be obtained until the last
token is generated. Therefore, the reward is sparse in
SemanticBC-SCAL. In other words, the intermediate
reward is always zero except for the last time step T̂n,
that is,

r(t)
n =

{
0, if t ̸= T̂n;
Θ(m, m̂n), if t = T̂n.

(8)

For the sake of simplification, we assume the discounted
factor γ = 1, so without loss of generality, the return for our
system is formulated as

G(t)
n =

T̂n∑
k=t+1

γk−t−1r(k)
n =

T̂n∑
t=1

r(t)
n . (9)

Accordingly, the state-value function is given by V (s(t)
n ) =

E
[
G

(t)
n |s(t)

n

]
. Consistent with the reformulated problem in (5),

at decoder sides, the objective function for RXn is to maxi-
mize the value function, which can be viewed as maximizing
return for a complete trajectory {ŵ(t)

n , s
(t+1)
n , ŵ

(t+1)
n , · · ·}

under decoder policy πϕn starting from s
(0)
n , which is given

by

J(ϕn) = Vπϕn
(s(0)

n ) = Eπϕn

[
G0

n|s0
n

]
= Eπϕn

 T̂n∑
t=1

r(t)
n

 .

(10)

While for encoder optimization, TX aims to find an optimal
encoding to maximize the semantic accuracy for all decoders.
Under the encoder policy πθ, we regard the maximum average
return of all decoders as the objective function, that is,

J(θ) =
1
N

N∑
n=1

Vπθ
(s(0)

n ) =
1
N

N∑
n=1

Eπθ

 T̂n∑
t=1

r(t)
n

. (11)

B. Self-Critical Optimization Under Alternate Learning
Mechanism

In order to find a proper solution to maximize the objectives
functions (10) and (11), one most straightforward solution
is to simulate the environment to obtain Monte-Carlo trajec-
tory {(s(t)

n , ŵ
(t)
n , r

(t)
n )}T̂n

t=1 for each time-step t [40]. Though
Monte-Carlo rollout provides an unbiased estimation for
expected return, large state-action space unavoidably leads
to high variance [8], [41]. Another alternative solution is
the “actor-critic” method and its variants [42], in which the
baseline is established by constructing another value network
to criticize the policy [8]. However, this way will introduce
extra parameters and estimation bias. Meanwhile, due to the
extensive number of tokens included in the dictionary Wm,
the size of state-action space exceeds 104 [8]. In this sense,
merely the Monte-Carlo trajectory or actor-critic methods
are impractical to implement for sentence generation in the
SemCom system.

Based on the aforementioned discussions, to han-
dle this large-scale sentence generation, we develop the
SemanticBC-SCAL algorithm to combine a simper and
practical RL algorithm, i.e., self-critical learning [8], [23],
with the abovementioned alternate learning mechanism in
Section III-B. Specially, SCAL samples K parallel Monte
Carlo trajectories and computes the mean reward from
the rest of K − 1 parallel samples, that is, m̂n =
{m̂n,1, · · · , m̂n,K−1}, to act as the baseline function. To gen-
erate a complete trajectory by introducing a certain explo-
ration, the semantic encoder/decoders could employ the policy
πθ and πϕn respectively to guide the system in accommodating
multi-view semantic representations. Since the baseline comes
from SCAL itself, i.e., the other K − 1 decoding results,
this kind of supervision can be regarded as “self-critical”
manner [23], [40], [43], and the empirical results show that
larger K will have a larger absolute value of the mean and
introduce lower variance [40]. Taking an example of the
decoder optimization in Fig. 2, the TX sends the message
(“I have just brought a banana”) to the broadcast channel,
and the RXn first samples K = 5 parallel samples before
channel decoding, in which the decoded parallel sentences
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Fig. 2. Illustration of the self-critic optimization for decoder side at RXn.

Fig. 3. Optimization process under the alternate learning mechanism. (a) The training process of RXn. (b) The training process of TX. (The black solid
line is the direction of data flow, while the blue solid line denotes the direction of gradient propagation.)

could be different. Then, RXn can be viewed as an actor
responsible for taking actions by Monte Carlo sampling to
generate 5 parallel decoding results. As such, the advantage
of one decoding result will be evaluated by the other 4 parallel
samples.

On top of self-critical learning, an alternate learning mecha-
nism is devised to asynchronously update the TX and multiple
RXs to adapt to its channel environment. To be specific,
we start with the decoder training stage, by freezing the
encoder parameters θ and locally updating the decoder param-
eters ϕn. The details of the training process of RXn in
SemanticBC-SCAL are illustrated in Fig. 3(a). Based on the
MDP framework and self-critical optimization with alternate
learning, it is ready to analyze the semantic policy gradient
for both RXn and TX. Notably, we primarily consider the
relative preference of one trajectory over others, which makes
the gradient of (10) slightly different from those in classical
RL approaches. Meanwhile, since the semantic similarity
score can only be obtained via the self-critical manner after
decoding a complete sentence, the decoder updating occurs
in an episodic manner (i.e., only after a complete sentence
transmission). After adopting certain well-calibrated approxi-
mations, Theorem 1 unveils the related result.

Theorem 1: (Self-critical semantic policy gradient for
RXn) For any semantic decoder n optimized by the alternate
learning mechanism with K parallel sampling, suppose that
the decoder is updated by the policy π

(t)
ϕn

to generate a

complete sequence {ŵ(1)
n , ŵ

(2)
n , · · · , ŵ(T̂n)

n }, the gradient can

be approximated by

∇ϕnJ(ϕn) ≈ 1
K

∑K

i=1

[∑T̂n

t=1
∇ϕn

log πϕn,i
(ŵ(t)

n |s(t)
n )

·

(
Θn,i − avg

k∼K,k ̸=i
Θn,k

)]
,

(12)

where the subscript i in πϕn,i denotes the i-th parallel sam-
pling policy, while avg(·) gets the mean value. Θn,k is the
return of the sampling trajectory i for RXn.

Proof:
During the decoder optimization process, a complete tra-

jectory m̂n = {ŵ(1)
n , ŵ

(2)
n , · · · , ŵ(T̂n)

n } has the probability of
P (m̂n|ϕn), and the gradient of RXn is

J(ϕn)

= ∇ϕn

[∑
m̂n

P (m̂n|ϕn)
∑T̂n

t=1
r(t)
n

]
=
∑

m̂n

[
∇ϕn

P (m̂n|ϕn) ·
∑T̂n

t=1
r(t)
n

]
(13)

(a)
=
∑

m̂n

[
P (m̂n|ϕn)∇ϕn log (P (m̂n|ϕn)) ·

∑T̂n

t=1
r(t)
n

]
= Em̂n

[
∇ϕn log (P (m̂n|ϕn)) ·

∑T̂n

t=1
r(t)
n

]
,

where the equality (a) is derived by using the log-trick
∇ log x = ∇x/x. Since we sample one Monte Carlo trajectory
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to estimate the m̂n, then one obtains

∇ϕn
J(ϕn) ≈ ∇ϕn

log (P (m̂n|ϕn)) ·
∑T̂n

t=1
r(t)
n . (14)

As the sentence is generated step by step through
T̂n +1 actions, P (m̂n|ϕn) is further written as P (m̂n|ϕn) =
p(s0

n)
∏T̂n

t=1

[
πϕn

(ŵ(t)
n |s(t)

n )Pπϕn
(s(t)

n |s(t−1)
n , ŵ

(t−1)
n )

]
.

Meanwhile, the reward function is sparse, i.e.,∑T̂n

t=1 r
(t)
n = Θ(m, m̂n), and the state transition probability

Pπϕn
(s(t)

n |s(t−1)
n , ŵ

(t−1)
n ) is deterministic between two

adjacent states. Therefore, one has

∇ϕn
J(θ, ϕn) ≈

∑T̂n

t=1
∇ϕn

log πϕn
(ŵ(t)

n |s(t)
n )Θ(m, m̂n).

(15)

Finally, the self-critical baseline function is implemented by
utilizing the mean reward from the rest of K − 1 parallel
samples, thus, the proof ends with (12). □

Remark: It is worth mentioning that the advantage of policy

πϕn,i (i.e.,
(

Θn,i − avg
k∼K,k ̸=i

Θn,k

)
) manifests the differences

with parallel learned samples and leads to a graceful gradient
variance reduction [23]. Furthermore, in semantics represen-
tation, the one with higher semantic similarity gives a larger
positive reward, while those with lower advantage will be
punished. In other words, the semantic metric Θn of RXn is
closely linked to the gradient optimization direction, steering
parameter updates toward maximizing the semantic metrics.
Therefore, this approach not only improves learning efficiency
but also ensures the generation of high-quality outputs that are
closely aligned with the target performance.

As for the encoder, recalling that as in Fig. 3(b), the
encoder output is converted to K parallel samples by Gaussian
policy, which are then sent to broadcast channels. Therefore,
as the objective of the encoder is to maximize the average
reward of all decoders, the average semantic similarity in
different decoders is conversely used to optimize the FTX.
In this way, the gradient takes effect for the policy only, while
the semantic similarity performance, which implicitly embeds
channel state information, is leveraged. Analogously, we give
the optimization direction of (11) by Theorem 2.

Theorem 2: (Self-critical semantic policy gradient for TX)
For semantic encoder optimized by the alternate learning
mechanism, suppose the encoder is updated by the parallel
Gaussian strategy πθ, the gradient can be approximated by
the Monte-Carlo sampling as

∇θJ(θ) ≈ 1
N
· 1
K

∑N

n=1

∑K

i=1

[[
F̃TX(m)−FTX(m)

]T
×Σ−1 [∇θFTX(m)] ·

(
Θn,i − avg

k∼K,k ̸=i
Θn,k

)]
,

(16)

where F̃TX is the Gaussian sampling for m, T is the length
of source message m.

Proof: The proof is similar to that for Theorem 1. Thus,
we only provide a sketch here.

Algorithm 1 The Training Process of SemanticBC-SCAL
Input: Batch size, learning rate lr, parallel samples K, input

sequence m, local iterations κ, no. of pre-training end
epochs Ep, no. of end epochs Ee, no. of end batches Eb,
number of RXs N .

Output: Encoder parameter θ, decoder parameter ϕn.
// Pre-training stage

1: for epoch=1 : Ep do
2: Sample a batch of data to train parameters of encoder

θ and decoder ϕ optimized by CE loss [6].
3: Update θ and ϕ to obtain the pre-trained parameters θpre

and ϕpre.
4: end for

// RL-based alternate learning
5: θ ← θpre, ϕn ← ϕpre
6: for epoch=Ep + 1 : Ee do
7: for i = 1 : Eb do
8: Sample a batch of data
9: // Training Decoder

10: while (i mod κ) ̸= 0 do
11: for n = 1 : N do
12: Freeze θ, RXn samples K parallel trajectories,

and updates ϕn ← ϕn+lr ·∇ϕnJ(ϕn) as in (12).
13: end for
14: end while
15: // Training Encoder
16: For each RXn, freeze ϕn and sample K parallel

trajectories.
17: Update θ ← θ + lr · ∇θJ(θ) by (16).
18: end for
19: end for
20: // Finish training
21: Return θ and ϕn.

Basically, for a Gaussian distribution

πθ(x; µ,Σ)

=
1

(2π)D/2
√

detΣ
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
,

(17)

as the covariance matrix Σ = (σI)2 ∈ RD×D and σ is a
pre-defined constant, we have

∇θ log πθ(x; µ,Σ) = [x− µ]T Σ−1 [∇ϕµ] . (18)

Taking x = F̃TX and µ = FTX(m), as well as following the
proof for Theorem 1, we have the theorem. □
Remark: On the basis of this stable and reasonable learning
policy, our SCAL-based semantic BC system can adaptively
encode/decode by introducing as few parameters and costs as
possible. To obtain a stable and expected reward (semantic
similarity score) in the training process, we adopt the afore-
mentioned alternate learning mechanism at both TX and RXn

to implement a Monte-Carlo simulation. Specifically, in an
update cycle, the RXs update κ iterations and then TX updates
once. Finally, during this self-critical learning-based alternate
training, we obtain a stable and precise gradient surrogate,
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without introducing an additional module to estimate the
gradient or suffering from a poor estimation of the expected
reward.

Finally, the detailed procedures for training
SemanticBC-SCAL are summarized in Algorithm 1.

C. Convergence Analysis

In this section, we analyze the convergence property of
SemanticBC-SCAL. Beforehand, to ensure the convergence
of the encoder and decoders, we first present some essential
assumptions.

Assumption 1: The learning rates for encoder and decoder
n are unified as lren = lrde = lr(α), where lr(α) ≥ 0 and is
non-increasing along with the index of update cycles α, and
satisfy ∑

α

lr(α)→∞ and
∑
α

lr2(α) <∞. (19)

Notably, Assumption 1 holds easily.
∑

α lr(α) → ∞ ensures
the alternate learning provided with sufficient “time” to
thoroughly explore the solution space, thereby theoretically
enabling the learning process to converge.

∑
α lr2(α) < ∞

indicates that the squared sums of learning rates are bounded,
which helps to reduce oscillations and provide a stable learning
process.

Aligned with existing works [44], [45] where two coupled
iterations move at different speeds to find a stationary point,
we assume that decoder n learns faster than the encoder,
to promote the convergence of (5).

Assumption 2: In the alternate learning mechanism, when
the encoder updates once, each decoder updates κ times
during an update cycle, i.e., θ ← θ + lr · ∇θJ(θ), and

ϕn ← ϕn +
κ∑

i=1

lr · ∇
ϕ

(i)
n

J(ϕ(i)
n ), where ϕ

(0)
n ← ϕn and

ϕ
(i)
n = ϕ

(i−1)
n + lr · ∇

ϕ
(i−1)
n

J(ϕ(i−1)
n ).

By Assumption 2, we can regard the encoding policy as
unchanged and obtain the convergence of the decoder n, as in
the following lemma.

Lemma 1: For an independent decoder agent RXn updat-
ing its policy πϕn

parameterized by ϕn, the state value
function converges to a fixed point in Vπϕn

.
Proof: According to the Bellman equation formulated

in [46], one has

Vπϕn
= Rπϕn

+ λPπϕn
Vπϕn

. (20)

We consider a complete metric space
〈
Vπϕn

, d
〉
, as well as

a mapping F : Vπϕn
→ Vπϕn

, where d is a metric of nonempty
set Vπϕn

and satisfies d : Vπϕn
× Vπϕn

→ R. For example,
choosing an infinity norm metric d, we have d(V (i)

πϕn
, V

(j)
πϕn

) =
∥V (i)

πϕn
− V

(j)
πϕn
∥∞, ∀ i, j ∈ {1, . . . , κ}. Meanwhile, for any x

in Vπϕn
, (20) can be re-written as F (x) = Rπϕn

+ λPπϕn
x.

Hence, we can observe that

d(F (V (i)
πϕn

), F (V (j)
πϕn

))

= ∥(Rπϕn
+ λPπϕn

V (i)
πϕn

)− (Rπϕn
+ λPπϕn

V (j)
πϕn

)∥∞
= ∥λPπϕn

(V (i)
πϕn
− V (j)

πϕn
)∥∞ ≤ ∥λd(V (i)

πϕn
, V (j)

πϕn
)∥∞

= λd(V (i)
πϕn

, V (j)
πϕn

). (21)

Then according to the contracting mapping theorem (also
known as the Banach Fixed-Point Theorem) [47], we can prove
F (x) = Rπϕn

+ λPπϕn
x has a fixed point in Vπϕn

, which
satisfies Vπϕn

= Rπϕn
+ λPπϕn

Vπϕn
. As such, we conclude

that, iterating continuously from any state, the value function
converges to a fixed point in Vπϕn

. Since our objective
function (10) aims to maximize the state value function from
s
(0)
n , which satisfies the above conclusion. □

Based on Lemma 1, we present the following Theorem 3
to address the convergence of the encoder.

Theorem 3: Assuming that in each update cycle, i.e., the
encoder updates once while the decoder undergoes κ updates,
which are assumed to be sufficient for all decoders converging
to a fixed point, the encoder could ultimately reach the
convergence as well.

Proof: For the encoder learning, Bellman equation is
supervised by Gaussian policy πθ, that is Vπθ

= Rπθ
+

λPπθ
Vπθ

. Without loss of generality, denote α and β as two
update cycle indices, while V

(α)
πθ and V

(β)
πθ (V ((α−1)κ)

πϕn
and

V
((β−1)κ)
πϕn

) are the corresponding learned value functions at
the encoder (decoder). If we define F (x) = Rπθ

+ λPπθ
x,

then one has (22), as shown at the bottom of the next page.
Specifically, inequality (a) comes from the triangle inequality,
and for equality (b), the first term is due to the policy πϕn

making the decision, while similarly, the second term stems
from the pivotal role played by policy πθ. Thus, according to
the contracting mapping theorem [47] and Lemma 1, we get
the theorem. □
Remark: As implied by Theorem 3, we optimize the encoder
and decoders asynchronously with two different iteration
counts, i.e., two coupled iterations that the decoders at
RXs update more frequently while the encoder at TX updates
at a lower speed. Convergence of these interleaved iterations
can be ensured by assuming that the update frequency of the
encoder is considerably smaller (i.e., κ smaller) than decoders,
which allows decoders to converge first while being perturbed
by the slower encoder [44]. Furthermore, the simulation results
of Fig. 7(b) (in Section V-B.5) also verify these findings.

V. PERFORMANCE EVALUATION

In this section, we compare the proposed
SemanticBC-SCAL with the traditional reliable
communication scheme and typical semantic communication
algorithms under both AWGN and Rayleigh fading channels
respectively. In addition, we also offer an ablation study to
comprehensively evaluate and analyze the performance.

A. Simulation Settings

Two datasets are adopted in our experiment: The standard
English version of the proceedings of the European Parliament
[48] consists of 1, 136, 816 sentences and 32, 478 words
(dictionary size), while the IMDB dataset for the senti-
ment analysis task includes around 0.23 million positive and
negative sentence pairs after pre-processing, with a vocabu-
lary that extends beyond 70, 000 words. Subsequently, both
datasets are then divided into training and testing with a
ratio of 4 : 1. In our experiment, these two datasets are
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TABLE III
NETWORK STRUCTURE AND HYPERPARAMETERS USED

IN SEMANITCBC-SCAL

pre-processed into sentences with the length of 4 ∼ 30 words,
those shorter than 30 words are padded with zeros and
the number of units D in the hidden layer behind each
word equals 128. Furthermore, the backbone of the seman-
tic encoder/decoders in SemanticBC-SCAL is composed of
UT [22] while the channel encoder and decoder are based
on dense layers. Specially, UT employs an adaptive com-
putation time (ACT) mechanism to dynamically adjust the
number of computation steps required for processing each
input token, which leads to more efficient semantic extraction,
as simpler tokens can be processed with fewer steps, while
more complex tokens involve additional steps [6], [49]. The
detailed DNN structure and hyperparameters are summarized
in Table III.

As for the wireless channel, we consider the commonly
used AWGN and Rayleigh fading channel as discussed in
Section III-A. For comparison, we consider the following
baselines to broadcast common or private messages.

1) Huffman-RS: A traditional communication system that
source coding and channel coding are implemented as
Huffman coding and Reed-Solomon (RS) [25] coding,
respectively. Meanwhile, the coding length with RS is
set to (30× 42) in 64-QAM.

2) CE baseline: It refers to a point-to-point model that
shares the same network structure as our proposed
model. Put differently, a special case arises when
SemanticBC-SCAL is optimized by the CE function.

3) LSTM: It optimizes the entire semantic system on top
of RL but its backbone is built around LSTM (Long
Short-Term Memory) networks [8].

4) DeepSC: It belongs to pioneering work in seman-
tic communication [5], and leverages the transformer
architecture optimized by the CE function and mutual
information.

5) MR_DeepSC: It is a one-to-many semantic BC model
for multi-user scenario [19], and its backbone is built on
DeepSC.

6) DL-JSCC: It develops bidirectional gated recurrent
unit (BGRU) based encoder and bidirectional attention
mechanism integrated decoders for multi-user BC sys-
tem [18].

7) SemanticBC-CE: It shares the same structure as our
proposed SemanticBC-SCAL, but is optimized by the
CE function in the JSCC manner.

Moreover, for SemanticBC-SCAL, the pre-training process
is implemented by utilizing the CE function to accelerate
the training, since in the context of decision-making for
textual sequences, the dimension of the action space exceeding
104 poses considerable challenges to converge and makes the
direct training computationally prohibitive. Therefore, inspired
by the pre-training methods for RL outlined in [43] and
[50], we employ supervised learning to steer the model
parameters toward reasonable, though not fully converged,
initial values. After pre-training for Ep epochs, all pre-
trained DNNs undergo the described training procedure in
SemanticBC-SCAL until convergence. Besides, to characterize
the inherently noisy channel environment, we have imple-
mented two types of SNR simulation methods. Firstly, for the
point-to-point case, we set the training SNR to a fixed mean
of 10 dB and a variance of 1 dB for each receiver to indicate
practical channel conditions. Secondly, in broadcast cases with
common messages, we add different noise variances δ2

SNR of
SNR for different RXs to reflect their heterogeneous estimation
capabilities and adaptability. Specially, for both AWGN and
Rayleigh fading channels, we set different mean values µSNR

and noise variance δ2
SNR during the training stage respectively,

including µSNR,1 = 6 dB, δSNR,1 = 1 dB; µSNR,2 = 10 dB,
δSNR,2 = 1 dB; µSNR,3 = 10 dB, δSNR,3 = 2 dB. While for
SemanticBC-SCAL in the point-to-point scenario, we set the
SNR of the training process by default with µSNR = 10 dB and
δSNR = 1 dB. The related parameters are listed in Table IV.

To be consistent with existing works [5], [51] on SemCom,
we adopt BLEU scores [38], BERT-SIM [39], and WAR to
evaluate the system’s performance. In particular, BLEU scores
count the similarity of n-gram phrases from the recovered

d(F (V (α)
πθ

, V ((α−1)κ)
πϕn

), F (V (β)
πθ

, V ((β−1)κ)
πϕn

))

= ∥F (V (α)
πθ

, V ((α−1)κ)
πϕn

)− F (V (α)
πθ

, V ((β−1)κ)
πϕn

) + F (V (α)
πθ

, V ((β−1)κ)
πϕn

)

− F (V (β)
πθ

, V ((β−1)κ)
πϕn

)∥∞
(a)

≤ ∥F (V (α)
πθ

, V ((α−1)κ)
πϕn

)− F (V (α)
πθ

, V ((β−1)κ)
πϕn

)∥∞ + ||F (V (α)
πθ

, V ((β−1)κ)
πϕn

)

− F (V (β)
πθ

, V ((β−1)κ)
πϕn

)∥∞
(b)
= ||F (V ((α−1)κ)

πϕn
)− F (V ((β−1)κ)

πϕn
)∥∞ + ∥F (V (α)

πθ
)− F (V (β)

πθ
)∥∞

= λ1d(V ((α−1)κ)
πϕn

, V ((β−1)κ)
πϕn

) + ∥(Rπθ
+ λ2Pπθ

V (α)
πθ

)− (Rπθ
+ λ2Pπθ

V (β)
πθ

)∥∞ = λ1d(V ((α−1)κ)
πϕn

, V ((β−1)κ)
πϕn

)

+ λ2∥Pπθ
(V (α)

πθ
− V (β)

πθ
)∥∞≤λ1d(V ((α−1)κ)

πϕn
, V ((β−1)κ)

πϕn
) + λ2d(V (α)

πθ
, V (β)

πθ
) (22)
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Fig. 4. BLEU scores and BERT-SIM versus SNR in AWGN and Rayleigh fading channels for the point-to-point case, with the training SNR fixed at a mean
of 10 dB and a variance of 1 dB.

TABLE IV
THE DEFAULT PARAMETERS IN SEMANITCBC-SCAL

text and the referred ground truth, which can be typically
denoted as BLEU-1, BLEU-2, BLEU-3, and BLEU-4 respec-
tively. BERT-SIM calculates the cosine similarity of BERT
embeddings after fine-tuning. In some sense, WAR shares
some similarity with 1-gram. Nevertheless, BLEU scores [38]
consider the length of sentences by introducing a brevity
penalty. In other words, if the length of decoded sentences
doesn’t perfectly match the reference sentence, the computed
BLEU score will be penalized. In terms of semantic similarity
metric Θ for reward training, we choose the BLEU score
by combining 1-gram, 2-gram, 3-gram, and 4-gram settings
with equal weights 0.25, so as to provide semantic level
supervision.

Besides, as the number of RXs changes, we provide two
approaches to address scalability issues (i.e., Q1) depending
on the availability of computational resources. With suffi-
cient computational resources, the broadcast model can be
directly trained with the desired number of RXs using self-
critical learning, starting from parameters initially pre-trained
with the CE function. The performance achieved through

this method can be considered as upper bound for a corre-
sponding number of RXs in SemanticBC-SCAL. Alternately,
in resource-constrained scenarios, fine-tuning a trained broad-
cast model becomes preferred, i.e., when the number of
RXs decreases, only the TX is required to be fine-tuned to
accommodate the change. Conversely, when new RXs are
added, the parameters of both the TX and newly added
RXs need to be fine-tuned. By default, direct training is applied
unless otherwise specified.

B. Numerical Results and Analysis

1) Performance in Point-to-Point SemCom: We start with
the performance comparison between the SemanticBC-SCAL
with other baselines in the point-to-point case. In par-
ticular, we provide the performance in terms of BLEU
scores and BERT-SIM under AWGN and Rayleigh fading
channel in Fig. 4. As shown in Fig. 4(a), our proposed
SemanticBC-SCAL outperforms CE baseline and LSTM,
especially in terms of BLEU-4. Since a larger n-gram phrase
carries more contextual information, the result demonstrates
our approach is capable of preserving semantics and prone
to provide a semantic level transmission. Furthermore, our
approach also outperforms baselines in terms of BERT-SIM,
allowing for accommodating some synonyms. Meanwhile,
as illustrated in Fig. 4(b), attributed to the volatile channel
gain, the Rayleigh fading channel imposes a stronger detri-
mental impact compared to the AWGN channel on both the
traditional method and SemCom models, leading to a more
pronounced attenuation during the signal transmission.

Furthermore, our method exhibits significant superiority
over the traditional Huffman-RS method, and stands out
among other DNN-based SemCom approaches, especially
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Fig. 5. Comparison of SemanticBC-SCAL and DeepSC in terms of BLEU-1 score, BLEU-4 score, and BERT-SIM under both AWGN and Rayleigh fading
channels.

in low SNRs. Most impressively, our approach obtains a
decoding accuracy that closely approximates 100% at around
SNR = 8 dB in AWGN channels. This improved performance
can be primarily attributed to the adaptive transformer layer in
the UT, which has the ability to reconstruct partial semantic
information in a poor channel environment by leveraging
shared background knowledge, thereby mitigating the distor-
tion introduced by channel noise. Meanwhile, by adopting
semantic similarity scores as rewards, our approach fosters
an environment conducive to the system’s learning and under-
standing of semantic representations at a semantic level, which
addresses the Q2.

Notably, even if our approach has a lower BLEU-1 com-
pared to the CE-baseline in Fig. 4, the existence of synonyms
in the recovered sentences actually leads to a slightly higher
sentence similarity in terms of BLEU-4. More importantly,
although BERT-SIM is not directly adopted as a reward
function, the semantic level supervision under BLEU score
also leads to the superiority of SemanticBC-SCAL in the
point-to-point case and manifests its effectiveness.

2) Performance in Semantic BC With Common Messages:
In this case, we assume that all RXs attempt to decode the
same common messages. In addition to the inherent channel
noise as discussed in (3), we also consider the estimation vari-
ance related to SNRs to better simulate the varying conditions.
Consequently, during the training process, we employ lower
SNR to acclimate to these demanding channel conditions, i.e.,
exemplified by scenarios, such as the AWGN and Rayleigh
channel under µSNR,1 = 6 dB, δSNR,1 = 1 dB. Conversely,
in a favorable channel environment, we frequently employ

higher SNR settings during training to guarantee robust perfor-
mance across a substantial portion of the channel environment
while maintaining a competitive level of resilience. Fig. 5 visu-
alizes the corresponding BLEU-1, BLEU-4, and BERT-SIM in
Semantic BC with three different receivers on both AWGN and
Rayleigh channels.

From Fig. 5, it can be observed that our SemanticBC-SCAL
demonstrates adaptability to the varying SNR, particularly
excelling in low SNR regime. Notably, when the test SNR
ranges from 0 to 6 dB, the RXn trained under low SNR
(i.e., µSNR,1 = 6 dB, δSNR,1 = 1 dB) yields superior results
than others for both AWGN and Rayleigh fading channels,
while DeepSC in BC scenarios follows a similar trend, but
has an inferior performance. To elaborate, when the mean
value of training SNR is configured at µSNR,1 = 10 dB, for
SemanticBC-SCAL in the AWGN channel, the training SNR
with a narrower variance (i.e., δSNR,1 = 1 dB) outperforms
that with a wider variance (i.e., δSNR,1 = 2 dB) in a low
SNR regime, while in Rayleigh fading channels, the opposite
is true, thanks to its generalization capabilities. Meanwhile,
in the higher SNR regime, the performance of the channel
trained under low SNR exhibits insubstantial improvement and
the channel with lower variance estimation performs better.

Additionally, we also validate the scalability of our semantic
BC system in scenarios with a varying number of RXs,
as depicted in Table V. It is noteworthy that as the number of
RX increases, there is a modest decrease in semantic decoding
proficiency, but overall BLEU scores and WAR consistently
maintain a high level. Furthermore, compared to the point-to-
point system, our SemanticBC-SCAL demonstrates a notable
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Fig. 6. Comparison of three semantic BC schemes with private messages in
terms of BLEU-1 score and BLEU-4 score under both AWGN and Rayleigh
fading channels.

TABLE V
COMPARISONS ON THE VARYING NUMBER OF RXS OF

SEMANTICBC-SCAL UNDER AWGN CHANNEL, WHEREIN ALL
BLEU SCORES AND WAR DENOTE THE AVERAGES WHEN

SNR= 10 DB

advantage in utilizing semantics within the broadcast scenario.
This advantage can be attributed to the localized adaptive
learning and comprehensive integration of all decoders’ out-
comes. This indicates that our SemanticBC-SCAL can be
effectively extended to semantic BC systems with varying
numbers of RXs, thereby addressing the Q1.

3) Extension to Semantic BC With Private Messages: Con-
sidering a broader case of semantic broadcast communication
in which a transmitter sends private messages to different
receivers, we empirically hypothesize that by slightly adjusting
the transmission content during the training phase, it can
significantly facilitate the customization of private messages
for each receiver. To validate the feasibility of this viewpoint,
we provide a practical example in this part and also give a
comparison with other semantic BC methods trained by the
IMDB dataset.

Specially, at the transmitter side, the interested content
may be different for multi-receivers. For example, for a
semantic BC with 2 RXs, RX1 receives positive text whereas
RX2 receives the negative text. In this case, these unique
data are individually encoded and broadcast to different RXs.
For the receiver side, the RXs reconstruct the intended data
according to sentiment features. Notably, when the transmitter
broadcasts private messages, it is expected that the encoder
can adaptively encode sentiment text to better assist the
RXs in enhancing semantic accuracy. Fig. 6 compares the
effects of varying SNRs on BLEU-1 and BLEU-4 scores
within two RXs under AWGN and Rayleigh fading channels,
in which the baselines consist of MR_DeepSC [19], DL-JSCC
[18], and SemanticBC-CE. From Fig. 6, SemanticBC-SCAL
always outperforms other models in terms of the BLEU-4

TABLE VI
COMPUTATIONAL COMPLEXITY FOR DIFFERENT SEMANTIC BC METHODS

score, which implies that our proposed method can effectively
understand and represent semantic information.

Additionally, we observe that the performance of all models
varies across different datasets. In particular, the outcomes
on the IMDB dataset are marginally lower than those on the
European Parliament dataset. This discrepancy likely arises
from the significantly smaller size of the IMDB dataset,
i.e., the processed IMDB dataset consists of 0.23 million
sentence pairs, a quantity substantially less than the 2 million
sentences in the European Parliament dataset, indicating that
limited training data can restrict the upper bound of decoders’
performance.

4) Computational Complexity: The computational com-
plexity for different methods is compared in Table VI. Our
primary analysis focuses on the complexities associated with
the encoder/decoder, channel layers, and linear layers, reveal-
ing that a substantial amount of computational effort is
centered on the encoder and decoder. Compared with the
DeepSC framework, our proposed SemanticBC-SCAL exhibits
marginally increased computational complexity. This incre-
ment is attributable to the utilization of the UT architecture
within our encoder-decoder configuration, which involves a
dynamic adjustment in the number of transformer layers.
The empirical analysis indicates the average transformer
layer that our model requires is 3.5 layers, in contrast
to the static three-layer architecture employed by DeepSC.
In MR_DeepSC, each receiver employs a DistilBERT-based
recognizer to distinguish users, which consequently leads
to a slight increase in computational complexity. DL-JSCC
requires more multiplications than other DNN-based models
due to the complicated structure of BGRU and GRU. Overall,
despite a slight increase in computational complexity, our
proposed method yields a significant improvement in perfor-
mance, thus achieving a better balance between complexity
and performance.

5) Convergence of SemanticBC-SCAL: To testify whether
our alternate learning mechanism guarantees convergence,
we have depicted the evolution of the reward for the encoder
and decoders over epochs in Fig. 7. From Fig. 7(a), we can
observe that consistent with Lemma 1, our alternative learning
mechanism eventually converges with steady learning and low
variance (among different receivers) for the different numbers
of RXs, which promises an effective learning approach for the
large-scale knowledge base. Besides, we also validate whether
the performance can be further improved if each decoder
updates its parameters independently, and the shaded region
in Fig. 7(a) represents the results of an additional 20 epochs
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Fig. 7. Convergence of SemanticBC-SCAL with common messages, wherein the reward curves are the average BLEU score for all broadcast receivers.
(a) The training reward of the decoder sides with varying numbers of RXs, where the shaded region represents an additional 20 training epochs to update the
decoders’ parameters independently. (b) The training reward of the encoder side with varying local iterations κ under three RXs.

Fig. 8. Convergence of SemanticBC-SCAL with private messages, wherein the reward curves are the average BLEU score for all broadcast RXs. (a) The
training reward of the decoder sides with varying numbers of RXs. (b) The training reward of the encoder side with varying numbers of RXs.

of local training on the decoders. This suggests that further
refinements to the decoders independently after alternating
training do not significantly alter the performance, thereby
corroborating the robustness and reliability of our approach.

Furthermore, as highlighted in the “Remark” accompanying
Theorem 3, the convergence of these interleaved iterations
between one encoder and multiple decoders can be ensured by
certain locally updated iterations κ. Consequently, we delve
into exploring the influence of κ on the convergence of the
encoder, as illustrated in Fig. 7(b). Based on the observations
from Fig. 7(b), it becomes apparent that when κ is relatively
small, indicating a low number of local iterations for decoders
and frequent updates for the encoder per epoch. In this sense,
the encoder fails to learn effectively even after a few training
epochs. As κ increases, the encoder can sustain longer training
epochs but still struggles to converge, until κ = 1000. Only at
this point, it achieves continuous and stable learning, eventu-
ally achieving convergence, which aligns with those presented
in Theorem 3. Furthermore, we also validate the convergence
of our method that involves private messages. As shown in
Fig. 8, as the number of RXs increases, there is a modest
decrease in semantic decoding proficiency, but the overall
performance consistently maintains a high level and tends to
be convergent. In this way, these empirical findings address

Fig. 9. The convergence of SemanticBC-SCAL fine-tuning with an increase
(+2 RXs) or decrease (−2 RXs) in the number of RXs for common messages
transmission, wherein the initially pre-trained semantic broadcast model has
5 RXs.

Q3. Moreover, in resource-constrained scenarios, fine-tuning
a pre-trained model becomes preferred. For example, as shown
in Fig. 9, starting from the trained SemanticBC-SCAL model
with 5 RXs, it only needs about 7 epochs’ fine-tuning of
the encoder only to accommodate a 3-RX case and nearly
approach the upper-bound performance. Similarly, for an
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Fig. 10. The fine-tuning performance comparison of SemanticBC-SCAL
and SemanticBC-CE with common messages in terms of BLEU-1 score and
BLEU-4 score under the AWGN channel.

Fig. 11. The impact of parallel samples K with common messages in the
SemanticBC-SCAL system, wherein all RXs share the common messages.

increase in the number of RXs by 2, it requires only about
8 epochs to fine-tune the encoder and the newly added
RXs to achieve performance nearly up to that of direct train-
ing. Furthermore, in Fig. 10, we also compare the semantic
similarity performance achieved after fine-tuning SemanticBC-
SCAL and SemanticBC-CE. It can be observed that, although
SemanticBC-CE behaves almost similarly at BLEU-1 score,
our alternating learning approach performs better in terms of
the BLEU-4 score, which reflects semantic similarity at the
semantic level more accurately. In a nutshell, these empirical
results validate the effectiveness of the alternating learning
approach, which competently addresses the scalability and
convergence issues, i.e., Q1 and Q3.

6) Ablation Study: The ablation study for comparing differ-
ent numbers of parallel samples K in (12) and (16) is given in
Fig. 11. According to (12) and (16), as K increases, the mean
reward from K rollouts of state-action value can be estimated
more precisely. Consistently, as depicted in Fig. 11, a larger
K obtains a higher semantic similarity, which is consistent
with [40].

VI. CONCLUSION

In this paper, to cope with scalability, compatibility, and
convergence issues in semantic broadcast communications,
we have proposed a semantic broadcast communication
framework optimized by an RL-based self-critical alternate

learning, called SemanticBC-SCAL, which provides semantic
level supervision and improves the robustness under varying
numbers of RXs. In particular, we have regarded seman-
tic similarity as a reward and formulated the optimization
process as an RL problem. Furthermore, we have adopted
self-critical learning to obtain a simple and efficient gradient
estimation, especially suitable for complex SemCom systems
with large-scale samples. To accommodate varying numbers
of RXs and address non-differentiable channels, we have
adopted a cost-effective alternate training mechanism to asyn-
chronously learn the encoder and multiple decoders with
different learning iterations instead of directly backpropagating
gradients through the channel. Moreover, we have also delved
into the convergence analysis of SemanticBC-SCAL and pro-
vided conditions for the convergence. Extensive simulation
results with both common and private messages have demon-
strated that our proposed semantic broadcast communication
system can achieve high semantic accuracy with different
numbers of RXs, and has exhibited strong scalability and
robustness for different channel environments. Moreover, since
sharing a consistent structure among different RXs limits
some applications, for future works, we aim to further explore
the possibility of developing scalable receiver structures, and
enhance the diversity of tasks in more general scenarios.
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