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Noise Distribution Decomposition Based
Multi-Agent Distributional Reinforcement Learning
Wei Geng , Baidi Xiao, Graduate Student Member, IEEE, Rongpeng Li , Senior Member, IEEE, Ning Wei ,
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Abstract—Generally, Reinforcement Learning (RL) agent up-
dates its policy by repetitively interacting with the environment,
contingent on the received rewards to observed states and under-
taken actions. However, the environmental disturbance, commonly
leading to noisy observations (e.g., rewards and states), could signif-
icantly shape the performance of agent. Furthermore, the learning
performance of Multi-Agent Reinforcement Learning (MARL) is
more susceptible to noise due to the interference among intelligent
agents. Therefore, it becomes imperative to revolutionize the design
of MARL, so as to capably ameliorate the annoying impact of
noisy rewards. In this paper, we propose a novel decomposition-
based multi-agent distributional RL method by approximating
the globally shared noisy reward by a Gaussian Mixture Model
(GMM) and decomposing it into the combination of individual
distributional local rewards, with which each agent can be updated
locally through distributional RL. Moreover, a Diffusion Model
(DM) is leveraged for reward generation in order to mitigate the
issue of costly interaction expenditure for learning distributions.
Furthermore, the monotonicity of the reward distribution decom-
position is theoretically validated under nonnegative weights and
increasing distortion risk function, while the design of the loss
function is carefully calibrated to avoid decomposition ambiguity.
We also verify the effectiveness of the proposed method through
extensive simulation experiments with noisy rewards. Besides, dif-
ferent risk-sensitive policies are evaluated in order to demonstrate
the superiority of distributional RL in different MARL tasks.

Index Terms—Diffusion model, distribution decomposition,
distributional reinforcement learning, multi-agent reinforcement
learning, noisy environment.
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I. INTRODUCTION

R EINFORCEMENT learning (RL) [1] has significant appli-
cations in various domains, including game AI training [2],

robot control [3], and large language models’ optimization [4].
With the rise of Deep Learning (DL) [5] technology and its
remarkable achievements in various fields, the integration of
Deep Neural Networks (DNNs) and RL [6] has become a hot
topic in research. The accompanied tremendous success of deep
RL has prompted researchers to shift their focus to the field of
Multi-Agent Systems (MAS) [7], and given rise to Multi-Agent
Reinforcement Learning (MARL). For most cooperative MARL
tasks, it is crucial to develop appropriate means to leverage a
global reward to train decentralized action value (i.e., Q-value)
or state value (i.e., V -value) networks, and update the policies
accordingly, especially for settings with partial observations and
constrained communications [8], [9]. In particular, some value
decomposition methods [9], [10], [11], [12] are proposed.

Nevertheless, environmental noise widely exists in practice
due to internal and external factors (e.g., electronic noise from
sensors, the influences of temperature, pressure, and illumi-
nation) [13], and most RL algorithms are vulnerable in noisy
scenarios with unstable performance [14]. Some off-the-shelf
MARL algorithms also face troublesome convergence issues
and experience severely deteriorated performance under noisy
scenarios, especially for those adversarial tasks where agents
might suffer malicious interference from opponents [15]. The
distributional RL [16], which models the action value or state
value as a distribution, emerges as a promising solution for
anti-noise. This distribution can effectively model the random-
ness of a system or environment, and distributional RL can
even surpass human performance in many scenarios where the
optimization must go beyond considering the expected return
values and evaluate the distribution of certain performance met-
rics/rewards [17]. For instance, in the field of communication,
distributional RL demonstrates its advantages in the robust net-
work optimization that accounts for the outage probabilities [18],
the management of slice Service Level Agreements (SLAs)
defined by availability and performance thresholds [19], and
resource allocation strategies that consider risk in decision-
making processes [20]. Meanwhile, in game AI, [16], [21],
[22] demonstrate the superior performance of distributional RL
in dozens of tasks about Atari. However, incorporating value
decomposition into classic distributional RL for noisy MARL
tasks is rather counter-effective, considering the multi-folded
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detrimental effects. First, it is typically hard to train a quantile
network [16], [22], which aims to learn a specific Cumulative
Distribution Function (CDF) of action or state value distribution.
Therefore, it usually takes distributional RL algorithms more
time to converge. Second, making specific assumptions about
the exact type of global distribution lacks robustness. As not all
types of distribution are additive or support linear operations,
changing the types of individual distributions through temporal-
difference (TD) update also increases model complexity [23].
Additionally, decomposing the global distribution into individ-
ual distributions is erratic and unstable [24], as slight changes in
the global distribution usually cause individual distributions to
vibrate drastically. Finally, the interaction cost between agents
and environment, as well as the learning cost, will significantly
increase [25].

In this paper, we propose the Noise Distribution Decomposi-
tion (NDD) MARL method, wherein the ideas of distributional
RL and value decomposition are jointly leveraged to ameliorate
the flexibility of distributed agents to noisy rewards. The utiliza-
tion of distributional RL enables the agent to remap quantiles
using the distortion risk function, thereby better taking ac-
count of the distribution over returns and potentially generating
distinctive policies with different risk-sensitive functions [22].
Meanwhile, in order to tackle the difficulties of incorporating
value decomposition into classic distributional RL for MARL
tasks, we successfully leverage a parametric Gaussian Mixture
Model (GMM) [26] and establish a viable decomposition means
with calibrated Wasserstein-metric-based [21] loss function.
Furthermore, inspired by the astonishing representation capabil-
ities of Diffusion Models (DM) [27], [28], [29], [30], [31], we
also incorporate DM to model the noise distribution to reduce the
interaction cost. Specifically, we use DM to generate additional
data based on existing interaction data from agents, and then
proportionally combine the generated data with the raw data to
train policies in NDD. The main contributions of our work can
be summarized as follows:
� We introduce NDD on top of distributional RL and value

decomposition in MARL. For the ensemble of agents,
NDD approximates the distribution of the noisy global
reward by GMM and obtains the local distributional value
functions indirectly for yielding more stable individual
policies. For a single agent, NDD also contributes to more
conveniently learning the action value distribution even
with partial observation.

� We extend distributional RL to the multi-agent domain
and introduce distortion risk functions, which facilitate
the determination to adopt adventurous or conservative
strategies by adjusting action value distributions, to provide
more flexibility than classical RL with expectation.

� We carefully calibrate a Wasserstein-metric-based loss
function to learn the accurate distribution corresponding to
each agent and prove the consistency between the globally
optimal action and locally optimal actions theoretically.

� To alleviate the high cost of environment interaction re-
quired for learning distributions, we introduce DM to
augment the data for ameliorating the data scarcity issue
and prove the bounded expectations of the generation and

approximation errors in the augmented data, which can be
a reference for the trade off between interaction cost and
errors.

In the rest of this paper, we present the related work of RL
and MARL in Section II. Afterward, based on the necessary
notations and preliminaries in Section III, we describe our pro-
posed method in Section IV. Subsequently, numerous simulation
results are shown to validate the effectiveness and superiority of
our method in Section V. Finally, Section VI concludes the paper
and lists the future work.

II. RELATED WORK

According to the cooperativeness between their reward func-
tions, MARL can be categorized into three types (i.e., fully
cooperative, fully competitive, and mixed tasks) [32]. For fully
cooperative tasks, the reward functions of agents are identical,
signifying that all agents are striving to achieve a common
goal [33], [34]. Algorithms targeted at this type of task can
integrate the computational and learning capabilities of MAS,
and potentially achieve gains beyond simple summation [32].
For fully competitive tasks, the reward functions are opposite,
typically involving two completely antagonistic agents in the
environment, while the agents aim to maximize their rewards
and minimize the opponent’s rewards, with Minimax-Q [35]
being a representative algorithm. In mixed tasks, the relationship
of agents could be stochastic, leading to complicated reward
functions of agents and making this model suitable for self-
interested agents [32]. Generally, the resolution of such tasks is
often associated with the concept of equilibrium in game theory.
In this paper, we primarily focus on the first, fully cooperative
setting, since the related algorithms we will mention later are
more conducive to implementation, migration, and expansion
to more large-scale MAS [32], [36] compared with the other
two types. On the other hand, the cooperative algorithm has a
close connection with distributed optimization [36]. Therefore,
efficient optimization techniques such as decentralized training,
asynchronous training [37], and communication learning [38],
[39] can be introduced to tackle issues in cooperative learning.

However, there are still many unresolved issues for coop-
erative algorithms. First, in a multi-agent environment, each
agent not only needs to consider its own actions and rewards
but also must take account of the influences of the actions
undertaken by other agents [32]. Such an intricate process of
interaction and interconnection results in constantly undergoing
changes in a non-stationary environment, making the actions
and strategy choices among agents interdependent. Therefore,
the updated strategies of other agents impede each agent from
approximating accurate action or state value functions for mak-
ing a self-optimized strategy. To solve this issue, based on
Deep Q-Network (DQN) [40], Castaneda et al. [41] propose to
modify the value functions and reward functions to fit the inter-
dependence among agents. Diallo et al. [42] introduce a parallel
computing mechanism into DQN to expedite the convergence
in non-stationary environments. Foerster et al. [38] focus on
improving the experience replay to better adapt to continuously
changing non-stationary environments. Another important issue
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in cooperative MARL lies in the limitation of partial observation.
That is, agents can only make near-optimal decisions based on
their own partially observable information. In the collaborative
task with local observations and globally shared rewards, value
decomposition methods are often adopted to effectively learn
the different contributions of agents from global rewards. For
example, VDN [9] decomposes the global value function into the
sum of individual value functions. Based on VDN, QMIX [10]
further generalizes the way of value decomposition through
sophisticated transformation, and puts forward an important as-
sumption on the monotonicity of the global action value function
with respect to local ones. Focusing on the further exploration
of the joint action, Weighted QMIX [11] and QTRAN [12]
discuss the relationship between individual optimal actions and
the global optimal joint action. Nevertheless, all these value
decomposition algorithms [9], [10], [11], [12] suffer from the
adoption of over-simplistic expectation operation, which is not
sufficient to describe the noisy environment that agents may
encounter. In a nutshell, it necessitates a more comprehen-
sive characterization of the environment, and developing novel
decomposition means to explore adventurous or conservative
strategies. Coincidentally, it falls into the scope of distributional
RL [16], [21], [22] and distortion risk functions [22].

Primarily adopted in single-agent settings, distributional
RL [16], [21], [22] comprehensively characterizes the fluctu-
ation by replacing the expectation of state or action values with
the corresponding distributions and yields appealing effects. For
example, C51 [16] achieves significant advantages over DQN,
DDQN, Duel DQN, and human baseline across 57 Atari games.
QR-DQN [21] applies regression theory [43] to distributional
RL and achieves performance beyond C51. Specific distor-
tion risk functions based on human decision-making habits are
proven effective by IQN [22] in most Atari games. Furthermore,
DFAC [24] extends the value decomposition method to the field
of distributional RL in MAS, and develops the joint quantile
function decomposition to extend VDN and QMIX to DDN and
DMIX on condition of stable and noise-free rewards. However,
a noticeable drawback of distributional RL is the increased com-
putation and interaction cost to train quantile networks alongside
the TD update. For combatting the computation cost, DRE-
MARL [44] designs the multi-action-branch reward estimation
and policy-weighted reward aggregation for stabilized training.
Additionally, distortion risk functions, which primarily adjust
the risk preference of policy in the action value distribution and
are mainly employed in tasks where the correlation between
risk and reward is evident, are proposed by [22]. Despite the
progress in single-agent setting, the adoption of distortion risk
functions is worthy of further investigation, as it may disrupt the
collaboration among MAS in MARL, and convergence issues
may arise if theoretical guarantees lack [22], [24]. Meanwhile,
the interaction cost can be compensated by generative mod-
els [45], [46]. Among them, DM [27] is renowned for its as-
tonishing capability in the fields of image synthesis [28], image
inpainting, color restoration, image decompression [29] and
text-to-image [30], [31]. RL has reaped the benefits of DMs with
significant improvement in cross-task learning and experience
augmentation. For example, [47] and [48] use DM for policy

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

generation in single-agent tasks. J. Geng [49] leverages DM to
encapsulate policies within the MAS context, thereby fostering
efficient and expressive inter-agent coordination. DOM2 [50] in-
corporates DM into the policy network and proposes a trajectory-
based data-augmentation scheme in training. However, mostly
in single-agent settings, these studies lack validation in non-
stationary and noisy environments. Moreover, the approxima-
tion errors of DM in generating samples also lack theoretical
analyses.

III. BACKGROUND AND PROBLEM FORMULATION

This section mainly discusses the base model in our work and
the formulations of relevant methods. The main notations used
in this paper are listed in Table I.

A. System Model

A cooperative multi-agent task can be described as the de-
centralized partially observable Markov decision process (Dec-
POMDP), consisting of a tuple 〈S,A,P,R,O,Ω, I, γ〉 [10],
[51]. Specifically, s ∈ S denotes the global state and a =
[a[1], . . . , a[N ]] ∈ A is the joint action of N agents. The joint
action causes a transition from current state s to next state
s′ according to the transition function P(s′|s,a) : S ×A×
S → [0, 1]. Specially, all agents share a global reward function
R : S ×A → R, which means its output R(s,a) follows a
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global reward distribution D when given s and a, and r ∈ R is
sampled from R(s,a). Each agent i ∈ I ≡ {1, . . . , N} draws
individual observation o[i] ∈ O[i] where O[i] ∈ O according
to the observation function Ω(s, i) : S × I → O[i]. Generally,
the joint observation o = [o[1], . . . , o[N ]] and we assume that
s and o are equivalent. Besides, γ ∈ [0, 1) is a discount factor.
Within the framework of Dec-POMDP in t-th step, a joint policy
π = [π[1], . . . , π[N ]] corresponds to a joint action value function
as

Qπ(st,at) = Est:∞,at:∞ [Z
π(st,at)], (1)

where the random variable for the discounted reward summation
Zπ(st,at) =

∑∞
m=0 γ

mR(st+m,at+m) has a corresponding
CDF FZ . Notably, when the quantile τ of the CDF is further
distorted by distortion risk function ρ(τ) : [0, 1] → [0, 1], the
distorted action value function Qρ(o, a) and distorted random
variable Zρ(o, a) can be expressed in terms of ρ(τ) as

Qπ
ρ (o, a) = E

[
Zπ
ρ (o, a)

]
=

∫
zdρ [FZ(z)] . (2)

Additionally, DM gradually adds Gaussian noises to sample r
from D by K times and then reconstructs it in reverse. In the
diffusion process, r<k> ∼ Dq(r

<k>) is a generated sample in
k-th step, k ∈ [0, . . . ,K], where Dq(·) represents the distribu-
tion of the corresponding sample. More information regarding
distortion risk functions and DM shall be given in Appendix A
and B, respectively, available online.

B. Value Decomposition

Value decomposition methods [9], [10], [11], [12] belong to
one of the typical methods to learn decentralized action value
networks from globally shared rewards. As one of the pioneering
works of value decomposition, QMIX [10] holds that under a
monotonicity constraint, the joint of individually optimal actions
is equivalent to the optimal joint action regarding the action
value function, which is also a crucial criterion for MARL with
distributed deployment of agents. That is,

argmax
a

Qglobal(o,a) =

⎛
⎜⎜⎜⎜⎝

argmax
a[1]

Q1(o
[1], a[1])

...

argmax
a[N]

QN (o[N ], a[N ])

⎞
⎟⎟⎟⎟⎠, (3)

where Qglobal(o,a) indicates the joint action value function of
all agents and Qi(o

[i], a[i]) is the action value function corre-
sponding to agent i. Besides, the monotonicity constraint can be
formally written as

∂Qglobal(o,a)

∂Qi(o[i], a[i])
≥ 0, ∀i = 1, 2, . . . , N. (4)

Furthermore, in order to satisfy (4), a mixing network is pro-
posed to combineQi(o

[i], a[i]) intoQglobal(o,a)with non-linear
transformation.

C. Distributional RL

Distributional RL [16] aims to learn the distribution of action
or state values, so as to capture more comprehensive information
about random rewards (i.e., noisy rewards that follow a specific
distribution). Besides, distributional RL benefits agents to hold
different risk tendencies (e.g., risk-averse and risk-seeking) to
choose preferred policies [22]. Specially for multi-agent distri-
butional RL, given the state s and joint action a, the transition
operator Pπ is defined as

PπZπ(s,a)
D
:= Zπ(S ′,A′), (5)

where the operator U
D
:= V indicates that the random variable

U is distributed according to the same law as V . Consistent with
(1), Zπ(s,a) denotes a random variable with the expectation
Qπ(s,a), and capital lettersS ′ andA′ are used to emphasize the
random nature of next state-action pair (i.e., S ′ ∼ P(·|s,a) and
A′ ∼ π(·|S ′)). On this basis, the distributional Bellman operator
T π [16] of MAS is defined as:

T πZπ(s,a)
D
:= R(s,a) + γPπZπ(s,a). (6)

That is to say, Zπ(s,a) is characterized by the interaction
of three random variables (i.e., the reward R(s,a), the next
pair of state-action (S ′,A′) and the corresponding Zπ(S ′,A′)
according to (5)). In distributional RL, (6) is used to update
Zπ(s,a) with the next state and action by temporal difference.

Accordingly, on account of the definition of Zπ(st,at) in (1)
and the equivalence between st and ot, the random variable for
the global discounted reward summation can be rewritten as

Zπ
global,t(ot,at) =

∞∑
m=0

γmR(ot+m,at+m), (7)

R(ot+m,at+m) is a random variable of the noisy reward fol-
lowing the distribution D, which can be approximately regarded
as a GMM and decomposed into N Gaussian components.

On the other hand, it is critical to measure the distributional
difference between the true distribution of noisy reward and the
approximated one. In this regard, Wasserstein metric [21] can
be leveraged and mathematically defined as

dp(F,G) =

(∫ 1

0

|F−1(u)−G−1(u)|pdu

) 1
p

, (8)

where F and G are the CDFs of random variables U and V ,
respectively. p < ∞ implies to take an Lp norm for this metric.
Furthermore, in single-agent settings, some robust approaches
have been proposed by using quantiles to evaluate and then fit
the action value distribution [21], [22].

D. Problem Formulation

In this paper, we primarily considerN RL agents (i.e., a group
of RL-empowered distributed robots equipped with intelligent
sensing devices and basic computing power) to perform certain
cooperative tasks as shown in Fig. 1. Consistent with the general
settings in Dec-POMDP, at each time-step t, agent i capably
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Fig. 1. The scenario and framework of NDD-based cooperative multi-agent distributional RL with noisy rewards.

utilizes on-board sensors to access a partial environmental ob-
servation o

[i]
t ∈ O[i]. Observations may include partial states of

some teammates, received messages, or the relative positions
to certain target points. This often depends on the specific task
executed by the whole team. With a DM for data augmentation,
every agent attempts to learn action value distributions and
remaps them with distortion risk functions for yielding policy
corresponding to different tasks. Based on the observation o

[i]
t ,

agent i responds with action a
[i]
t (i.e., movement direction and

message exchange) according to its policy π[i](a
[i]
t |o[i]t ). After-

wards, the environmental state transits from st to next state st+1

according to the transition function P(st+1|st,at). Meanwhile,
other observations and global information can be used for the
calculation of reward from R by a suitable “virtual” agent (e.g.,
a centralized server or a computing-capable global-oriented
robot). Notably, since the observation provided by sensors, or
exactly the reward, could be polluted by internal or external
noise, we formulate the reward by the random variable R ∼ D,
consistent with Section III-A. More details are in Fig. 1. In
the subsequent sections, targeted at the aforementioned MARL
settings, we mainly discuss how to apply our method NDD to
tackle the noisy rewards, so as to maximize the average reward
of episodes for the entire team.

IV. NOISE DISTRIBUTION DECOMPOSITION FOR MARL

In this section, particularly focusing on general MARL set-
tings, we provide details of NDD toward tackling the globally
shared noisy rewards with improved learning accuracy and

stability. Specifically, following the idea of distributional RL,
we choose the action value distribution (i.e., the distribution that
Zπ

global(o,a) in (7) follows) rather than the action value function
to update agents’ joint policyπ. As mentioned earlier, it will also
be intractable to directly decompose the distribution of the global
Zπ

global(o,a). Thus, we further approximate the distribution of
the global reward as a GMM [26] and propose to decompose the
noisy reward distribution into individual parts, so as to facilitate
the update of local distributions. Meanwhile, to ensure the con-
sistency between local and global action values, we also provide
theoretical details of the distribution decomposition and present
the alternative functions for distortion risk measures. Finally,
DM is introduced to enhance buffer data, and the corresponding
generation and approximation errors are analyzed.

A. GMM-Based Distributional MARL

As a parametric probability density function (PDF),
a GMM represents a weighted sum of Gaussian com-
ponent densities [26]. Mathematically, taking the ex-
ample of any scalar x from random variable X ∼
GMM(μ1, . . . , μN , σ2

1 , . . . , σ
2
N , w[1], . . . , w[N ]), the correspond-

ing PDF can be expressed as

f(x;μ1, . . . , μN , σ2
1 , . . . , σ

2
N , w[1], . . . , w[N ])

=
N∑
i=1

w[i] g(x;μi, σ
2
i ), (9)
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where w[1], . . . , w[N ] are mixture weights with
∑N

i=1 w
[i] = 1.

g(x;μi, σ
2
i ) denotes the PDF of the Gaussian distribution with

mean μi and variance σ2
i . According to Wiener’s Tauberian

theorem [52], [53], GMM, which has density completeness, can
essentially fit the shape of arbitrary distribution with absolutely
integrable PDF to describe data from single or multiple noise
sources [54], so D can also be approximated as D̂ which is a
GMM. Thus, D̂ can be further decomposed into Gaussian com-
ponents D̂[1]

l (θ[1]), . . . , D̂[N ]
l (θ[N ]) corresponding to different

individual agents.
Without loss of generality, let R

[1]
l , . . . , R

[N ]
l be indepen-

dent decomposed local rewards where R
[i]
l ∼ D̂[i]

l (θ[i]). We

further define a function Ψ(R
[1]
l , . . . , R

[N ]
l ;w[1], . . . , w[N ]) to

statistically combine R
[i]
l with an assigned probability of

w[i], and thus Ψ(R
[1]
l , . . . , R

[N ]
l ;w[1], . . . , w[N ]) conforms to

a GMM with its expectation equaling to
∑N

i=1 w
[i]
E(R

[i]
l ).

In other words, it satisfies the additive property. Hence, the
global reward R(ot+m,at+m) in (7) approximately equals
Ψ(R

[1]
l , . . . , R

[N ]
l ;w

[1]
m , . . . , w

[N ]
m ), and (7) can be rewritten as

(10) shown at the bottom of this page, withE[Zπ
global,t(ot,at)] =

Qπ
global,t(ot,at), which is action value of the whole MAS in t-th

step given joint observation, action and policy o,a,π. Further-
more, the local Zπ[i]

i,t (o
[i]
t , a

[i]
t ) of agent i can be represented as

Zπ[i]

i,t (o
[i]
t , a

[i]
t ) =

∞∑
m=0

γmR
[i]
l (o

[i]
t+m, a

[i]
t+m). (11)

For simplicity of representation, we might omit ot,at,π, t in
Zπ

global,t(ot,at) and o
[i]
t , a

[i]
t , π[i], t in Zπ[i]

i,t (o
[i]
t , a

[i]
t ), and only

use the notations Zglobal and Zi.

B. Consistency of Global and Local Optimal Actions

First, we show that the monotonicity constraint mentioned in
Section III-B holds for the GMM-based distributional MARL
on some conditions.

Theorem 1: For any i = 1, . . . , N and Zi defined by (11) in
any m-th step, if w[i]

m ≥ 0 we have

∂E(Zglobal)

∂E(Zi)
≥ 0. (12)

Proof: As the definition in (10), the expectation of Zglobal

computed from M time-steps can be expressed as

E [Zglobal] = tr(W�R#), (13)

where

W =

⎡
⎢⎢⎣
w

[1]
0 . . . w

[N ]
0

...
...

...

w
[1]
M . . . w

[N ]
M

⎤
⎥⎥⎦, (14)

R# =

⎡
⎢⎢⎣

γ0
E(R

[1]
l,0) . . . γ0

E(R
[N ]
l,0 )

...
...

...

γM
E(R

[1]
l,M ) . . . γM

E(R
[N ]
l,M )

⎤
⎥⎥⎦, (15)

and R
[i]
l,t is the abbreviation of R[i]

l (o
[i]
t , a

[i]
t ). Similarly, the local

Zi can be formulated as
[
E(Z1) . . .E(ZN )

]
= 1�

(M+1)×1R
#. (16)

Taking κ = min(w[i]
m),

∑
i w

[i]
m = 1 (∀t) implies 0 ≤ κ ≤ 1

N .
Therefore, (13) can be rewritten as

E [Zglobal] = tr(W�R#)

≥ κ · tr(1�
(M+1)×NR#) = κ · 1�

(M+1)×1R
#1N×1

= κ ·
[
E(Z1) . . . E(ZN )

]
1N×1. (17)

Consequently, (12) is satisfied as ∂E(Zglobal)
∂E(Zi)

≥ κ ≥ 0. �
Recalling that E[Zglobal] = Qglobal(o,a) and E[Zi] =

Qi(o
[i], a[i]), together with (3), we have following corollary.

Corollary 1:

argmaxa E [Zglobal] =

⎛
⎜⎜⎝

argmaxa[1] E [Z1]
...

argmaxa[N] E [ZN ]

⎞
⎟⎟⎠. (18)

Remark: The proof of Theorem 1 implies that some ex-
cessive small weights mean trivial contributions to the group.
Meanwhile, from the perspective of minimizing the reward gap
between an ideal policy with full observability and partially
observable local policies [55], a more uniform distribution of
weights can decrease this gap between E(Zglobal) and its lower

bound κ ·
[
E(Z1) . . . E(ZN )

]
1N×1. Especially, for cases

where weights are evenly divided among agents (i.e., w[i]
m =

κ = 1
N , ∀i = 1, . . . , N ), E(Zglobal) =

1
N

∑
i E[Zi], which also

satisfies (12). However, only enforcing such a strong constraint
on weights will incur large errors in decomposition results. Thus,
it is meaningful to carefully calibrate the design of the loss
function by appending additional constraint terms.

C. Design of Distortion Risk Function

As mentioned in [22], the distortion risk function ρ(τ) en-
hances the applicability and flexibility of distributional RL.
Based on ρ(τ), Dabney et al. [22] introduce an parameter η to
make ρη(τ) more flexible and adaptable. However, for MARL,
ρη(τ) needs to be subjected to certain constraints in order to
ensure that the distorted action value distribution also satisfies
the monotonicity constraint in Theorem 1.

Zπ
global,t(ot,at) =

∞∑
m=0

γmΨ
[
R

[1]
l (o

[1]
t+m, a

[1]
t+m), . . . , R

[N ]
l (o

[N ]
t+m, a

[N ]
t+m);w[1]

m , . . . , w[N ]
m

]
. (10)
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Theorem 2: Given ∂E(Zglobal)
∂E(Zi)

≥ 0, if ρ′η(τ) ∈ (0,+∞)(∀τ)
we have

∂E(Zglobal,ρ)

∂E(Zi,ρ)
≥ 0. (19)

Here Zglobal,ρ and Zi,ρ represent that Zglobal, Zi have undergone
the remap distortion ρη(τ).

Proof: According to (2),

∂E(Zglobal,ρ)

∂E(Zi,ρ)
=

∂
{∫

zdρη [Fglobal(z)]
}

∂
{∫

zdρη [Fi(z)]
}

=
∂
[∫

zρ′η(τglobal)dFglobal(z)
]

∂
[∫

zρ′η(τi)dFi(z)
] , (20)

where Fglobal, Fi denote the CDFs of Zglobal, Zi; and τglobal, τi
are their quantiles, respectively. Based on the positive-bound
assumption of ρ′η(τ)(∀τ), let ρ′η(τ) ∈ [ρ′min, ρ

′
max], (20) can be

rewritten as

∂E(Zglobal,ρ)

∂E(Zi,ρ)
≥ ρ′min

ρ′max

∂
[∫

zdFglobal(z)
]

∂
[∫

zdFi(z)
]

=
ρ′min

ρ′max

∂E(Zglobal)

∂E(Zi)
. (21)

Equation (19) holds obviously when ρ′η(τ) ∈ (0,+∞). �
Remark: Intuitively, the distortion risk functions including

CPW [56], [57], WANG [58], POW [22], and CVaR [59] given
in Appendix A, available online, satisfy the condition (i.e.,
ρ′η(τ) ∈ (0,+∞)), when they take the values in Table VIII
as [22]. Furthermore,

argmaxa E (Zglobal,ρ) =

⎛
⎜⎜⎝

argmaxa[1] E (Z1,ρ)
...

argmaxa[N] E (ZN,ρ)

⎞
⎟⎟⎠ (22)

holds. Thus, it lays the very foundation to adopt these distortion
risk measures in our case.

In summary, based on Theorems 1 and 2, the monotonicity of
the reward distribution decomposition is theoretically validated
under nonnegative w[i](i = 1, . . . , N) and increasing ρη(τ).
From this monotonicity, the collective performance of MAS will
not deteriorate when every agent improves its performance, with
consistent global and local convergences.

D. DM-Based Data Augment

The action value distribution reflects more risk information
than the action value function, but the interaction cost increases
between agents and environment [16]. Especially in MAS, ad-
ditional interaction demands several times greater than that of
a single agent. Hence, using a generative model for data aug-
mentation becomes a feasible compromise [45], [46]. Besides,
in order to maintain good compatibility with GMM, DM [27]
is used in the NDD, as Theorems 3 and 4 demonstrate bounded
generation error and approximation error, which measure the
distance between the generated sample and the original sample
or the GMM, respectively.

Theorem 3 (Bounded Generation Error): Under the assump-
tion thatK = 25 and [ω1, . . . , ωK ] = 0.499× 10−2 × 1

1+e−h +

10−5, where h is an array with a length of K evenly spaced be-
tween −6 and 6, the expectation of generation error E[(r<0> −
r)2] satisfies

E
[
(r<0> − r)2

]
� (E(r))2 + 5.1359D(r). (23)

Theorem 4 (Bounded Approximation Error): Under the as-
sumption consistent with Theorem 3, the upper bound of approx-
imation error expectation for r<0> is less than that for r, where
the approximation error ξ for r is defined as the gap between r
and the GMM (i.e., r = rGMM + ξ) with rGMM ∼ GMM(·).

We leave the proofs in Appendix C and D, available online.
Moreover, Theorems 3 and 4 show that the gradual inclusion of
Gaussian components aligns well with GMM used in the NDD,
making the integration of DM with NDD a prudent approach,
and further imply how to select appropriate hyperparameters
(e.g. diffusion steps K).

Next, we elaborate on the combination between DM and
NDD. First, as shown in Appendix B, available online, DM
is employed to learn the distribution D of reward R via its
sample r and generate r<0>. Afterwards, NDD approximates
augmented data to GMM and decomposes it into several Gaus-
sian components for N agents. Each agent updates its policy
with distributional RL and certain distortion risk functions. The
complete process is visualized in Fig. 1.

E. Loss Function Design

As mentioned before, the NDD networks decompose the
globally shared reward into weighted individual rewards for co-
operative agents by estimating the distributions of decomposed
rewards. Therefore, the estimation error, which can be regarded
as a gap between the approximated PDF and true PDF of the
globally shared reward, shall be minimized.

Without loss of generality, let P and P̂ be the PDFs of the
true reward distribution D and the estimated one D̂ through the
NDD networks respectively. Based on the Wasserstein metric in
(8), the loss function for NDD as

LPDF(θ,w) =

∫ rmax

rmin

[
P (u)− P̂ (u;θ)

]2
du, (24)

where [rmin, rmax] denotes the range of the reward distribution.
Except the parameters Θ for DM, θ = [θ[1], . . . , θ[N ]] indicates
all parameters of NDD networks corresponding to each agent
and w = [w[1], . . . , w[N ]]�. Here both θ and w are the trainable
parameters in the NDD networks.

On the other hand, there may exist many possible candi-
dates for decomposed Gaussian distributions D̂[i]

l (θ[i]), ∀i =
1, . . . , N . To alleviate the potential issue of multiple solutions in
the decomposition operation, we further impose another penalty
term as

Lmean(θ) = (X − μ · 1N×1)
�(X − μ · 1N×1), (25)

where X = [μ1(θ
[1]), . . . , μN (θ[N ])]� and μ =

∑N
i=1 μi(θ

[i]),

where μi(θ
[i]) denotes the mean of D̂[i]

l (θ[i]).
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Algorithm 1: The Centralized Training Procedure for NDD.

For an individual agent, the weight represents its degree
of involvement in the decomposition task. Certain excessively
small weight indicates thatLPDF has minimal supervisory impact
on that component and may result in insufficient stability of
the Gaussian component after decomposition. This becomes
particularly evident in some simple noise scenarios, such as
when the noise can be represented by the superposition of a
few Gaussian components. In such cases, the remaining agents
may not receive effective components. With excessively low
weights, these agents might exploit extremely deviant reward
distributions in training policies, ultimately affecting their per-
formances. In addition, in order to narrow the disparity between
E(Zglobal) and its lower bound, as mentioned in Section IV-B,
weights can be aligned more evenly. Therefore, we define the

Fig. 2. Overview of the NDD algorithm.

corresponding penalty term as

Lweight(w) = ‖w − 1

N
· 1N×1‖2. (26)

To sum up, given hyperparameters λ and α, we obtain the
Wasserstein metric-based loss function as

L(θ,w) = LPDF(θ,w) + λLmean(θ) + αLweight(w). (27)

In a nutshell, for the NDD algorithm depicted in Fig. 2, we
first predict local Gaussian components that will be utilized
for local training by a multi-layer perceptron (MLP), and ag-
gregate these decomposed ones through another MLP-based
composition layer, so as to approximate the GMM along original
and augmented rewards. Next we update θ and w according
to (27) and learn π[i] with D̂[i]

l (θ[i]) through distributional RL
independently. Details are summarized in Algorithm 1.

V. EXPERIMENTAL SETTINGS AND SIMULATION RESULTS

A. Experimental Settings

We evaluate NDD in Multi-agent Particle world Environments
(MPE) and StarCraft Multi-Agent Challenge (SMAC) [60], [61],
[62], which is implemented on top of the current SOTA algorithm
MultiAgent Proximal Policy Optimization (MAPPO) [63], [64],
[65]. MPE is a classical MARL environment with each particle
emulating the potential behaviors of one agent. Typically, MPE
consists of several task-oriented collaboration scenarios (e.g.,
Adversary, Crypto, Speaker-Listener, Spread and Reference).
Compared to MPE, SMAC is a more complicated environment
based on Blizzard’s StarCraft II RTS game. Notably, as shown
in Table VI, we add 5 types of noise (i.e., Noise 0 to Noise
5) to the globally shared rewards, which are different in MPE
and SMAC scenarios so as to be in line with the distinct reward
values (i.e., one to two orders of magnitude smaller in SMAC
than MPE). Additionally, we choose some typical actor cirtic
algorithms MADDPG [61], MATD3 [66] and value decompo-
sition algorithms VDN [9], QMIX [10] as well as MAPPO for
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TABLE II
PERFORMANCE OF NDD AND OTHERS WITH FIVE TYPES OF NOISES IN MPE TASKS

Fig. 3. Performance comparison between algorithms in (i) the MPE Reference
task with Noise 0; (ii) the SMAC 3m task with Noise 0. Notably, the “Baseline”
indicates the result of MAPPO under noise-free settings; “3m” means 3 Marines
in MAS.

comparison. Furthermore, we choose MAPPO under noiseless
conditions as the “Baseline” to measure the performance loss of
NDD and the others in noisy environments. Considering that the
number of iterations is generally based on empirical values and
changes over environments, every method is trained with 3,000
iterations for each task in MPE, and 2× 104 iterations for each
task in SMAC. Afterwards, we compare the performance under
different types of zero-mean noises to rule out the possible bias
impact of noise. More experimental configurations are given in
Appendix E, available online.

Fig. 4. Performance sensitivity of NDD in Adversary with Noise 0 under the
settings of (i) different α with λ = 1; (ii) different λ with α = 1.

B. Performance Comparison

Fig. 3 compares NDD with the aforementioned methods
and visualizes the corresponding learning process of agents
for one MPE task and one SMAC task. Meanwhile, Tables II
and III summarize the performance comparisons in all noisy
tasks considering five distinctive types of noise as in Table VI.
It’s worth noting that there are slight differences in the five
simulations’ results of the “Baseline” over five types of noise
for each task in MPE, as the states of agents are randomly
initialized at the beginning of each episode, which is in stark
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TABLE III
PERFORMANCE OF NDD AND OTHERS WITH FIVE TYPES OF NOISES IN SMAC TASKS

contrast to SMAC. From the results, NDD is significantly su-
perior to the others and exhibits a satisfactory anti-noise effect.
For example, in Reference, the interference of noise produces a
significant negative impact on experimental results, especially
for the value decomposition algorithms. Accordingly, it can
be observed from Fig. 3 that VDN, QMIX, MATD3, MAD-
DPG, and MAPPO fluctuate heavily and converge to lower
values. Regardless of the noise distribution, NDD stabilizes the
performance and generates results similar to noise-free tasks
in most scenarios. By the way, the effect of QMIX is much
worse than other methods, due to that the mixing network
used in QMIX requires more stable rewards until convergence.
Furthermore, in noisy scenarios, a complex mixing network
yields less robust results than the one with simple summation.
Hence, we primarily choose GMM due to its simplicity and
robustness. In addition, all algorithms exhibit performance de-
creases in complex noises. Due to the simultaneous involvement
of multiple noise sources and non-Gaussian components, the

results for Noise 3 and Noise 4 are worse than others, but the
NDD yields more comparable performance to that obtained in
noise-free cases.

Fig. 4 provides the sensitivity study about λ and α. Addition-
ally, we choose the high-performance MAPPO for comparison.
It can be observed that λ = 1 is the optimal value and either too
large or too small may cause performance degradation. Similar
observations can be applied toα. Additionally, NDD is relatively
more sensitive to λ compared withα, and the performance when
λ = 0 (i.e., noLmean(θ) in the loss function in (27)) is even worse
than MAPPO. In other words, Lmean(θ) is of vital importance
to the NDD.

C. Distribution Decomposition Validation

We further evaluate the performance of NDD under simulated
noise with arbitrary distribution. In order to further evaluate the
accuracy of NDD, we decompose each noise distribution into
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TABLE IV
MODELING ACCURACY OF NOISE DISTRIBUTION DECOMPOSITION UNDER DIFFERENT GMM ASSUMPTIONS

Fig. 5. Results of distribution decomposition over two noise cases (i.e., 0.25β(1, 2) + 0.75N (−5, 3), 0.35N (−6, 1) + 0.3β(1, 2) + 0.35χ(9)). The left two
sub-figures show the comparison between practical PDF histogram and weighted PDFs of decomposed distributions (3 colored curves); while the right sub-figure
shows the curve of loss over training iterations. N , β,X 2 indicate a Gaussian, a Beta and a Chi-Square distribution, respectively.

Fig. 6. The performance of DM in generated samples is illustrated.
N ,X 2,Γ, E are a Gaussian, a Chi-Square, a Gamma, and an exponential
distribution, respectively.

3 parts and summarize the related intermediate results (i.e., de-
composed distributions, corresponding weights, and computed
Wasserstein distance dp between the real and approximated
distributions) in Table IV. Though it generally leads to inferior
decomposition accuracy for more complex noise distribution, all
the losses are rather low in terms of Wasserstein distance (even
for noise including non-Gaussian components). To make the
decomposition results more intuitive, Fig. 5 compares the PDFs

of two noise distributions (i.e., 0.25β(1, 2) + 0.75N (−5, 3)
and 0.35N (−6, 1) + 0.3β(1, 2) + 0.35χ(9)) with weighted de-
composed distributions, and provides the learning loss curves.
It can be found from Fig. 5 that weighted distributions align
closely with the noise distribution. Besides, after several hun-
dred episodes of training, it quickly converges. In other words,
the adoption of GMM to characterize the noise distribution is
promising.

D. Results for Different Distortion Risk Functions

In order to manifest the effectiveness and stability of MARL
with distortion risk functions ρη(τ), we test some formats
of ρη(τ) (i.e., CPW [56], [57], WANG [58], POW [22], and
CVaR [59]) with parameters configured as in Table VIII for
NDD. Table V shows the performance of adopting different
ρη(τ) in five MPE tasks, in terms of the means and standard
deviations of the results. Note that means and standard deviations
are compared independently. The “Expectation” in this Table
means NDD, which uses expectation of action value distribution
to update policies directly without any ρη(τ).

It can be observed from Table V that apart from Spread,
wherein the Expectation method only achieves optimal per-
formance, most of the tasks impose superior performance af-
ter imposing the risk preference on strategies. The optimal
values are distributed relatively evenly among different types
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TABLE V
AVERAGE SCORES IN MPE’S TASKS UNDER DIFFERENT DISTORTION RISK FUNCTIONS

Fig. 7. The performance comparison of the NDD algorithm before and after using DM.

and parameters of ρη(τ), which reflects the significance of
distributional MARL. As a function that better aligns with
human decision-making habits, CPW(0.71) achieves the best
results in one-third of the cases. The stability of strategy with
CVaR(0.25) is the highest, at the cost of poorer performance on
the effectiveness. Interestingly, some distortion risk functions
are ineffective. For instance, CVaR(0.1) does not work in any of
the 15 cases. In a word, CPW(0.71) can contribute to maximiz-
ing returns. Meanwhile, if stability and fault tolerance are the
primary prerequisites, POW(-2) and CVaR(0.25) are worthy of
the recommendation.

E. DM-Based Data Augmentation

In this section, our experiments mainly focus on assessing
the data preciseness provided by DM for NDD. Beforehand, we

first evaluate the distribution of the data generated by DM and
compare it with the practical distribution in Fig. 6. In the case
with K = 25, benefiting from the alignment capability of DM,
the simulated data can resemble the original data, thus reducing
the sampling and communication costs.

Next, Fig. 7 depicts the performance of the NDD approach
with and without DM-based data augment. In this part, we in-
tentionally hide some proportion of data for DM to supplement.
For simplicity, the ratio of the remaining data quantity to the
complete one is denoted as ζ. Generally speaking, along with
the increase of ζ, the NDD approach gives superior performance,
consistent with our intuition. More importantly, the use of DM
significantly improves performance, strongly demonstrating the
effectiveness of DM. That’s to say, the same training effect can be
achieved with significantly fewer training data than that without
DM. On the other hand, for an over-small ζ, the incorporation of
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DM leads to a decline in the performance of NDD, as too little
data induces a significant gap between the distribution learned
by DM and the original distribution. Specifically, according to
analyses based on (46), the estimated expectations E(r) and
variances D(r) are distorted in this data-lacking case, with
non-negligible generation error. Therefore Fig. 7 also provides a
good reference for balancing performance and interaction cost.
Generally speaking, supplementing data within 50% from DM
sounds reasonable.

VI. CONCLUSION

In this paper, we propose NDD to tackle the noisy rewards dur-
ing cooperative and partially observed MARL tasks. In particu-
lar, we leverage the GMM-based reward distribution decompo-
sition to characterize and approximate the distributional global
noisy rewards by local Gaussian components, so as to mitigate
the negative impact of noises. We also introduce distortion risk
functions to leverage additional information learned from the ac-
tion value distribution and discuss their applicability. Addition-
ally, after providing the bounded generation and approximation
error, we use diffusion models for data augmentation to address
the high training cost issue. Moreover, we theoretically establish
the consistency between the globally optimal action and locally
optimal ones and carefully calibrate the loss function designed to
update NDD networks. Extensive experimental results in MPE
and SMAC also prove the effectiveness and superiority of NDD.

Our future work is dedicated to analyzing the time and space
complexity of NDD, as well as exploring the mathematical
relationship between hyperparameters in DM and two errors
of generation and approximation.
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