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Abstract: Semantic communication (SemCom) aims
to achieve high-fidelity information delivery under low
communication consumption by only guaranteeing se-
mantic accuracy. Nevertheless, semantic communi-
cation still suffers from unexpected channel volatil-
ity and thus developing a re-transmission mechanism
(e.g., hybrid automatic repeat request [HARQ]) be-
comes indispensable. In that regard, instead of dis-
carding previously transmitted information, the in-
cremental knowledge-based HARQ (IK-HARQ) is
deemed as a more effective mechanism that could suf-
ficiently utilize the information semantics. However,
considering the possible existence of semantic ambi-
guity in image transmission, a simple bit-level cyclic
redundancy check (CRC) might compromise the per-
formance of IK-HARQ. Therefore, there emerges a
strong incentive to revolutionize the CRC mechanism,
thus more effectively reaping the benefits of both
SemCom and HARQ. In this paper, built on top of
swin transformer-based joint source-channel coding
(JSCC) and IK-HARQ, we propose a semantic image
transmission framework SC-TDA-HARQ. In particu-
lar, different from the conventional CRC, we introduce
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a topological data analysis (TDA)-based error detec-
tion method, which capably digs out the inner topo-
logical and geometric information of images, to cap-
ture semantic information and determine the necessity
for re-transmission. Extensive numerical results val-
idate the effectiveness and efficiency of the proposed
SC-TDA-HARQ framework, especially under the lim-
ited bandwidth condition, and manifest the superiority
of TDA-based error detection method in image trans-
mission.
Keywords: error detection; incremental knowledge-
based HARQ; joint source-channel coding; semantic
communication; swin transformer; topological data
analysis

I. INTRODUCTION

Recently, semantic communication (SemCom), which
focuses on transmitting meaningful information rather
than precise bits or symbols, emerges as a feasi-
ble approach to achieve high fidelity information de-
livery under lower communication consumption [1–
4]. To achieve superior transmission performance and
outstanding channel environmental adaptability, some
infant literature adopts joint source-channel coding
(JSCC) for the SemCom system. Benefiting from the
booming development of deep learning (DL) models
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in feature extraction and reconstruction, SemCom sys-
tems with DL-based JSCC (Deep JSCC) and its ex-
tended frameworks are eligible for the transmission of
various kinds of data, such as image [2, 5–13], speech
[14], text [15–17] and video [18, 19], and outperform
the traditional design, especially under limited channel
bandwidth and low signal-to-noise ratio (SNR). Con-
sidering the promising market prospect of computer
vision (CV) applications and the foundational role in
video transmission, the image SemCom warrants fur-
ther exploration particularly.

However, due to the inherent limitations of the tra-
ditional DL model’s capacity, a notable decline in
the performance of Deep JSCC emerges as the im-
age resolution increases. Meanwhile, as one of the
latest variants of transformer architecture, swin trans-
former shows remarkable performances on many im-
age datasets [20]. Besides, Ref. [6], which utilizes
swin transformer as the backbone to realize semantic
image transmission, demonstrates considerable per-
formance gain. Motivated by these facts, we adopt
swin transformer for the extraction of sophisticated
semantic features from the source image, thereby fa-
cilitating a more effective method for wireless image
transmission. However, most of the aforementioned
frameworks discard useful information in unacknowl-
edged received signals and merely employ a one-shot
decoding [11]. Nevertheless, since the lossy informa-
tion may still embody valuable semantic parts that can
assist the receiver in decoding and improving trans-
mission efficiency, the one-shot decoding misses part
of the information in rounds of transmissions while re-
constructing a high-quality image.

To combat this deficiency, an incremental
knowledge-based hybrid automatic repeat request
(IK-HARQ) is introduced for wireless transmis-
sion [16, 21] and plays an indispensable role in
SemCom [17]. Specifically, apart from the similar
error detection-based acknowledgement/negative ac-
knowledgement (ACK/NAK) feedback to the HARQ
in traditional transmission systems, IK-HARQ in
SemCom additionally recycles the contaminated
information as the valuable incremental knowledge to
supplement re-transmission decoding, which further
guarantees the accuracy of the received packets [22].
Notably, unlike the bit-level error detection standard
(e.g., cyclic redundancy check [CRC] [23], Hamming
Code [24]), IK-HARQ in SemCom is expected to

discriminate the errors from a semantic perspective,
and the corresponding DL-based error detection
modules for text transmission in Refs. [16] and [17]
provide an anspicious start for the future research.
However, Ref. [17] makes its re-transmission decision
solely on channel conditions (i.e., the value of SNR),
and lacks a comprehensive understanding of source
and environment complexity. Meanwhile, Ref. [16]
employs a Sim32 method to calculate semantic sim-
ilarity at the receiver side and make re-transmission
decisions according to a preset threshold. Albeit its
effectiveness in semantic text transmission, when
this approach is extended to image transmission1,
the detected similarity tends to be overly stiff (i.e.,
a variance of 3.1151 × 10−8 only) as is illustrated
in Figure 1 and Table 1, resulting in re-transmission
decisions highly vulnerable to inaccurately configured
thresholds. Therefore, boosting the detection robust-
ness necessitates a novel error detection scheme by
discovering intrinsic high-level patterns.
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Figure 1. The semantic similarity of images detected by
Sim32 and TDA-based decision network during the training
procedure.

On the other hand, topological data analysis (TDA),
which correlates with the inherent topological patterns
of an image [25, 26], is introduced to extract intrinsic
features from the source image, demonstrating robust-
ness in error detection as shown in Figure 1 and Ta-
ble 1. Specifically, TDA leverages topology and ge-
ometry to robustly infer qualitative and quantitative
information about data structure. In other words, it
produces recapitulative summaries or approximations
with specific methods like persistent homology (PH)
[27–31]. Taking the PH in Figure 2 as an example, a
3 × 3 images x is constructed by pixels with differ-
ent grayscale values g. Hence, as is shown in Figure
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2(b), x can be constructed as the cubical complex K
from a union of multiple d ∈ {0, 1}-cubes ξ, where
0-cube and 1-cube refer to vertices and edges respec-
tively. Given a threshold η, when its grayscale value
g ≤ η, the corresponding pixel spans a 0-cube. Mean-
while, a 1-cube emerges when both adjacent pixels
have g ≤ η. Thus, different thresholds η correspond to
different cubical complexes, indicating different topo-
logical features. In order to depict how q-dimensional
topological features persist across different thresholds
η0 < η1 < η2 < η3, the filtration of K is de-
fined as the nested family of subspaces K(x, η0) ⊆
K(x, η1) ⊆ K(x, η2) ⊆ K(x, η3). Along with the fil-
tration, the topological features evolve, thus affecting
the PH. As illustrated in Figure 2(c), 0-dimensional
homology captures the connected components once η
increases to g(0) while 1-dimensional homology char-
acterizes a loop that lasts from η = g(1) to η = g(3).
As a result, Figure 2(d) records the corresponding PH
as a well-defined set of disjoint half-open intervals
known as a persistence barcode (PB), where each in-
terval in dimension q ∈ {0, 1} symbolizes the lifes-
pan [bq, dq] of a topological feature (i.e., q-homology
class) with the term of the birth time bq and the death
time dq as the beginning and end of the interval of the
q-homology. Alternatively, the same information can
be represented through a persistence diagram (PD),
as is shown in Figure 2(e), where intervals are de-
picted as points (bq, dq) in a birth-death coordinate.
The extracted topological and geometric information
from images competently describe a complete picture
without dimensionality reduction [25], and thus poten-
tially amplify the slight variations on core semantic in-
formation after noisy transmission. Inspired by these
promising findings [27–31], there emerges a strong in-
centive to develop a TDA-based error detection mech-
anism and compensate for the deficiency of conven-
tional error detection schemes, so as to fully ensure the
gains of IK-HARQ. In this regard, preliminary results
in Figure 1 and Table 1 validate the more competent
capability of the TDA-based scheme.

In this paper, on top of IK-HARQ and the state-
of-the-art semantic image encoder, swin transformer
[20], we focus on developing a TDA-based error de-
tection scheme, and correspondingly design a TDA-
based semantic image transmission framework SC-
TDA-HARQ. After highlighting key differences with
highly related studies [17, 16, 19] in Table 2, SC-TDA-

Table 1. The Comparison of error detection results between
Sim32 and proposed TDA-based decision network.

Method Similarity Mean Variance

Sim32 0.5416 ∼ 0.5423 0.5421 3.1151× 10−8

TDA-based decision
network

0.5284 ∼ 0.5311 0.5297 4.021× 10−7
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Figure 2. An example of a filtered cubical complex’s PH.
(a) A 3 × 3 grayscale image. (b) Different dimension of
cubes that constitutes the cubical complex. (c) The filtration
process of the image. (d) The corresponding persistence
barcode. (e) The corresponding persistence diagram.

HARQ has the following three-folded merits.
• Inspired by the works IK-HARQ [17, 21], SC-

TDA-HARQ can improve the image transmis-
sion efficiency with reduced semantic errors, by
effectively leveraging incrementally transmitted
knowledge.

• To further improve the efficiency of semantic im-
age transmission, SC-TDA-HARQ integrates the
swin transformer-based semantic coding with an
additional TDA coding module to enhance im-
age reconstruction at the receiver side. Therefore,
it can exploit the advantages of the semantic ar-
chitecture and TDA, and outperform competing
semantics-based methods in terms of quality of
reconstructed images.

• SC-TDA-HARQ incorporates a TDA-based deci-
sion network to determine re-transmissions, by
more accurately evaluating the existence of se-
mantic error in estimated images. In other
words, on the condition of semantics consis-
tency, SC-TDA-HARQ can tolerate the recon-
struction incorrectness of a few pixels rather than
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Table 2. The comparison with highly related literature.

Related works Advantages Limitations

Refs. [2, 5–8]
Superior to traditional systems under limited
bandwidth and low SNR.

Contingent on one-shot decoding which discards useful
information in unacknowledged signals.

Ref. [16]
Using IK-HARQ to combat the deficiency
of one-shot decoding.

Stiff semantic similarity metrics for image re-transmission
decisions.

Ref. [17]
Making re-transmission decisions based on SNR only and
unable to deal with the complexity of delivered content.

Ours
Incorporating a TDA-based decision network to check semantic errors in received images
and determine re-transmissions.

re-transmission, promising to save more commu-
nication resources.

The rest of the paper is organized as follows. In
Section II, related work is presented. The system
model and the accompanied framework of SC-TDA-
HARQ are introduced in Section III. In Section IV, we
elaborate on the implementation details of SC-TDA-
HARQ. The experimental results are demonstrated in
Section V, which are followed by our conclusion in
Section VI.

II. RELATED WORKS

2.1 Deep Joint Source-Channel Coding

Conventionally, an image transmission system typi-
cally uses a separate source-dependent coding scheme
(e.g., JPEG [32], JPEG2000 [33], better portable
graphics (BPG) [34]) to remove the information re-
dundancies. Subsequently, the transmitted bits un-
dergo a source-independent channel coding scheme
(e.g., low-density parity-check (LDPC) [35], Turbo
code [36]) to safeguard from distortions introduced
by the noisy communication channel. Despite the
remarkable success and popularity, the independence
between the source encoder and the channel encoder
may incur restricted transmission performance and a
significant reduction in the quality of reconstructed
images [2]. Thus, JSCC is proposed to overcome the
so-called “cliff effect” [2], and obtains graceful qual-
ity. The inchoate Deep JSCC architecture for image
transmission, whose encoder and decoder are mod-
eled by deep neural networks (DNNs) with excellent
generalization ability, directly maps the pixel values
to channel inputs and obtains a more reliable recon-
struction of source images [2]. Afterwards, many
variants of Deep JSCC emerge. For example, in or-
der to combat channel fluctuations, Ref. [5] devises

an SNR-adaptive decoder, which uses the pilot signal
sent by the transmitter to estimate the SNR and ob-
tains preferable reconstruction quality. Furthermore,
Ref. [6] proposes a spatial modulation module to scale
the latent representations based on channel state in-
formation, thus enhancing the capability to deal with
various channel conditions. In addition, inspired by
compressed sensing, Ref. [7] focuses on reducing
the number of measurements corrupted by mild noise
and presents uncertainty-aware autoencoders. On the
other hand, Ref. [8] proposes to combine the orthog-
onal frequency division multiplexing (OFDM) base-
band processing blocks with the Deep JSCC frame-
work, which is superior to traditional schemes and ex-
hibits robustness under the conditions of mismatched
channel models as well.

Notably, all the aforementioned works conduct a
one-shot decoding method without further iterations.
To verify the contribution and the potential of feed-
back, Ref. [9] designs practical JSCC schemes that
can exploit noisy or noiseless channel feedback, and
demonstrates considerable gains as well as excellent
adaptability. Ref. [10] reconfirms the performance
of transformer-aided Deep JSCC with feedback. On
the contrary, Ref. [11] shows the reconstruction qual-
ity improvement can be attained by more iterations at
the receiver on the basis of no modifications to the
transmitter or requesting re-transmission. Neverthe-
less, the performance gains come at the expense of
rapidly increased computational expenditure. In that
regard, some feedback and/or re-transmissions sound
more appealing.

2.2 HARQ for Wireless Communication Sys-
tem

As one of the channel feedback in conventional com-
munication, HARQ can ensure the correctness of the
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received packets by repetitively re-transmitting until
receiving ACK, and is an essential part in a reliable
transmission system [16]. Meanwhile, based on the
feedback, adjustable rates can be attained [37, 38].
Until recently, only a few works notice the latent capa-
bility of HARQ in boosting the performance of Deep
JSCC. Specifically, in Ref. [16], a network called
Sim32 is introduced to detect the meaning error in
the received sentences. Concurrently, inspired by Ref.
[21], Ref. [17] pioneers the study of IK-HARQ by
regarding previously transmitted lossy information as
incremental knowledge to benefit the decoding of re-
transmissions. Furthermore, in Ref. [19], a semantic
video conferencing (SVC) network based on keypoint
transmission is established wherein the semantic er-
ror detector exploits the fluency of the video to check
the received frame. However, faced with the possibil-
ity of semantic ambiguity, a convincing error detection
scheme remains under-investigated for images.

2.3 TDA and Its Combination with DL

Due to its versatility and robustness, TDA has been
leveraged to solve various DL problems, after align-
ing the topological features with the vector input of
DL. For instance, Refs. [39] and [40] introduce Bottle-
neck distance and Wasserstein distance to statistically
compute the similarity of the PDs, thus measuring the
topological differences of images. Alternatively, PB
can be transformed into Betti curve, which is defined
as the summation of all barcodes belonging to differ-
ent dimensions and represents the number of topologi-
cal features [25]. Persistence landscape (PL), which
focuses on the importance and duration of features
during the filtration process [26], belongs to another
way to map the PD in a vector space. Besides, in line
with the application of kernels in machine learning
models, suitable kernel functions are proposed to deal
with the topological data as well [41–43]. Apart from
the aforementioned methods that provide the statis-
tic treatment of PD, the topological features can be
summarized in terms of persistent entropy (PE) which
computes the Shannon entropy based on the probabil-
ity distribution obtained from the given PD [44]. On
this basis, all previous schemes contribute to signif-
icant performance gain in the classification and seg-
mentation tasks of images [27, 45, 46]. Accordingly,
it is promising to introduce TDA to SemCom as a

Table 3. Mainly used notations in this paper.

Notations Description

x ∈ RH×W×3 The source image with height H and width W
SCen(·), SCde(·) The source-channel encoder and decoder
TDAen(·),
TDAde(·)

The TDA encoder and decoder

x′ The symbol encoded by SCen(·)
x′TDA The symbol encoded by TDAen(·)

x′′
The symbol after compression by MLP
MLP(·)

y Transmitted symbol after power normalization
ŷ The received signal
x̂TDA The image reconstructed by TDAde(·)
x̂′′ Recovered symbol by MLP(·) at the receiver
x̂ The image reconstructed by SCde(·)

DEC(·) The decision network that classifies x̂ and
x̂TDA

m The source bandwidth
R The bandwidth compression rate

α, β, ϕ, γ
Trainable parameters for SCen(·), SCde(·),
TDAde(·) and DEC(·), respectively

ζ The ACK/NAK signal computed by DEC(·)
(u, v) The position of the pixel in images
gB(u, v) The binarized function on (u, v))

µH(·), µR(·) The height and radical filtration on gB(·)

ψ, (uc, vc)
A candidate direction and center for µH(·)
and µR(·)

b, d
Birth time and death time of topological fea-
tures

q The dimension of the topological features

t
The index of a q-dimensional topological fea-
ture

AW(p, q)
The p-order Wasserstein amplitude calculated
from (bqt , d

q
t )

AB(q)
The Bottleneck distance calculated from
(bqt , d

q
t )

ε(ς, q) The Betti curve of PB at a given threshold ς

PL(λ, ϱ, q)
The persistent landscape for layer λ of PD
with ϱ ∈ N

HK(κ, q, r, s)
The heat kernel of PD with respect to (r, s) ∈
R2

PE(q) The persistent entropy of PD

κ
The standard deviation for Gaussian distribu-
tion HK(·)

candidate solution to evaluate the credibility of recon-
structed images.

III. SYSTEM MODEL

In this section, we present the system model for se-
mantic image transmission with SC-TDA-HARQ and
enumerate key components therein, which are further
shown in Figure 3. Beforehand, we summarize the
mainly used notations in Table. 3.

3.1 Classical Model for SemCom

The fundamental SemCom system consists of sym-
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Figure 3. The pipeline of the transformer-enabled SemCom system with IK-HARQ and TDA-based error detection.

metrical encoder and decoder in the transmitter and
receiver. The source-channel (SC) encoder, denoted
as SCen(·), parameterized by α extracts the semantic
features of a 3-color (i.e., RGB) source image x ∈
RH×W×3 and embeds them into a semantic symbol x′,
where H and W denote the height and width of an
RGB image, respectively. Mathematically,

x′ = SCen(x;α). (1)

Then, a multilayer perception (MLP) module, i.e.,
MLP1(·), is used to compress the semantic symbol
vector x′ into transmitted symbol x′′ ∈ Ck with the as-
sumption that k is smaller than the source bandwidth
m := H ×W × 3. Subsequently, a power normaliza-
tion layer [2] is then applied to obtain the practically
transmitted symbol y, that is,

y =
√
k

x′′√
(x′′)⊺x′′

, (2)

so as to meet the average power constraint E[y⊺y] ≤ k.
Therefore, as the complex-valued transmission chan-
nel enables to transmit two real-valued elements per
channel-use [11], the bandwidth compression rate can
be written as

R =
k

2m
. (3)

Afterwards, y undergoes the communication chan-
nel, which can be modeled as an additive white Gaus-
sian noise (AWGN) channel or the Rayleigh fading
channel. Correspondingly, the received signal ŷ at the
decoder can be formulated as

ŷ =

{
h · y + θ, for Rayleigh fading channel;

y + θ, for AWGN channel,
(4)

where θ is the noise sampled from independent and
identically distributed (i.i.d.) Gaussian distribution
CN(0, σ2I) with zero mean and variance σ2. In addi-
tion, for the Rayleigh fading channel, the channel gain
h follows Rayleigh distribution and can be regarded as
a constant during a transmission slot. Therefore, the
corresponding SNR that evaluates the channel qual-
ity can be formulated as 10 log10

||h·y||2
||θ||2 (dB), while

AWGN can be viewed as a special case of h = 1.
At the receiver, the channel output ŷ undergoes dual

MLP modules, so as to obtain a semantic symbol vec-
tor x̂′′,

x̂′′ = MLP3(x̂
′) = MLP3(MLP2(ŷ)). (5)

Afterwards, the semantic-channel decoder SCde(·)
with parameters β tries to mitigate the physical noise
for x̂′′ and recovers the original image in a semanti-
cally accurate manner, that is,

x̂ = SCde(x̂
′′;β). (6)

Correspondingly, as is shown in Figure 4(1), a loss
function (e.g., mean-squared-error [MSE]) is lever-
aged to evaluate the distortion between x and x̂ and
optimize the JSCC parameters α and β,

(α, β) = argminLMSE(x, x̂), (7)

where defined by an L2-norm ∥ · ∥2, LMSE(z, ẑ) =

E∥(z, ẑ)∥2 accompanies with the expectation operator
E(·).

3.2 TDA-Enabled SemCom with IK-HARQ

Although Deep JSCC has shown effectiveness un-
der low SNR or with the limited bandwidth [2], the
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veracity of decoded message is still hard to be en-
sured, especially for the one-shot paradigm. Conse-
quently, merging SemCom and HARQ is essential to
prevent semantic misunderstandings in lossy environ-
ments. Furthermore, benefiting from the flexibility in
semantics, IK-HARQ allows for efficient information
reuse and presents a unified decoder for both transmis-
sions and re-transmissions [17]. Compared to classical
SemCom, as shown in Figure 5 and summarized in Al-
gorithm 1, IK-HARQ introduces a decision network
for error detection and revamps the JSCC to accom-
plish incremental decoding. Therefore, in line with
our previous works [17], we implement IK-HARQ as
a complement in our image SemCom system. Notably,
we aim to develop a novel TDA-based decision net-
work, instead of traditional methods (e.g., CRC and
Sim32), by introducing additional calibration mod-
ules and forging the SC-TDA-HARQ. For example,
a TDA encoder extracts the corresponding topologi-
cal features within an image and constructs the inher-
ent relationship between the image and its topological
features. Meanwhile, a TDA decoder is necessary to
recover the TDA pattern from noisy signals. Next, we
enumerate the key components in SC-TDA-HARQ,
and highlight essential changes to classical SemCom.

Specifically, at the transmitter, before passing into
the MLP module MLP1(·), the semantic vector x′ is
first concatenated with the TDA encoding result x′TDA

by a TDA encoder TDAen(·), which can be expressed
as

x′TDA = TDAen(x). (8)

As is depicted in Figure 4(2), all the MLP layer di-
mensions are modified to be compatible with the in-
corporation of TDA. In this manner, x′′ ∈ Ck can be
re-written as

x′′ = MLP1([x
′, x′TDA]). (9)

Moreover, once receiving an NAK, the re-
transmission starts unless the number of re-
transmissions reaches Nmax.

At the receiver, ŷj , which denotes the received bits
from the j-th transmission, is concatenated with previ-
ously received ones, followed by another MLP module
MLP2(·) parameterized by ρ to recover the semantic
symbol vector x̂′ and the topological symbol vector

x̂′TDA. Mathematically,

(x̂′j , x̂
′
TDAj

) = MLP2(ybuffer,j ; ρ), (10)

where ybuffer,j = [ŷ1, · · · , ŷj ]. In order to main-
tain consistent dimension (i.e., k × Nmax) of input,
ybuffer,j in the previous j < Nmax transmissions will be
padded with zero vectors for decoding, as is illustrated
in Figure 4(3). Therefore, the transmitted knowledge
is incrementally leveraged. Moreover, the MLP mod-
ule MLP2(·) shall be well-trained as

ρ = argminLMSE(x, x̂), (11)

so as to capably adapt to different re-transmission
times. Meanwhile, the TDA decoder, denoted as
TDAde(·) with learnable parameters ϕ, can induce an
image x̂TDA according to x̂′TDA,

x̂TDA = TDAde(x̂
′
TDA;ϕ). (12)

Furthermore, as is shown in Figure 4(4), the TDA de-
coder can be trained by

ϕ = argminLCE(x, x̂TDA), (13)

where the cross entropy function LCE(z, ẑ) =

Ez log ẑ. The pixel values of both images are scaled
to effectively transforms each image into a probability
distribution, so as to compute the cross entropy loss.

With the recovered x̂ and x̂TDA, as lately dis-
cussed in Section IV, a decision network will check
the correctness of the decoded bits, and triggers a re-
transmission when ζ = 0. Mathematically,

ζ = DEC(x̂, x̂TDA; γ) =

{
0, error detected;

1, otherwise,
(14)

where γ is the trainable parameter in DEC(·). In par-
ticular, as demonstrated in Figure 4(5), the decision
network, which builds the relationship between an im-
age (e.g. x, x̂, and x̂TDA) and a decision threshold χx,
can be trained by

γ = argminLContrastive,χx(x+/x−, x̂TDA), (15)
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where x+ represents images from dataset consisting
of x with TDA features matching those of xTDA, and
x− includes images from dataset consisting of x with
TDA features different from xTDA. Moreover, the
contrastive loss function LContrastive,χx(x+/x−, x̂TDA)

can be formulated as

LContrastive,χx(x+/x−, x̂TDA)

=
1

2
Y D2 +

1

2
(1− Y )max(0,margin−D)2,

(16)

where Y is a label specified according to x+/x− and
xTDA. Specifically, when the input pair comprises x+
and xTDA, which indicates that the input belongs to
the same category, we set Y = 1; conversely, for the
input x− and xTDA, we set Y = 0. In this context,
a margin is established for these dissimilar pairs to
differentiate them more clearly. Additionally, D rep-
resents the Euclidean distance between the input pair,
serving as a quantitative measure of the similarity or
disparity between the two images. On the other hand,
χx is a decision threshold.
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Figure 5. The workflow of semantic IK-HARQ at the re-
ceiver.

Generally, we optimize the parameters α, β, ϕ and γ
for SCen(·), SCde(·), TDAde(·) and DEC(·) in a sub-
sequent manner. Consistent with Figure 4, a detailed
description of this training procedures is presented in
Algorithm 2. On this basis, we will present the de-
tails of DNN design and TDA-enabled error detection
scheme in Section IV.

Algorithm 1. The workflow of IK-HARQ.

Initialization: The transmission iteration indicator
j = 1; the maximum re-transmission times
Nmax = 3; the ACK indicator ζ = 1; the incre-
mental knowledge buffer ybuffer = NULL, well-
trained SCen(·) and TDAen(·).

Input: The transmitted image x.
Output: The reconstructed image x̂.

1: Compute y based on Eq. (9) and Eq. (2) on top of
well-trained SCen(·) and TDAen(·).

2: while j ≤ Nmax and ζ = 0 do
3: Update the received vector ŷj after the j-th

transmission with Eq. (4).
4: ybuffer ← [ybuffer, ŷj ].
5: Update the reconstructed images x̂′ and x̂′TDA

with Eq. (6) and Eq. (12).
6: Update ζ according to Eq. (14).
7: j = j + 1.
8: end while

IV. THE IMPLEMENTATION DETAILS OF
SC-TDA-HARQ

This section elaborates on the implementation de-
tails of the proposed image SemCom framework
SC-TDA-HARQ, which incorporates IK-HARQ and

Algorithm 2. The training procedures of TDA-enabled
SemCom with IK-HARQ.

Initialization: The maximum re-transmission times
Nmax = 3.

Input: The transmitted image x.
Output: The reconstructed image x̂.

1: Train swin transformer-based SCen(·) and
SCde(·) by Eq. (7).

2: Add TDAen(·). Re-train SCen(·) and SCde(·) by
Eq. (7).

3: Zero padding the already received information ŷ
according to Nmax, and train MLP2(·) by Eq.
(11).

4: Pretrain TDAde(·) and DEC(·) by Eq. (13) and
Eq. (15).

5: Optimize the parameters (α, β, ρ, ϕ, γ) by loss
function LMSE.

TDA-based error detection into a classical Deep JSCC
paradigm.

4.1 Swin Transformer-Based Semantic En-
coder and Decoder

As illustrated in Figure 6, we utilize swin transformer
blocks [20], which manifest the excellence in extract-
ing and recovering discriminative semantic represen-
tations of images, as the backbone of encoder SCen(·)
and decoder SCde(·).

In the encoding process, we stack several stages,
each of which embodies a patch merging layer and Si
swin transformer blocks, as the encoder, to project to-
kens into semantic features. Specifically, as shown in
Figure 6, each swin transformer block in a stage fulfills
some sequence-to-sequence functionality [20], where
a shifted window partitioning approach is adopted
by reforming the standard multi-head self-attention
(MSA) module with partition windows. Consequently,
two successive swin transformer blocks l̃i and l̃i+1 of
stage ĩ ∈ {1, · · · , i} are computed according to

x̃
l̃i
ĩ
= W-MSA(LN(x

l̃i−1

ĩ
)) + x

l̃i−1

ĩ
,

x
l̃i
ĩ
= MLP(LN(x̃

l̃i
ĩ
)) + x̃

l̃i
ĩ
,

x̃
l̃i+1

ĩ
= SW-MSA(LN(x

l̃i
ĩ
) + x

l̃i
ĩ
, (17)

x
l̃i+1

ĩ
= MLP(LN(x̃

l̃i+1

ĩ
) + x̃

l̃i+1

ĩ
,
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Figure 6. The DNN structure of the semantic encoder and decoder for encoding the source image and reconstructing the
received signal.

where x̃l̃i
ĩ

and xl̃i
ĩ

represent the output feature of the
(S)W-MSA module and the MLP module for block
l̃i at stage ĩ, respectively. Notably, W-MSA(·) and
SW-MSA(·) are multi-head self attention modules
with regular and shifted windowing configurations.
The joint application of W-MSA and SW-MSA con-
tributes to learning implicit connections among par-
titioned windows, and significantly enhances the se-
mantic extraction capability for images. Besides,
LN(·) denotes the layer normalization operation [20].
After stage i, the source image x ∈ RH×W×3 is gradu-
ally converted into a grid of H2i×

W
2i patches, and subse-

quently the pixel intensities of each patch are flattened
to form a sequence of vectors as a “token”.

Similarly, as illustrated in Figure 6, we adopt a sym-
metrical DNN structure in the SC decoder, which re-
covers the image from the noise-polluted representa-
tion x̂′′. On this basis, the functionalities in Eqs. (1)
and (6) can be accomplished.

4.2 TDA-Based Semantic Feature Extraction

In this subsection, we talk about the implementation
means of the TDA encoder TDAen(·), which cap-
tures intrinsic topological features of an image x, and
lays the foundation for a TDA-based error detection
scheme.

Beforehand, as shown in Figure 7, the 3-color RGB
image x ∈ RH×W×3 is transformed into a grayscale
image x ∈ RH×W , with grayscale values g(u, v) at

the pixel (u, v) where 1 ≤ u ≤ H and 1 ≤ v ≤
W . Then, in order to highlight essential features, x is
binarized according to a preset threshold ν, that is,

gB(u, v) =

{
1, if g(u, v) ≥ ν;
0, otherwise.

(18)

Recalling the discussions in Section I, direct
grayscale filtration can merely generate few fixed re-
sults, which might be unable to comprehensively cap-
ture intact topological features. Therefore, height fil-
tration and radial filtration, which capably incorporate
the position information of the homology, are lever-
aged to make a multiple-perspective analysis of topo-
logical features.

• Height filtration: Inspired by Morse theory and
the PH transform [47], the height filtration µH :

x → R of a 2-dimensional binary image is deter-
mined from a chosen unit direction ψ ∈ R2 as

µH(u, v;ψ) =

{
⟨ ψ
∥ψ∥2 , (u, v)⟩, if gB(u, v) = 1;

H∞, if gB(u, v) = 0,
(19)

where ⟨·, ·⟩ denotes the Euclidean inner product
and H∞ is the filtration value of the pixel that is
the farthest away from the ψ.

• Radial filtration: Taking the idea from Ref. [48],
the radial filtration µR of x is computed accord-
ing to the Euclidean distance between a pixel

244 © China Communications Magazine Co., Ltd. · January 2025

Authorized licensed use limited to: Zhejiang University. Downloaded on January 23,2025 at 00:35:52 UTC from IEEE Xplore.  Restrictions apply. 



G
ra

y
s
c
a
le

Binarization

1     2     3

1
  
  
 2

  
  
 3

[1
,1

]

1     2     3

1
  
  
 2

  
  
 3

0

0

0

0.71

0.71 1.4

1.4

1.4

2.4

1     2     3

1
  
  
 2

  
  
 3

1.4

1.4

1.4

1

1 1.4

1.4

1.4

2.4

Center point

(1,1)

1     2     3

1
  
  
 2

  
  
 3

1     2     3

1
  
  
 2

  
  
 3

0 1 1.4 2.4

0 0.71 1.4 2.4

 Filtration (Persistent Homology)

threshold 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Dim 0

Dim 1

Birth

D
e
a
th

Dim 0

Dim 1

 PBPD

Height filtration

Radical filtration

Persistence signatures

AW

AB

PL

HK

PE

Figure 7. An example for the pipeline of the TDA encoder to extract the topological feature. In particular, after grayscale,
the source image is binarized according to a preset threshold ν. The height filtration µH(u, v; (1, 1)) and radical filtration
µB(u, v; 1, 1) are further utilized to assign corresponding values to the image. Sequentially, the filtrations are constructed to
obtain the PBs and PDs of the topological features. Finally, x′TDA is calculated by vectorizing PDs, in terms of persistence
signatures (i.e., the Wasserstein distance AW(p, q), Bottleneck distance AB(q), Betti curve ε(ς, q), persistence landscape
PL(λ, ϱ, q), heat kernel HK(κ, q, r, s) and persistent entropy PE(q)).

(u, v) and a preset “center” pixel (uc, vc), that is,

µR(u, v;uc, vc) (20)

=

{
∥(uc, vc)− (u, v)∥2, if gB(u, v) = 1;

R∞, if gB(u, v) = 0,

where R∞ is the distance in terms of the pixel
farthest away from the center.

Based on Eq. (19) and Eq. (20), by adjusting the direc-
tion ψ or the center (uc, vc), different filtration values
µ(u, v) (either µH(u, v) and µR(u, v)) can be derived
from the binary image, thus significantly enhancing
the diversity of the captured topological features. Sub-
sequently, a series of cubical complexes is obtained
[49]. In particular, for a specific filtration µ(u, v) with
the maximum µmax, the nested family of subspaces
satisfies K(x, η0) ⊆ K(x, η1) ⊆ · · · ⊆ K(x, ηn),
where 0 ≤ η0 ≤ · · · ≤ ηi ≤ · · · ≤ ηn ≤ µmax and the
cubical complexK(x, ηi) is formed with a set of cubes
ξq, q ∈ {0, 1, 2}. During the filtration, all emerging
cubes are sorted as follows: Initially, the 0-cubes (i.e.,
the nodes) are randomly sorted. For a d1-cube ξd1 and
a d2-cube ξd2 , the cubes are first sorted by the ascend-
ing order of d1 and d2. While for d1 = d2, the order
of cubes is determined by its longest (most specific) 1-
cube (i.e., the edge). As for those equal longest edges

(i.e., their longest edges emerge at the same value η),
the cubes are sorted in ascending order of the maxi-
mum number of nodes. Subsequently, along with the
variations of η ∈ [0, µmax], we can achieve a boundary
matrix τfiltration in which each row and column repre-
sents all ordered emerging cubes, as well as an inci-
dent matrix ϖfiltration recording emerging thresholds η
for all cubes. Furthermore, if the dq−1-cube ξdq−1 is
the face of the q-cube ξq, the corresponding entry in
τfiltration refers to 1, otherwise null [50].

Next, by reducing τfiltration into a column-echelon
form τreduced, the t-th topological feature (i.e., the PD
(bqt , d

q
t )) of dimension q can be obtained by simply

scanning each column from left to right [50]. Specif-
ically, for a column contains non-zero entries (i.e., 1),
when the row index corresponding to the last 1 equals
the column index, it implies that the cube disappears.
Therefore, the corresponding death time ηdeath is the
same as the exact birth time for the cube correspond-
ing to the row index and can be found by looking up
ϖfiltration. Otherwise, if the values of a column (i.e.
the index of the ordered cubes) are all 0, we resort to
lookup the emerged threshold ηbirth of the cubes, and
regard [ηbirth,+∞] as the interval of the cube. Corre-
spondingly, the PB for a cube t can be represented as
[bqt , d

q
t ] = [ηbirth, ηdeath], while the corresponding PD
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can be denoted as l⃗qt = (bqt , d
q
t ).

Based on the computed PD from height filtration
and radial filtration, the PD can be further processed.
Correspondingly, consistent with the discussions in
Section 2.3, persistence signatures like the Wasser-
stein distance, Bottleneck distance, Betti curve, PL,
and heat kernel are further adopted.

• Wasserstein amplitude [40]: Based on the
Wasserstein distance, the Wasserstein amplitude
of order p is defined according to Lp norm of the
vector, that is

AW(p, q) =

√
2

2

(∑
t
(dqt − b

q
t )
p
) 1

p
. (21)

In this paper, we use p ∈ {1, 2}.
• Bottleneck distance [39]: The Bottleneck ampli-

tude can be considered as a special case of p→∞
in (21). In other words,

AB(q) =
√
2

2
sup
t
(dqt − b

q
t ). (22)

• Betti curve [25]: The Betti curve of a PB is the
bar number in q dimension at a given threshold ς

ε(ς, q) =
∑

t
Π[bqt ,d

q
t ]
(ς), (23)

where Π[bqt ,d
q
t ]
(ς) =

{
1, ς ∈ [bqt , d

q
t ];

0, otherwise.
[51].

• Persistent landscape [26]: The PL is character-
ized by a sequence of PL(λ, ϱ, q) : R → [0,∞)

for layers λ = 1, 2, . . . , ϱ ∈ N, which denotes
the λ-th largest value of {f(ϱ, l⃗qt , q)}

Nq

t=1, with Nq

indicating the number of bars in dimensions q and

f(ϱ, l⃗qt , q) =


0, if ϱ /∈ (bqt , d

q
t );

ϱ− bqt , if ϱ ∈ (bqt ,
bqt+d

q
t

2 );

dqt − ϱ, if ϱ ∈ (
bqt+d

q
t

2 , dqt ).
(24)

Here we consider curves obtained by setting λ ∈
{1, 2}.

• Heat kernel [41]: A stable multi-scale ker-
nel bridges with machine learning techniques by
Gaussian distributions with mean ι = (bqt , d

q
t ) and

standard deviation κ (i.e., N(ι, κ)) [41]. Mathe-
matically, denoting (r, s) ∈ R2 as any position in
the final heat map, the value of (r, s) corresponds
to the summation of the output through the Gaus-
sian distribution over every point of the PD. HK is
a real-valued function on R2 and can be expressed
as

HK(κ, q, r, s) =
1

8πκ

∑
t
e−

(r−b
q
t )2+(s−d

q
t )2

8κ

−e−
(r−d

q
t )2+(s−b

q
t )2

8κ , (25)

where κ ∈ {10, 15}.

• Persistent entropy [44]: The PE of a PB takes
the Shannon entropy of the persistence (lifetime)
of all cycles [52]

PE(q) = −
∑

t

l⃗qt
L
log(

l⃗qt
L
), (26)

where L =
∑

t l⃗
q
t is the sum of all the persis-

tences.

For a specific case of filtration ψ or (uc, vc), we con-
catenate all abovementioned metrics as the topological
persistence signatures as

x′TDAs
(f) =[ε(ς, q),PL(λ, ϱ, q),HK(κ, q, r, s),

AW(p, q),AB(q),PE(q)]f , (27)

where the operator [·]f implies all components are
computed under the filtration parameterized by f (e.g.,
ψ and (uc, vc)).

Furthermore, after the process of the TDA encoder,
x′TDA can be achieved by further concatenating Eq.
(27) from Nψ height filtration and Nc radial filtration,
that is

x′TDA =[x′TDAs
(ψ1), · · · , x′TDAs

(Nψ),

x′TDAs
((uc, vc)1), · · ·x′TDAs

((uc, vc)Nc)].

(28)

Meanwhile, the procedures for TDA encoding have
been summarized in Algorithm 3.
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4.3 TDA-Based Decision Network for Error
Detection

The stability theorem [39] proves that two similar ob-
jects possess close PDs. Consequently, it is eligible to
use PD or the induced persistence signatures to mea-
sure the topological closeness between two images.
Therefore, intuitively, the topological features of the
reconstructed image x̂ at the receiver can be com-
puted for the ACK/NAK decision making, by com-
paring with the transmitted TDA features, named as
TDA-Computation decision-making approach. Alter-
natively, topological features can be regarded as a spe-
cial type of hidden features and source images can
be recovered accordingly by utilizing various methods
like generative adversarial network (GAN) [53], con-
volutional neural network (CNN). Nevertheless, both
means can be considerably time-consuming, and it
is worthy of investigation of a computation-effective
means for making error detection decisions.

Hence, we propose TDA-Recovery decision-
making approach. Instead of a repetitive TDA com-
putation or complete image recovery, we only try
to establish the relationship between the transmitted
topological features and source images and adopt an
MLP module as the TDA decoder TDAde to acquire
x̂TDA(·) from the noisy x̂′TDA, that is,

x̂TDA = TDAde(x̂
′
TDA;ϕ) = MLP(x̂′TDA;ϕ). (29)

In the end, the output of TDA decoder TDAde(·)
is discriminated to yield the re-transmission decision.
As shown in Figure 5, we design a decision network
DEC(·), which is based on a pre-trained VGG16 net-
work [54, 55], to capably measure the similarity be-
tween x̂TDA and x̂. Finally, the decision network
DEC(·) in Eq. (14) is accomplished as

ζ =

{
1, if VGG(x̂, x̂TDA) ≥ χx;
0, if VGG(x̂, x̂TDA) < χx.

(30)

In essence, the re-transmission decision by DEC(·)
is based on the assessment of whether x̂ and x̂TDA fall
into the same category, while VGG(·) outputs the se-
mantic similarity between the received content and the
TDA-induced image. This re-transmission determina-
tion can be reached if the semantic similarity between

Algorithm 3. The TDA-based encoder.

Initialization: The number of the directions used in
the height filtration Nψ; the number of the cen-
ters used in the radial filtration Nc; the binarized
threshold ν.

Input: The transmitted image x.
Output: The topological feature x′TDA.
1: Transform the image x ∈ RH×W×3 into a

grayscale image x ∈ RH×W , with grayscale val-
ues g(u, v) at a pixel (u, v) 1 ≤ u ≤ H, 1 ≤ v ≤
W .

2: Binarize x with Eq. (18).
3: while 1 ≤ s ≤ Nψ do
4: Update pixel value µ(u, v) with Eq. (19).
5: Construct the filtration of nested cubical com-

plex K with K(x, η0) ⊆ K(x, η1) ⊆ · · · ⊆⊆
K(x, ηi) ⊆ · · · ⊆ K(x, ηn), where 0 ≤ ηi ≤
µmax(u, v).

6: Record all the cubes ξ emerged during the fil-
tration and their emerged threshold ηξ.

7: Sort the recorded cubes and construct a corre-
sponding boundary matrix τfiltration and an inci-
dent matrix ϖfiltration.

8: Reduce τfiltration as τreduce and compute (bqt , d
q
t )

according to τreduce and ϖfiltration.
9: Transform (bqt , d

q
t ) into the vector input with Eq.

(21)–Eq. (26).
10: end while
11: while 1 ≤ s ≤ Nc do
12: Update pixel value µ(u, v) with Eq. (20).
13: Repeat steps in Line 5 to Line 9.
14: end while
15: Update x′TDA with Eq. (28).

x̂ and x̂TDA by VGG(·) exceeds the decision thresh-
old χx. In other words, x̂ and x̂TDA are sufficiently
different.

Table 4 compares the peak signal-to-noise ratio
(PSNR) and running time between the TDA-Recovery
and TDA-Computation decision-making approaches
of CIFAR10 dataset under AWGN channel. The SNR
is set to 10 dB and the compression rate is set to 1/3.
The experiments are implemented in PyTorch and run
on NVIDIA GeForce RTX 4090. As indicated in Ta-
ble 4, while both methods yield similar PSNR per-
formance, the former operates on a second-level time,
whereas the latter requires an hour-level time. There-
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Table 4. Comparison of PSNR and running time between
TDA-Recovey and TDA-Computation decision-making ap-
proaches.

Method PSNR Running time

TDA-Recovery
decision-making approach

39.757 dB 0.113 s

TDA-Computation
decision-making approach

39.365 dB 5.6 h

fore, it validates the effectiveness of the mentioned
feature selection in terms of PSNR and computational
costs.

V. EXPERIMENTAL SETTING AND NU-
MERICAL RESULTS

5.1 Experimental Setting

We evaluate the performance of SC-TDA-HARQ on
transmitting typical image datasets with resolutions
spanning from 32 × 32 up to 2K. Specifically, we
employ the CIFAR10 dataset for training and test-
ing of lower resolution images. Conversely, for high-
resolution images, the DIV2K dataset is selected for
training purposes, while the Kodak dataset is utilized
for testing. Moreover, we qualify the performance
using both the widely used pixel-wise metric PSNR
and the perceptual metric multi-scale structural sim-
ilarity (MS-SSIM). The performance comparison is
primarily conducted against varying SNRs and com-
pression rates. In terms of setting the compression
rate, it is regulated by the compression dimension C.
For the CIFAR10 dataset, C is selected from the set
{8, 16, 24, 32, 48}. Meanwhile, for high-resolution
datasets, C is chosen from a different set compris-
ing of {16, 32, 64, 96, 128, 196}. SC-TDA-HARQ is
compared with separation-based source and channel
coding (i.e., BPG codec for source image compression
and LDPC codec for channel coding), Deep JSCC [2]
and WITT [6]. For the LDPC codec, various com-
binations of code rates and modulations are evalu-
ated. In particular, (3072, 6144), (3072, 4608), and
(1536, 4608) are chosen for 1/2, 2/3, and 1/3 code
rates, respectively, while BPSK, 4-QAM, 16-QAM, or
64-QAM are considered for modulations [56].

During the training, images are randomly cropped
into 256 × 256 patches. Besides, we exploit the
Adam optimizer with a learning rate of 1× 10−4, and
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0        100       200       300      400

  
  
  
  
  
  
1
0
0
  
  
  
 2

0
0
  
  
  
3
0
0
  
  
  
 4

0
0

0        100       200       300      400  
  
  
  
  
  
1
0
0
  
  
  
 2

0
0
  
  
  
3
0
0
  
  
  
 4

0
0

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Figure 8. The Pearson correlation matrix of CIFAR10 and
Kodak datasets.

the batch size is set to 128 and 16 for the CIFAR10
dataset and DIV2K dataset, respectively. Other essen-
tial settings for swin transformer in SC-TDA-HARQ
are summarized in Table 5.

On the other hand, the direction ψ used in the height
filtration and the center used in the radical filtration
are set as Table 6, while typical settings for comput-
ing distance-based metrics or kernels are given in Sec-
tion 4.2. Accordingly, the TDA encoder can generate
476 dimensions of topological features. In terms of
Pearson coefficients, Figure 8 presents the correlation
of these features [57], 28 of which with least corre-
lations are selected to reduce the computational com-
plexity without sacrificing the performance.

5.2 Numerical Results

Numerically, Figure 9 shows the PSNR and MS-SSIM
performance of CIFAR10 dataset over the AWGN
channel. Figure 9(a) and Figure 9(b) investigates the
performance versus the SNR, where the compression
rate is set to 1/3. It can be observed that for the
low-resolution dataset, SC-TDA-HARQ outperforms
other schemes (i.e., “BPG+LDPC”, Deep JSCC and
WITT) for all SNRs in terms of both PSNR and MS-
SSIM. Meanwhile, the MS-SSIM performance gain
decreases with the increase of the SNR, and SC-TDA-
HARQ achieves the maximum gain when SNR is set
to 1 dB. On the other hand, Figure 9(c) and Figure 9(d)
manifests the performance versus the compression rate
where the SNR = 10 dB. SC-TDA-HARQ can gen-
erally outperform both traditional and semantic com-
munication methods by the comparison of PSNR and
MS-SSIM. Moreover, the PSNR performance gap in-
creases in direct proportion to the compression rate;
while there is a significant drop in MS-SSIM perfor-
mance gain with the growth of the compression rate.
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Table 5. The default hyper-parameter settings of swin transformer.

Hyperparameter No. of Stages Depth (No. of swin transformer blocks) Embedding dimension of each stage No. of heads Window size

CIFAR10 2 [2, 4] [128, 256] [4, 8] 2

DIV2K 4 [2, 2, 6, 2] [128, 192, 256, 320] [4, 6, 8, 10] 8

Table 6. The default hyper-parameter settings of TDA encoder.

Filtration Values

Height Filtration ψ (1, 0), (0, 1), (1, 1), (1,−1), (−1, 1), (−1,−1), (−1, 0), and (0,−1)

Radial Filtration (u, v) (23, 7), (23, 15), (23, 23), (7, 23), (7, 15), (7, 7), (15, 23), (15, 15), and (15, 7)
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Figure 9. PSNR and MS-SSIM performance of the CIFAR10 dataset over the AWGN channel. (a)−(b) PSNR and MS-SSIM
performance of the CIFAR10 dataset versus the SNR. The compression rate is set to 1/3. (c)−(d) PSNR and MS-SSIM
performance of the CIFAR10 dataset versus the compression rate. The SNR is set to 10 dB.
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Figure 10. PSNR and MS-SSIM performance of the CIFAR10 dataset over the Rayleigh channel. (a)−(b) PSNR and MS-
SSIM performance of the CIFAR10 dataset versus the SNR, respectively. The compression rate is set to 1/3. (c)−(d) PSNR
and MS-SSIM performance of the CIFAR10 dataset versus the compression rate. The SNR is set to 3 dB.

On the other hand, Deep JSCC achieves inferior per-
formance than “BPG+LDPC” at SNR = 10 dB, 1/2
compression rate when transmitting CIFAR10 images.

Figure 10 demonstrates the PSNR and MS-SSIM
performance of CIFAR10 dataset over the Rayleigh
channel. Figure 10(a) and Figure 10(b) investigates
the performance versus the SNR, where the compres-
sion rate R is set to 1/3. By Figure 10(a) and Figure
10(b), for the low-resolution dataset, SC-TDA-HARQ
is superior to conventional SemCom schemes (i.e.,
Deep JSCC and WITT) for all SNRs in terms of both
PSNR and MS-SSIM. Different from the slight MS-

SSIM gain obtained when the SNR increases to 13 dB
over the AWGN channel, SC-TDA-HARQ still holds
considerable gain with the growth of the SNR over the
Rayleigh channel. On the other hand, Figure 10(c)
and Figure 10(d) manifests the performance versus the
compression rate where the SNR = 3 dB. Concern-
ing the PSNR and MS-SSIM performance obtained by
Deep JSCC and WITT, SC-TDA-HARQ shows sub-
stantial performance gain. There is also an enlarged
gap in PSNR as the compression rate increases. A
similar observation also applies to the MS-SSIM ver-
sus the compression rate, except that SC-TDA-HARQ
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yields superior significant improvement no matter how
the compression rate changes. The findings in Fig-
ure 9 and Figure 10 validate the joint advantages of
TDA and IK-HARQ by making re-transmission deci-
sions and reusing information, so as to reduce seman-
tic misunderstanding in lossy environments. Further-
more, Figure 11 visualizes the reconstructions of the
Kodak dataset under AWGN channel at SNR= 10dB
and the compression rate R = 1/16. It can be ob-
served that SC-TDA-HARQ can achieve better visual
quality with the same bandwidth cost. More specifi-
cally, it avoids block artifacts and produces higher fi-
delity textures and details.

Next, we analyze the contributing impact of topo-
logical features in terms of PSNR. For CIFAR10
dataset, Figure 12(a) and Figure 12(b) demonstrates
the PSNR performance versus the SNR at the com-
pression rate R = 1/3 and SNR = 10 dB over
the AWGN channel, respectively. When Comparing
with SC, i.e., the conventional SemCom model with
swin transformer-based semantic codec, it can be ob-
served that the TDA-enhanced SemCom (SC-TDA)
outperforms SC for low-resolution image datasets,
which illustrates that the incorporation of TDA ben-
efits the encoding and decoding processing during the
image transmission. As the SNR increases, the perfor-
mance enhancement brought about by TDA becomes
more pronounced. Meanwhile, with the fixed SNR,
TDA achieves the ascending performance gap with the
growth of the compression rate as well. Figure 12(c)
and Figure 12(d) illustrate the variations of PSNR ver-
sus the SNR at the compression rate R = 1/3 and
SNR = 3 dB over the Rayleigh channel, respectively.
Similar to the performance under AWGN channel, the
incorporation of TDA obtains performance improve-
ment to some extent, and the maximum performance
gain is obtained at SNR = 10 dB. Meanwhile, regard-
less of channel environments, the combination of IK-
HARQ still obtains a considerable gain in the trans-
mission of low resolution images.

On the other hand, the effects of integrating TDA
features to Kodak dataset is also investigated. Fig-
ure 13(a) and Figure 13(b) demonstrates the PSNR
performance versus the SNR at the compression rate
R = 1/16 and SNR = 10 dB over the AWGN chan-
nel, respectively. It can be observed that the SC-TDA
mostly outperforms SC, which indicates that the incor-
poration of TDA benefits the encoding and decoding

processing during the image transmission to some ex-
tent. Figure 13(c) and Figure 13(d) illustrate the PSNR
performance versus the SNR at the compression rate
R = 1/3 and SNR = 3 dB over the Rayleigh chan-
nel, respectively. Consistent with the performance un-
der AWGN channel, the inclusion of TDA features
leads to some improvement in performance, with the
most significant gain observed at an SNR = 10 dB.
Moreover, Figure 13 shows that though SC-TDA spo-
radically under-performs than SC possibly limited 28-
dimensional TDA features, regardless of the chan-
nel conditions, the incorporation of IK-HARQ con-
sistently achieves notable gains in the transmission of
high-resolution images. In other words, the combina-
tion of TDA and IK-HARQ can consistently boost the
transmission performance.

Next, we investigate the impact of different dimen-
sions of TDA features on the PSNR performance. In
Figure 14, we present a comparative analysis of PSNR
performances for the Kodak dataset, using the SC-
TDA model with different dimensions of TDA fea-
tures. Observations from Figure 14 reveal that the
SC-TDA model employing 28-dimensional TDA fea-
tures achieves a PSNR performance on par with that
of the SC-TDA model utilizing 476-dimensional (i.e.,
full-dimensional) features. Notably, this comparable
performance is attained with significantly less trans-
mission resource usage, highlighting the efficiency of
the SC-TDA model when it incorporates optimally
TDA features. This finding underscores the poten-
tial of TDA features in enhancing image transmission
quality while conserving transmission resources. Ad-
ditionally, in light of the instances where SC-TDA
does not surpass SC, as illustrated in Figure 13, Fig-
ure 14 indicates that increasing the dimensions of
the TDA features, which enhances the complexity or
richness of TDA features, could address this issue
to some extent. Moreover, as demonstrated in Fig-
ure15, the SC-TDA-HARQ model consistently outper-
forms the SC-TDA model, and SC-TDA-HARQ with
476-dimensional features shows slightly performance
improvement over that with 28-dimensional features.
Thus, it can be safely concluded that under sufficient
length of check bits, substantial performance improve-
ments can be anticipated.

We also compare our topological error detection
method with other scheme like Sim32 in Appendix.
Given the importance of establishing a suitable thresh-
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Figure 11. Examples of visual comparison of Kodak dataset under AWGN channel at SNR = 10 dB and R = 1/16.
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old for re-transmission by observing changes in se-
mantic similarity, we undertake a comparative analy-
sis. This analysis focuses on the variations in semantic

similarity across different batches of images, sampled
at various stages during the training process. As is
illustrated in Figure 1 and Table 1, Sim32 is less quali-
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Figure 16. Pipeline of SC-HARQ with Sim32.

fied for the decision of re-transmission, as the similar-
ity computed by Sim32 remains almost unchanged un-
der various channel conditions. On the contrary, SC-

TDA-HARQ achieves more robust performance com-
pared to Sim32, thus validating the positive effect of
TDA in making the re-transmission decision.
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VI. CONCLUSION

In this paper, we have proposed a high-efficiency
framework SC-TDA-HARQ to improve the perfor-
mance of wireless image transmission. In particu-
lar, with the assistance of TDA, the SC-TDA-HARQ
framework is built upon the swin transformer to ex-
tract hierarchical image representations. Furthermore,
SC-TDA-HARQ utilizes IK-HARQ to fully use in-
crementally knowledge from multiple transmissions,
while TDA-based error detection scheme is lever-
aged to determine the conditions for re-transmissions.
Extensive results have demonstrated that SC-TDA-
HARQ outperforms both conventional communication
and classical SemCom methods, with manifested per-
formance gain under different SNRs and compression
rates. Meanwhile, due to the capability to leverage in-
ner topological and geometric information embedded
images, TDA significantly improves robustness com-
pared to other error detection schemes like Sim32. In
the future, we will investigate efficient means to com-
pute TDA, so as to better tackle SemCom issues.
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NOTES

1The details to apply Sim32 for computing semantic
similarity are given in Appendix.

APPENDIX

Introduction of similarity computation in Figure 1
and Table 1: As is depicted in Figure 16, for Sim32,

the transmission process involves two parallel encod-
ing paths corresponding to the SC encoder and the
Sim32 encoder, which are responsible for generating
the coded bits for the SC and a 32-bit header, respec-
tively [16]. Specifically, the Sim32 encoder consists
of an SC encoder-alike swin transformer and an MLP
layer. These encoded symbols are then concatenated
and transmitted through the communication channel.
On the receiver side, the SC decoder reconstructs the
SC coded bits. The reconstructed content is then sub-
jected to a downsampling process using the SC en-
coder and combined with the symbols recovered from
the 32-bit header by the Sim32 decoder. This amalga-
mated vector subsequently passes through additional
MLP layers. The final output from these MLP layers
serves as an indicator of the semantic similarity be-
tween the received content and the 32-bit header, ef-
fectively measuring how closely the received informa-
tion matches the original source content [16].
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