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Abstract
In the field of magnetic confinement plasma control, the accurate feedback of plasma position
and shape primarily relies on calculations derived from magnetic measurements through
equilibrium reconstruction or matrix mapping method. However, under harsh conditions like
high-energy neutron radiation and elevated temperatures, the installation of magnetic probes
within the device becomes challenging. Relying solely on external magnetic probes can
compromise the precision of EFIT in determining the plasma shape. To tackle this issue, we
introduce a real-time, non-magnetic measurement method on the HL-3 tokamak, which
diagnoses the plasma position and shape via imaging. Particularly, we put forward an adapted
Swin Transformer model, the Poolformer Swin Transformer (PST), to accurately and fastly
interpret the plasma shape from the Charge-Coupled Device Camera images. By adopting
multi-task learning and knowledge distillation techniques, the model is capable of robustly
detecting six shape parameters under visual interference conditions such as bright light from the
divertor and gas injection, thereby avoiding cumbersome manual labeling. Specifically, the
well-trained PST model capably infers R and Z within the mean average error below 1.1 cm and
1.8 cm, respectively, while requiring less than 2 ms for end-to-end feedback, an 80%
improvement over the smallest Swin Transformer model, laying the foundation for real-time
control. Finally, we deploy the PST model in the Plasma Control System using TensorRT, and
achieve 500 ms stable PID feedback control based on the PST-computed horizontal
displacement information. In conclusion, this research opens up new avenues for the practical
application of image-computing plasma shape diagnostic methods in the realm of real-time
feedback control.
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1. Introduction

For magnetic confinement fusion devices like tokamak [1],
accurate measurement of plasma shape is one of the most
preliminary steps toward subsequent diagnostics and control.
Currently, most measurement techniques like magnetic equi-
librium reconstruction code EFIT are largely contingent on
magnetic field sensors like probes, the accuracy of which is
largely affected by the applicability of magnetic sensing [2].
Long plasma discharges can suffer from drift of the magnetic
signals due to the integral nature of these measurements [3].
Similarly, plasmas with a low plasma current and large dis-
tance to the magnetic pick-up coils (for example during the
ramp-up and ramp-down phase of the discharge or ITER first
plasma) may result in weak magnetic signals [4]. Meanwhile,
under severe conditions like high-energy neutron radiation and
high temperatures, the performance significantly deteriorates
and could even completely malfunction due to heat shock
and magnetic forces. Therefore, to satisfy the requirements
in future extremely high-temperature environments like ITER,
developing an alternative method for real-time, non-magnetic
measurement is highly desired [5].

Correspondingly, the optical plasma boundary reconstruc-
tion for plasma position control sounds promising. For
example, Hommen et al proposed to reconstruct the plasma
boundary from dual camera-based, poloidal-view wavelength
images, and attained high qualitative and quantitative agree-
ment with EFIT in the MAST device [6]. Subsequently, they
implemented real-time plasma vertical displacement control
in the TCV device [4]. However, the work [4, 6] is restric-
ted to the analysis and reconstruction of plasma discharges of
a single configuration, the ‘TCV standard shot’ [4], since it
relies on an appreciable distance between the plasma bound-
ary and the first wall results in well-defined boundary fea-
tures in the camera images, with little polluting light from
reflections or plasma-wall interaction in the regions of interest
(ROI). Ravensbergen et al extracted the optical plasma bound-
ary and radiation front for detached divertor plasmas from
multi-spectral imaging, and showed the possibilities to reli-
ably detect the divertor leg and radiation front by lightweight
image processing tools [7]. But the magnetic field distribu-
tion on the divertor leg can affect the system’s sensitivity [7].
Luo et al utilized a Least Square-based method to delineate
ROI in Charge-Coupled Device (CCD) images manually and
demonstrated the successful reconstruction of plasma bound-
aries in EAST tokamak [8]. Nevertheless, the manual set of
ROI makes these works [4, 7, 8] less competent in automatic-
ally accomplishing the plasma shape inference task. In addi-
tion, the algorithmic designmay be constrained by the availab-
ility of optical sources. For instance, in the HL-3 tokamak, the
proximity to plasma heating regionsmakes the tangential CCD
cameras susceptible to lens coating due to material deposition

[9], which significantly degrades image quality and leads to
inaccurate observations of the plasma shape. Consequently,
compared to the more information-abundant tangential views,
using an extreme wide-angle lens poses considerable extra
challenges in achieving a comprehensive capture of the plasma
configuration.

On the other hand, attributed to the powerful represent-
ation ability and efficient parallel computing, the applica-
tion of machine learning (ML) has yielded significant pro-
gress in equilibrium reconstruction [10–12] and solver [13,
14], plasma control [15, 16] and boundary detection [17,
18]. In particular, by learning from labeled thermal patches
on the initial plasma wall of the W7-X device, Szucs et al
employed a vision-centric, YOLOv5-based method to infer
possible thermal patchs while achieving near-real-time infer-
ence times [17]. Based on manually labeled plasma boundar-
ies, Yan et al utilized the U-Net neural network to identify the
boundary on EAST [18]. Boyer et al [19] proposed a relat-
ively simpler Convolutional Neural Network (CNN) model to
identify the detachment front and strike positions (X point)
from camera images on the DIII-D device. Besides suffer-
ing from manual labeling errors, the complexity of toka-
mak plasma poses another considerable challenge for accur-
ate shape reconstruction. As shown in figure 1, factors like
shifting plasma position, temperature, brightness, and current
density distribution can impact the overall brightness within
the device, thereby increasing the difficulty of predicting pos-
itional parameters. Additionally, the light spots caused by
inner wall windows and gas injection interfere visually with
plasma shape features, thus further adding to the reconstruc-
tion difficulty. Fortunately, experiments have confirmed that
the existence of scaling laws in deep learning, which indicate
that larger, more powerful deep neural networks (DNN) gen-
erally demonstrate improved generalization capabilities and
robustness [20, 21], given their enhanced capability to capture
intricate patterns within the data and handle out-of-distribution
examples.Meanwhile, attention-based Transformer [22] back-
bones promise remarkable superiority in visual tasks than
its convolutional counterparts [23]. Hence, it is natural to
apply more powerful Transformer [22] for inference from
CCD images of the complex environment. Notably, though
DNN-based surrogate models promise faster inference speed
with satisfactory accuracy [24, 25], it assumes the adoption of
Multi-Layer Perceptron (MLP) and LSTM during the imple-
mentation. However, as the width and depth escalate, the
computational complexity of the Transformer neural network
increases triply [22]. Therefore, achieving real-time computa-
tion on cost-effective hardware platforms (e.g. Nvidia GeForce
RTX 2080 Ti) becomes more challenging. In other words, for
the real-time detection and control of plasma shape, it becomes
imperative to strike the balance between accuracy and infer-
ence speed.
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Figure 1. Images of plasma shape captured with a camera on the
HL-3 device. (a) Displays the inner limiter shape in shot #06696,
with window interference present on the wall. (b) Is the divertor
shape related to shot #06696, wherein the image exhibits low
brightness levels, leading to a loss of edge recognition. (c) Is a gas
puffing interference image in shot #06255, with bright air delivery
interference spots visible on the wall.

In this work, on top of Swin Transformer [26], we develop
a series of Poolformer [27, 28] Swin Transformer (PST) mod-
els, which demonstrate sufficient inference speed and rel-
atively higher plasma reconstruction accuracy after training
from large-scale data from the HL-3. In particular, we adopt
a multi-task learning [29] framework by taking extreme wide-
angle CCD images as the input while simultaneously utilizing
the output of EFIT including radial positionR and vertical pos-
ition Z of plasma geometric center, minor radius a, elongation
κ, upper triangularity δu, and lower triangularity δl as labels.
Such a design also avoids the cumbersomeness of manually
labeling ROIs and contributes to learning consistency. To com-
bat the unreliability of EFIT calculations during stages where
the absolute value of plasma current is small but the rate of
change is large, we incorporate a dynamic weight strategy as
well [30]. Furthermore, a knowledge distillation procedure is
utilized for further compressing the model. The adapted Swin
Transformer model manifests the comprehensive adaptability
to the visual complexity of the HL-3 device plasma, including
overly blurred boundaries, Neutral Beam Injection (NBI) and
gas puffing interference, sudden bright spots, and wall hole
interference. This specificmodel can seamlessly integrate with
a plasma control system (PCS) and effectively support imme-
diate magnetic field control.

2. Methods

2.1. Data collection and pre-processing

HL-3 is a medium size tokamak with an aspect ratio of 2.8:
plasma current Ip = 2.5–3 MA, toroidal field B = 2.2–3 T,
major radius R= 1.78 m, minor radius a= 0.65 m, and elong-
ationκ⩽ 1.8; triangularity δ ⩽ 0.5 [31]. HL-3was designed to
have a flexible configuration in order to explore multiple diver-
tor configurations. Three heating and current drive (HCD) sys-
tems are able to provide a total power of 27 MW, including 15
MW of NBI, 8 MW of electron cyclotron resonance frequency
(ECRF), and 4 MW of lower hybrid current drive (LHCD).
In this work, given the clear evidence of the positive relation-
ship between the CCD image and EFIT of a plasma shape [8,
18], we aim to directly learn the characteristics of a plasma
CCD image and reconstruct the plasma shape according to the

Figure 2. Toroidal cross section of the HL-3 tokamak. © [2024]
IEEE. Reprinted, with permission, from [9]. Including the tangential
view diagnostic (orange color, from#4 equatorial port), the extreme
wide-angle view diagnostic (magenta color, from #19 equatorial
port), and the downward-looking view diagnostic installed in the
#5 sector, which is indicated by a green arrow. The location of the
gas puffing entry at #10 equatorial port is indicated by a red arrow.
In this study, we use the extreme wide-angle view diagnostic.

output of EFIT. In other words, the input is the CCD image
taken from HL-3, while the output is the corresponding para-
meters (i.e.R, Z, a, κ, δu, and δl) for the plasma shape output by
EFIT. Table 1 summarizes the details of the input and output.

Specifically, the HL-3 device is equipped with an advanced
visible light diagnostic system, providing three dispar-
ate views—tangential, extreme wide-angle, and downward-
looking—of the dynamics of each discharge. As shown in
figure 2, the tangential view theoretically provides clearer
information on the upper and lower divertor geometry, enhan-
cing the capture of lateral plasma behavior. Yet, the tangen-
tial lens’ vicinity to the heating area on HL-3 often leads
to lens coating, resulting in over-blurred lens imagery, lim-
ited effective data, and complications in plasma observation.
Consequently, we primarily employ CCD images from the
extreme wide-angle view due to their robustness. Albeit its
sub-optimality, our results demonstrate that it still yields fairly
accurate reconstruction results.

The CCD camera for the extreme wide-angle view outputs
images in the Bayer GB8/Bayer GB10 format, with a high
frame rate of up to 2000 fps and a resolution of 1920× 1080
pixels, each measuring 10 µm × 10 µm. This high frame
rate ensures the capture of subtle dynamic changes in plasma,
vividly reflecting the morphology and dynamic changes of the
plasma, and providing abundant visual information for dia-
gnosis. Additionally, the Bayer algorithm can convert these
images into an RGB format without loss of quality. Notably,
the exposure time is taken into account as well, given the inher-
ent brightness differences caused by adjustments of exposure
time (i.e. 1∼2 ms) from the camera API.

During the experiment, we collect a dataset of CCD
images with exposure time information from Shot #05554
to #06226. In particular, we select 271 effective shots, char-
acterized by the plateau phase lasting a minimum of 500 ms
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Table 1. Input and Output of CCD-based Plasma Shape Reconstruction Model.

Input/Output Variable Unit Dimension Description

Input Image N/A t× 3× 120× 120 Input image for the CCD perception model.
Input Exposure Time ms 1 Interval time of image acquisition by the camera.
Output R cm 1 Radial position of plasma geometric center
Output Z cm 1 Vertical position of plasma geometric center
Output a cm 1 Minor radius
Output κ dimensionless 1 Elongation
Output δu dimensionless 1 Upper triangularity
Output δl dimensionless 1 Lower triangularity

and a consistent plasma current of 100 kA during the phase.
This selected dataset corresponds to a combination of 324911
images. For each image, it undergoes initial cropping fol-
lowed by linear interpolation to achieve a size of 120× 120
pixels. Afterward, the compressed images undergo a group
normalization (GN) operation. While the primary purpose of
GN is to ensure stable training by normalizing feature val-
ues across groups of channels, it also helps maintain consist-
ency in feature scaling among different images, which indir-
ectly supports the robustness to adapt changes in brightness
and contrast. Meanwhile, no denoising operation is conducted,
as this helps to effectively retain the nuanced contrasts within
the images. Among the selected shots, 236 are designated for
training, with the remaining 35 allocated for testing. Given
the typically high similarity between adjacent shots, we care-
fully divide the dataset to guarantee the existence of notice-
able discrepancies in reference templates and plasma shape for
shots under both the training and testing datasets. This process
involves to review the discharge logs to select testing shots
with discharge parameters and configuration waveforms sig-
nificantly different from those in the training set, ensuring that
the model is tested across a wider variety of conditions. This
approach provides a more accurate assessment of its general-
ization capabilities.

On the other hand, the EFIT solution employed on the
HL-3 device has undergone extensive validation for accuracy
and reliability, especially in high-current plasma shots, such
as those achieving 1 MA with an elongation ratio of 1.6
[33]. Additionally, comparisons of EFIT outputs with other
diagnostic tools, including the microwave reflectometer and
static electric probes, have confirmed its accuracy in determ-
ining key plasma parameters, such as plasma position and
strike points in the divertor. These validations underscore
the robustness of EFIT in guiding real-time plasma control.
Nevertheless, EFIT might encounter convergence issues for
certain cases, especially in correcting errors in rapid shape
changes incurred by cases like vertical displacement [33],
which could cause significant interference to the training of
the CCD model. Furthermore, manually locating and recti-
fying all poorly converged EFIT data points can prove to be
arduous, particularly when dealing with tens of thousands of
data points. On the contrary, as demonstrated in evaluations on
the HL-3 device [32], EFITNN [10, 13] is able to automatic-
ally learn and correct inconsistencies within the data through
mapping relationships between magnetic diagnostic data and

Table 2. Correlation coefficient ρ, coefficient of determination R2,
and the mean absolute value of the normalized residuals |∆|
between the predicted and the EFIT values of plasma parameters for
the validation and test sets (shots #3309–#4186). The above data
represents the average of calculations performed separately for each
shot [32].

Name ρ R2 |∆|

R 0.974 0.941 0.0047
Z 0.991 0.977 0.0287
a 0.976 0.939 0.0101
κ 0.992 0.979 0.0087
δu 0.984 0.929 0.0409
δl 0.974 0.923 0.0561

plasma shape information, thus providing a qualified basis for
model training and testing. The EFITNNmethod demonstrates
high accuracy compared to the standard EFITs, as reported
in [32]. For instance, table V in [32] (table 2 in this paper)
shows that the correlation coefficient (ρ) for plasma paramet-
ers exceeds 0.97, and the coefficient of determination (R2)
approaches 0.96 for the validation and test sets. The mean
absolute value of normalized residuals |∆| is also consistently
low, indicating the reliability of EFITNN as training labels.
Therefore, during model training and offline testing, we use
EFITNN, a surrogate model, as the benchmark; while for on-
device deployment & evaluation, the more authoritative EFIT
solution is used instead to ensure reliability. In particular, dur-
ing training and testing, we use six primary parameters output
by EFITNN (R, Z, a, κ, δu, and δl) as labels in our model. As
shown in figure 3, the shape parameters distribution is plot-
ted using the kernel density estimation method. For each para-
meter, the actual maximum and minimum are extracted from
effective shots’ statistics, and a min-max normalization oper-
ation, which brings any parameter x ∈ {R,Z,a,κ,δu, δl} to an
interval of (0, 1) as x← x−min

max−min , is applied accordingly. We
find that such an operation can prevent potential biases in the
learning process.

2.2. ML model

We initially consider following the DNN structure of Swin
Transformer [26] to learn the relationship between CCD
images and plasma shape parameters (R, Z, a, κ, δu, and
δl). Specifically, to connect an image to the output, Swin

4



Nucl. Fusion 65 (2025) 026031 Q. Dong et al

Figure 3. Distribution of shape parameters in the training and testing datasets, based on the kernel density estimation method. This
visualized distribution illustrates the range and variations of each corresponding parameter.

Transformer [26] adopts a parallelizable multi-head attention
mechanism in Transformer [22, 34], which completely dis-
penses recurrence and convolutions. Swin Transformer then
employs a CNN-alike methodology to extract the hierarchical
feature maps of a CCD image. Generally, Swin Transformer
consists of 4 stages, each beginning with a patch merging
and layer normalization operation to gradually downsample
the image. Intuitively, as for an RGB image of 3× 120× 120
(indicated as 3×H×W), Swin Transformer changes it to a
size of C× H

4 ×
W
4 , 2C×

H
8 ×

W
8 , 4C×

H
16 ×

W
16 , 8C×

H
32 ×

W
32

after each stage. Notably, to maintain an acceptable compu-
tational cost, the Swin Transformer does not directly calcu-
late the global attention from the entire image. Instead, it par-
titions the image into fixed-size windows (in our study, we
adopt a window size of 5× 5), and employs aWindows-Multi-
head Self-Attention (W-MSA) mechanism [26] for each win-
dow. However, the lack of inter-window information exchange
confines the model to capture the long-range relationship.
Therefore, a Shifted Window-MSA (SW-MSA) block, which
shifts each window half of the window size downward and
rightward respectively, enhances the performance. In prac-
tice, Swin Transformer alternately usesW-MSAand SW-MSA
block. Detailed implementation procedures are provided in the
appendix.

Swin Transformer offers multiple versions, including
Swin-tiny, Swin-small, Swin-base and Swin-Large, each
increasing in model size and complexity. We utilize the
simplest and lightest one, Swin-tiny, with a depth (i.e. no. of
blocks) of 2, 2, 6, and 2 at each stage. As discussed lately,
Swin Transformer can accurately interpret local details and
global brightness distribution of the plasma, producing precise
parameter predictions even under a wide and variable range of
plasma conditions. Nevertheless, even for the smallest Swin-
tiny model, it takes at least 10 ms to perform the inference on
Nvidia GeForce RTX 2080 Ti, which hinders its applications
in high-frequency real-time magnetic control.

To address this issue, we take inspiration from [27, 28] and
develop a PST-tiny DNN. Particularly, PST-tiny only keeps a
portion of blocks (i.e. the first 1, 1, 2, and 2 blocks) for four
stages, and reduces the dimension of the hidden layer from
64 in Swin-tiny to 32. More specifically, the Swin block in
the first stage is replaced with a more computation-efficient
Poolformer block [27, 28]. In particular, as its name implies,
Poolformer divides the input tokens (i.e. partitioned images)
into multiple groups and then performs a pooling operation
within each group. Theoretically, for the number of input
tokens n, MSA has a computational complexity of O(n2),
while Poolformer only needs O(n) computations [27, 28].

To mitigate overfitting and enhance model generalization,
we apply regularization techniques such as dropout [35] and
stochastic depth [36], which randomly deactivate neurons and
skip layers, respectively, to boost model robustness. In addi-
tion, we leverage convolution and batch normalization oper-
ations rather than layer normalization in Swin Transformer,
given their typically faster speed and easier parallelizable
implementation on modern hardware. Notably, our experi-
mental results show that the DNN structure re-design can con-
tribute to a reduction in inference time of over 50% compared
to the Swin Transformer. As a comparison, we name the Swin-
tiny with an added Poolformer as PST-base. Finally, the DNN
hyperparameters configured for PST-tiny model are summar-
ized in table 3.

2.3. Model training

In this part, we first outline the design of the loss functions.
Specifically, we leverage a multi-task learning loss with a
dynamic weight strategy to efficiently learn the six plasma
shape parameters, and adopt a knowledge distillation loss to
further compress the model. Following this, we detail the prac-
tical training procedures.
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Table 3. DNN hyperparameter configuration of the PST-tiny
model.

Hyperparameter Default Value

Depths (1,1,2,2)
Patch Size 4
Input Channels 3
Embedding Dimension 96
Number of Heads (3,6,12,24)
Window Size 5
MLP Ratio 4.0
Dropout Rate 0.1
Attention Dropout Rate 0.1
Drop Path Rate 0.2

2.3.1. Loss function design

2.3.1.1. Individual task loss. In response to the observed
difficulty of the EFIT solution to achieve convergence dur-
ing the ramp-up and ramp-down phases of plasma discharge,
we opt to implement a particular loss function. In this con-
text, given the potential outliers for R, Z, and a calculated dur-
ing the ramp-up and ramp-down phases, we choose the Huber
loss function, which combinesMean Squared Error (MSE) and
Mean Absolute Error (MAE), to effectively mitigate the neg-
ative impact. Mathematically, for x ∈ {R,Z,a},

LHuber (x,x
′) =

{
1
2 (x− x

′)
2
, |x− x ′|⩽ δ;

δ|x− x ′| − 1
2δ

2, otherwise,
(1)

where x′ is the output by the PST model corresponding to
a CCD image while x denotes the corresponding EFITNN-
output label. Besides, the hyperparameter δ is set as 1.
Meanwhile, for the parameters κ, δu and δd, which have
a certain tolerance for prediction errors, we use the MAE
loss function LMAE(x,x ′) = |x− x ′| exclusively to avoid over-
penalization. The corresponding formula for a batch can be
summarized as

R(x) =

{
1
N

∑N
i=1LHuber (xi,x ′i ) , x= R,Z,a;

1
N

∑N
i=1LMAE (xi,x ′i ) , x= κ,δu, δd

(2)

where N represents the batch size.

2.3.1.2. Multi-task learning loss. Since R, Z and a in a CCD
image exhibit more intuitively distinctions than κ, δu, and δd,
and the PCS in HL-3 is contingent on R, Z, and plasma cur-
rent Ip for control, we perform a Multi-Task Learning (MTL)
by treating the learning of R, Z, and a as main tasks while
regarding the perception of κ, δu, and δd as auxiliary tasks.
The structure of this MTL design is depicted in figure 4. Such
an MTL design contributes to learning the similarities across
tasks, while the incorporation of auxiliary tasks allows for
more effective optimization of the DNN parameters, thereby
alleviating overfitting. Although the previous study [30] has
shown that jointly trained DNNs outperform those trained sep-
arately for each task, determining appropriate MTL weights is

Figure 4. Final DNN part of PST for multi-task learning
framework.

costly, especially when multiple plasma shape parameters are
required. Therefore, to effectively balance the individual con-
tribution of the six shape parameters, we employ a multi-task
loss strategy [30].

Accordingly, the loss function for a batch in MTL can be
written as

LMTL (x) =
∑

x∈{R,Z,a}

(
1
2c2x

R(x)+ ln
(
1+ c2x

))
+
∑

x∈{κ,δu,δd}
α

(
1
2c2x

R(x)+ ln
(
1+ c2x

))
, (3)

where ln(1+ c2x) is applied as a regularization term, and the
learnable network parameter cx,∀x ∈ {R,Z,a,κ,δu, δl} con-
tributes to automatically accounting for the different variances
and biases among single-task losses. This approach effect-
ively balances the loss weights of the six parameters, thereby
achieving superior performance. During practical training,
the three parameters in the auxiliary tasks, which receive
less attention, are initialized as smaller values (0.5, 0.5, 0.5),
whereas the initial values for the parameters in the main tasks
are set as 1. The hyperparameter α is used for the auxiliary
tasks to prevent them from becoming overly important, and it
is set at 0.2 in our study.

2.3.1.3. Knowledge distillation loss for model compression.
Despite the enhanced time efficiency of PST-tiny, it exhibits
a significant accuracy gap compared to PST-base model. In
order to compensate for the performance loss, we employ the
method of knowledge distillation, by using PST-tiny as a more
streamlined student DNN model and PST-base as the teacher
model. This modification allows PST-tiny to deliver more reli-
able results while enhancing its efficiency.

Concretely, the plasma shape reconstruction task falls into
the scope of regression learning, where conventional label-
oriented distillation techniques struggle to generate consist-
ent continuous output. Consequently, we turn to feature-
based knowledge distillation techniques and adopt Masked
Generative Distillation (MGD) [37], which uses features
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Figure 5. Illustration of the Masked Generative Distillation (MGD)
structure. The student’s feature is randomly masked and then the
projector layer is utilized to induce the student to generate the
teacher’s feature using the masked one.

(i.e. the hidden layer output) demonstrated by a well-trained
teacher DNN to guide the learning of the student DNN. The
structure of this distillation framework is illustrated in figure 5,
showing the interaction between the teacher and student net-
works and the role of the adaptation layer. Furthermore, MGD
applies random masking to pixels of the student’s feature and
forces it to generate the teacher’s full feature through a simple
adaptation layer. In MGD, random pixels are used in each iter-
ation, ensuring all pixels are eventually utilized throughout the
training process. Meanwhile, the distillation occurs at the final
layer of the Swin Transformer blocks in both networks with
MSE computed for pixel values at corresponding positions on
the feature maps. Mathematically, for a feature map with size
C×H×W,

Ldis =

C,H,W∑
k,i,j=1

(
FT
k,i,j−G

(
falign

(
FS
k,i,j

)
×Kk,i,j

))2
, (4)

where the superscripts S and T correspond to the student and
teacher DNNs, respectively. f align represents the adaptive layer
that aligns student features with teacher features, while the
student’s feature map is randomly masked according to the
masking matrix K.G=Wl2(ReLU(Wl1(F))), which incorpor-
ates two convolution layers (Wl1,Wl2) and one activation layer
(ReLU), represents the projector layer and leads to consistent
dimensions of feature maps in student and teacher models.

Since the teacher DNN only serves as a guide for student
DNNs to restore features rather than requiring direct imitation,

it effectively enhances the capability of the student DNN to
generate and understand complex structural data.

2.3.2. Training procedures. For each image with a particu-
lar exposure time, six corresponding plasma shape parameters
are used as labels. Considering the unreliability of EFIT cal-
culations during periods where the absolute value of plasma
current Ip is small, but the rate of change is large, owing to
factors like eddy currents, we choose to dynamically adjust
the confidence level of the labels. For each set of training data,
we regard the first 150 ms as the ramp-up period and the last
150 ms as the ramp-down period. Accordingly, given our lim-
ited confidence in EFIT-output labels in these two periods, we
assign smaller weights when calculating the loss function. On
the contrary, due to the high confidence in the label accuracy
during the plateau stage, we give it a higher weight. Such a
dynamic weight strategy guides the model to focus more on
improving performance during the plateau stage, which indir-
ectly enhances its efficacy in the other phases. Accordingly,
the MTL loss function is updated as

LMTL = γ ·LMTL (x) (5)

where the parameter γ, which is associated with the specific
moment t within a shot, can be written as

γ =

{
0.8, if t< 150or t> tmax− 150,

1, otherwise.
(6)

Here tmax refers to the moment at which the discharge ends.
On the other hand, by jointly involving the MTL loss and

knowledge distillation loss, the combined loss function can be
formulated as

Lcomb = (1− ζ)LMTL + ζLdis, (7)

where ζ is a hyperparameter used for balance loss. Once the
magnitudes of the original loss and feature loss are unified,
we set ζ = 0.1 for our experiments. This approach successfully
ensures the performance of the PST-tiny model while signific-
antly improving its efficiency.

2.4. Model deployment

Given awell-trained PST-tinymodel, we utilize ONNX to con-
vert it from the PyTorchmodel saving format (.pth) to themore
universal ONNX format. This open and widespread model
ONNX format facilitates convenient model sharing across
multiple deep learning frameworks. Additionally, we apply the
ONNX Simplifier tool, which capably infers the entire com-
putation graph and replaces redundant operators with constant
outputs, to simplify the model and enhance inference speed.

Ultimately, our model has been successfully deployed on a
Windows operating system, with model inference running on
Nvidia GeForce RTX 2080 Ti. Notably, we apply the powerful
deep learning inference optimizer and runtime environment,
Nvidia TensorRT [38], for subsequent optimization of models
in theONNX format. Typically, themodel optimization, which

7
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Table 4. Comparison of inference speed and deployment time for different models tested on Nvidia GeForce RTX 2080 Ti.

Model Depth Inference Time (ms) Deployment Time (ms)

PST-base (2,2,6,2) 3.4 4.3
PST-tiny (1,1,2,2) 1.0 1.8

Figure 6. The comparison between the PST-based plasma shape detection results and EFITNN output on (a) #06227 shot and (b) #06236
shot.

involves layer fusion, operator fusion, model pruning, and pre-
cision calibration, further increases the model run efficiency
and boosts the model performance. Our offline results suggest
that the optimization contributes to further reducing half of the
inference time. Table 4 summarizes the inference and deploy-
ment time. Meanwhile, as discussed lately, the model com-
pression trivially affects the inference performance with less
than 0.01 cm compared to the PST-base model.

3. Results

3.1. Offline results

In this part, we investigate the offline performance of DNN-
based plasma shape detection results and evaluate their accur-
acy in comparison with EFITNN. As mentioned in section 2.1,
the testing dataset encompasses 35 complete discharge shots.
To ensure the evaluation completeness, the dataset is inclus-
ive of the ramp-up, plateau, and ramp-down phases, and com-
prises an even distribution of plateau phases reaching 300 kA
and 500 kA.

Figure 6 illustrates the inferred six shape parameters by
the PST model throughout the entire discharge process for

shots#06227 and#06236, each reaching 300 kA and 500 kA
during the flat-top period, respectively. Generally, the model
can qualitatively capture subtle shape changes in key para-
meters, and the prediction accuracy of R and a is particularly
impressive, with an MAE margin within 1.5 cm. However,
the accuracy for Z is slightly lower with approximately 1.8
cm on average. Correspondingly, κ, δu, and δl, all highly cor-
related with vertical displacement Z, exhibit discrepancies in
some cases. Notably, such inferiority aligns with the adop-
tion of the extreme wide-angle view, as opposed to the tan-
gential view, which might miss some important changes in
the upper and lower divertor. On the other hand, it can be
observed that all shape parameters exhibit some degree of sys-
tematic offset, primarily due to variations in overall image
brightness caused by heating and high-density conditions.
Particularly, the largest deviation occurs in the vertical
displacement Z. This phenomenon is likely attributable
to the lower temperature and higher brightness observed
in the divertor region, which are significantly affected
by density variations and impurity radiation. Such effects
adversely impact the accuracy of predicting the Z para-
meter as well as other shape parameters. To compensate
for these local brightness variations and enhance model

8
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Figure 7. Comparison of plasma boundary coordinates for shot #06227 reconstructed using six parameters from the PST model and those
using EFITNN.

Figure 8. Visualization of feature maps and boundary detection results. Subfigures (a), (c), and (e) respectively represent the feature maps
of the plasma under the states of inner limiter configuration, biased limiter configuration, and gas puffing process in figure 1, while
subfigures (b), (d), and (f ) provide the inferred boundary. Notably, the transition from blue to red in feature maps indicates increased
attention or DNN weights to the related pixels during the computation.

robustness, potential research directions include adopting
advanced image preprocessing techniques or increasing the
diversity of training data. Furthermore, we try to explore
the potential of spatio-temporal fusion techniques to mitig-
ate image noise errors, by stacking T consecutive images.
Although this approach promises enhanced accuracy, its
lengthy inference and deployment time hinders practical
application.

To maintain a clear understanding of the plasma shape, we
compute the extreme points of the four sections from detected
shape parameters and then approximate the plasma boundary
as the linkage of four quarter-ellipses. Figure 7 presents the
corresponding result for shot #06227, and demonstrates the
proficient mimicking of the plasma’s progression towards
the divertor shape. On the other hand, for cases in figure 1,
the left part of figure 8 illustrates the feature maps, which

9
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Figure 9. Illustration of the shared base DNN of PST.

Figure 10. Bar chart of the PST model’s gain after adding different
modules.

are attained by extracting the intermediate outputs from the
shared base DNN of the model in figure 9. Overall, the color
in the feature map reflects the importance of individual pixels
for subsequent computations, and the transition from blue to
red indicates increased attention (i.e. larger DNN weights) to
related pixels. Despite the consistently high attention on RoIs,
subtle differences can still be observed in local feature maps.
For internal limiter plasmas with lower plasma current Ip in
figure 8(a), the feature map distinctly outlines plasma shape

boundary and likely contributes to a more defined and easily
identifiable boundary. For the divertor-shaped plasmas shown
in figure 8(c), the feature map predominantly focuses on the
pixel points at the divertor target plate, thereby enhancing the
spatial positioning of the divertor configuration. Meanwhile,
for gas puffing in figure 8(e), where the gas injection point
overlaps with the outer boundary of the plasma, the pres-
ence of extra bright spots severely interferes with the bound-
ary recognition. Consequently, the feature map puts more
emphasis on the changes in brightness inside the plasma.
Correspondingly, the recovered plasma boundary shown in
the right part of figure 8 demonstrates high consistency with
EFITNN in these challenging cases. Meanwhile, we investig-
ate the gains of modular design in PST and provide the results
in figure 10. It can be observed that additional enhancements in
model performance can be anticipated after the integration of
MTL and MGD techniques, especially in terms of the vertical
displacement Z.

Finally, table 5 summarizes the comparison between PST-
tiny and other models in terms of MAE. Bold values in
the table indicate the best performance among all models
for each parameter. It’s worth noting that the PST model,
upon the incorporation of the Swin Transformer, demon-
strates comparable accuracy but significantly faster infer-
ence speed over Swin-Tiny. On the contrary, RestNet18 and
UNet exhibit reduced accuracy and possibly further deteri-
orate under conditions of enhanced brightness and high con-
trastness. Taking the example of shot #06696 in figure 11,
while all models produce comparable results under normal
conditions, RestNet18 and UNet turn to perform poorly when
the convertScaleAbs function from the OpenCV library is
appliedwith a contrast factorα of 2 and a brightness offset β of
10 to adjust the image’s contrast and brightness, respectively.
Instead, the PST model maintains superior stability. Notably,
operations such as gas puffing and enhancing the ionization
rate often lead to increased density, resulting in over-bright
CCD images. Such observation is consistent with the literat-
ure that Transformers exhibit strong robustness against com-
mon corruptions, perturbations, distribution shifts, and natural
adversarial examples [39]. On the contrary, CNN and U-Net
models, which rely heavily on convolutional operations, suffer
from the sensitiveness to local feature dependencies, leading to
degraded regression results due to brightness and contrast vari-
ations. Furthermore, figure 12 evaluates the accuracy of PST-
tiny with goodness-of-fit. Again, the accuracy remains strong
across the full range of plasma currents. However, a slight
decrease in performance is observed at lower currents during
the flat-top phase, which may be due to the lower brightness of
the images under these conditions. Based on this, it might be
possible that future observations of higher-parameter plasmas
will require cameras operating in different spectral bands to
maintain accuracy.

10
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Table 5. Comparison of MAE for plasma shape parameters detected by different image perception models. (The CNN model adopts the
architecture proposed in DIII-D-related studies [19]).

Model Depth R (cm) Z (cm) a (cm) κ δu δl Inference Time (ms)

PST-tiny (1,1,2,2) 1.091 1.752 0.887 0.025 0.053 0.032 1.00
PST-base (2,2,6,2) 1.013 1.895 0.823 0.022 0.047 0.030 3.40
CNN — 1.515 2.579 1.148 0.034 0.066 0.045 0.26
ResNet18 — 1.302 2.125 1.134 0.023 0.056 0.038 0.79
UNet — 1.938 2.985 1.195 0.028 0.0623 0.038 0.89

Figure 11. Comparison of the horizontal displacement R outputs from different models and the EFITNN output after enhancing the
brightness and contrast of the overall shot #06696. The black lines represent the inference results of each model on the original image, the
red lines represent the EFITNN calculation results, and the colored lines are the results after increasing brightness and contrast.

3.2. On-device results

Transitioning from offline simulations to real-time
applications, we build a framework as in figure 13 to seam-
lessly process captured CCD images and integrate the PST-
based outputs into the PCS of HL-3. Notably, the PST model
infers from CCD images with camera exposure time and
delivers six plasma shape parameters into the PCS through
reflective memory. Afterward, the PID controller, a classic
feedback control mechanism, reads data from the correspond-
ing memory location every 0.1 ms and adjusts the control
variables according to the evolution of R as well as other
plasma shape parameters from magnetic diagnosis. Notably,
as implied in table 4, the plasma shape configurations are
updated in memory every 1.8 ms on average, which allows
real-time control of the plasma shape based on the most recent
available data.

As mentioned in section 2.1, during the on-device deploy-
ment & evaluation phase, we use a more authoritative EFIT
solution as the benchmark to ensure reliability. Figure 14(a)
presents the real-time control result with shot#07059, where,
in the duration of 2000–2500 ms, the horizontal displacement

R outputs from the PST model is activated as an input into
the PID control system, replacing the magnetic diagnostic R.
Within the 500 ms, the PID control maintains a stable con-
trol of the plasma. Figure 14(b) provides a detailed compar-
ison during this period, incorporating the EFIT calculation
method as well, revealing that the PST model’s output aligns
more closely with EFIT. On the contrary, while the original
PID control method is based on magnetic measurements and
the M matrix, a systematic deviation (an upward shift of 1–2
cm) is observed. This validates that PST model can effectively
utilize the inference results from CCD images as a diagnostic
source to control the plasma shape, promising real-time cap-
ability with improved accuracy.

4. Conclusion and future research

In this work, we have developed a lightweight DNN model—
PST, for accurately and quickly perceiving CCD plasma
images without any manual labeling on HL-3. This model
predicts the plasma shape parameters, taking the CCD image
as input and outputting six parameters including the radial
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Figure 12. Goodness-of-fit of plasma parameters in terms of the coefficient of determination R2 in the training and testing sets, based on
kernel density estimation. (a) The results for all shots in the dataset; (b) the results for shots with Ip ⩽ 300 kA; and (c) the results for shots
with Ip > 300 kA, where the parameters R, Z, and a are in meters (m).

Figure 13. The illustration of the PST model serving as a diagnostic means for real-time PID control.
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Figure 14. Results of deploying the PST model online and
implementing PID feedback control on shot #07059. The blue
region represents the phase in which R from the PST is used as input
for feedback control. The original input for PID control is obtained
using magnetic measurement and the M Matrix method of magnetic
measurements. (a) Is the real-time detection results of the entire
shot, and (b) represents a detailed comparison between the control
segment of the PST model and other computational methods.

position R and vertical position Z of the plasma geometric
center, minor radius a, elongation κ, upper triangularity δu,
and lower triangularity δl. Specifically, the PST model adapts
Poolformer and Swin Transformer towards a lighter-weight
design. Meanwhile, we incorporate masked generative distil-
lation, and adopt a multi-task learning framework with the
dynamic weight strategy, obtaining high inference accuracy
on the PST model. The PST model can predict six parameters
within the entire process of 1.8 ms, with the average MAE for
R and Z reaching 1.1 cm and 1.8 cm respectively. Furthermore,
the PST model manifests the comprehensive adaptability to
the visual complexity of the HL-3 device plasma, including
overly blurred boundaries, NBI and gas puffing interference,
sudden bright spots, and wall hole interference. This specific
model can seamlessly integrate with the PCS and effectively
support immediate magnetic field control. We have completed
500 ms PID stable control according to the PST-yielding hori-
zontal displacement R parameter. This preliminary verifies the
stability of the PST model in real-time control.

In summary, the results of this research further broaden the
potential applications of AI in the field of tokamak plasma
control and lay a solid foundation for the development of
related technologies in the future. Notably,manyworks remain
to be done. For example, we can explore more sophisticated
methods for determining the trust parameter γ, including the
use of EFIT chi-squared values and plasma current dynam-
ics, such as dIp

dt , particularly during ramp-up and ramp-down
phases. Additionally, given its potential to balance speed and

precision in real-time plasma control, implementing a dual-
loop system similar to RT-EFIT, where a fast loop ensures
quick real-time response, while a slower loop can improve
accuracy by processing stacked images or using more refined
calculations, is worth considering. Furthermore, In this study,
the system achieves real-time feedback at the millisecond
scale, which is well-suited for controlling future large-scale
fusion devices such as ITER. However, for smaller devices like
HL-3, the faster evolution of dynamics and the correspond-
ing finer resolution (i.e. 50 µs for Z control) exceeds the cap-
abilities of our current system’s inference speed. Addressing
these challenges by enhancing data acquisition and computa-
tion efficiency will also be the focus of future work.
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Appendix. Details in swin transformer

A.1. Patch merging

Swin Transformer adopts Patch Merging, a downsampling
technique to the resolution of the input data while increasing
the depth of the information. Within this context, a ‘Patch’
is defined as the smallest unit in the feature map. To put
it differently, a feature map with 14× 14 pixels comprises
196(= 14× 14) patches. As illustrated in figure 15, Patch
Merging aggregates each cluster of adjacent n× n patches by
depth-concatenation, reducing the dimensions by a factor of
2. Consequently, the input dimensionality is transformed from
C×H×W to 4C× H

2 ×
W
2 , where H, W, and C representing

height, width, and channel depth respectively. Subsequently,
the feature map undergoes a fully connected layer, which
adjusts the channel dimension to half of its original size.
Through the hierarchical design, it is conducive to capturing
more complex features with effectively reduced computational
load [26].

A.2. Self-attention block

Traditional Transformers perform attention calculations on a
global scale, which results in substantial computational com-
plexity. In contrast, the Swin Transformer confines these cal-
culations within individual windows, thereby achieving a sig-
nificant reduction in computational load.

As depicted in figure 16, compared to the conventional
MSA module, the W-MSA divides the feature map into indi-
vidual windows of size M×M (with M= 2 in this example),
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Figure 15. Schematic illustration of the Patch Merging process in
Swin Transformer.

Figure 16. Illustration of Self-Attention Blocks: (a) Multi-head
Self-Attention (MSA), (b) Windows-Multi-head Self-Attention
(W-MSA), and (c) Shifted Window-MSA (SW-MSA).

and subsequently performs self-attention computations inde-
pendently within each window. However, the window-limited
computations in the W-MSA module inhibit the underlying
usefulness of the information transfer between different win-
dows. To circumvent this shortcoming, the Swin Transformer
introduces the SW-MSA module, which shifts the window
by a factor of M

2 both downward and rightward and moves
patches into vacant slots to form a complete window for com-
puting efficiency. This innovative strategy effectively resolves
the issue of limited information exchange and improves the
performance of Swin Transformer [26].
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