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Abstract—The wide applications of artificial intelligence (AI)
on massive Internet of Things or smartphones raises significant
concerns about privacy, heterogeneity, and resource efficiency.
Correspondingly, federated learning (FL) emerges as an effective
way to enable AI over massively distributed nodes without
uploading the raw data. Conventional works mostly focus on
learning a single unified model for one solitary task. Multitask
learning (MTL) outperforms single-task learning by training
multiple models concurrently, leading to reduced model sizes
and increased flexibility. However, existing FL efforts often face
challenges in efficiently managing MTL scenarios, particularly
with the presence of stragglers, without incurring prohibitive
computation and communication costs.In this article, inspired
by the natural cloud-base station (BS)-terminal hierarchy of
cellular networks, we provide a viable resource-aware hierar-
chical federated MTL (RHFedMTL) solution to meet the task
heterogeneity corresponding to different nonindependent and
identically distributed (IID) training data sets. Specifically, a
primal-dual method has been leveraged to effectively transform
the coupled MTL into some local optimization subproblems
within BSs. Therefore, it enables solving different tasks within
a BS and aggregating the multitask result in the cloud without
uploading the raw data. Furthermore, compared with existing
methods that reduce resource costs by simply changing the aggre-
gation frequency, we dive into the intricate relationship between
resource consumption and learning accuracy, and develop a
resource-aware learning strategy for adjusting the iteration
number on local terminals and BSs to meet the resource budget.
Extensive simulation results demonstrate the effectiveness and
superiority of RHFedMTL in terms of improving the learning
accuracy and boosting the convergence rate.

Index Terms—Artificial intelligence (AI), federated learning
(FL), mobile edge computing, multitask learning (MTL).
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I. INTRODUCTION

BENEFITING from the rapid development of cellular
networks, artificial intelligence (AI) over massive Internet

of Things (IoT) or smartphones becomes possible, and there
is a growing consensus that 6G will be revolutionary as a
network of AI [2], [3], [4], [5]. Meanwhile, network AI
in 6G should simultaneously allow various sensing, mining,
prediction, and reasoning tasks across different industries. For
example, autonomous driving algorithms are assembled with
a series of coupled tasks, including detection, tracking, and
mapping in perception; and motion and occupancy forecast in
prediction [6]. Therefore, there emerges a common concern
for storing and transmitting rapidly expanded data through the
network in the near future [7]. Besides, the heterogeneous and
complex nature of Industrial IoT (IIoT) presents many tech-
nical challenges, such as privacy, heterogeneity, and resource
efficiency [8].

In that regard, federated learning (FL) only requires
uploading the training gradients instead of the clients’ raw
data [9] and has been extensively used in many scenar-
ios [10], [11], [12]. The concept of FL has garnered significant
attention. Exemplified by the well-known federated averaging
(FedAvg) algorithm [9], traditional FL approaches, how-
ever, face challenges in scalability and efficiency, particularly
when dealing with large-scale, heterogeneous networks [13].
Therefore, there emerges a substantial body of works to
improve FL. For example, by generalizing and reparametrizing
FedAvg [9], FedProx [14] is introduced to tackle hetero-
geneity in FL. Liu et al. [15] devised a client-edge-cloud
hierarchical FL (HFL) system to swiftly strike a balance
between computational efficiency, model accuracy, and data
privacy. Yang et al. [16] proposed an energy-efficient com-
putation and transmission resource allocation scheme over
wireless networks. However, most industry solutions deploy
standalone models for tasks tailored to different geograph-
ical areas [6]. These FL approaches [9], [10], [11], [12],
[13], [14], [15], [16] primarily focus on training a sin-
gle unified model, and lack the essential efficiency to
learn heterogeneous tasks from different nonindependent
and identically distributed (IID) data sets across multiple
terminals.

As for federated multitask learning (FedMTL),
Smith et al. [17] extended the FL framework to support
simultaneous multitask learning (MTL), and introduced
a MOCHA algorithm with enhanced personalization and
boosted performance. However, in MOCHA [17], one task
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corresponds to one terminal, and it turns computation-intensive
and even impractical. Marfoq et al. [18] investigated federated
MTL under the assumption that each data distribution can be
regarded as a mixture of several unknown underlying distribu-
tions, and proposed the expectation-maximization (EM)-based
FedEM algorithm on top of stochastic gradient descent (SGD)
for a hierarchical learner–client–server structure. Nevertheless,
due to its excessively certain assumption for underlying
distributions, FedEM still fails to meet the required scalability
for large-scale IoT scenarios.

Therefore, inspired by the natural hierarchy of cellular
networks, which spans from cloud, base stations (BSs) to
terminals,1 we propose a resource-aware hierarchical FedMTL
(RHFedMTL) method, so as to meet the task heterogene-
ity corresponding to different non-IID training data sets.
In particular, each BS is linked with several terminals and
responsible for training a specific learning task with the
support of attached terminals, while the cloud oversees the
aggregation of multitask results. Moreover, by employing a
primal-dual optimization method, we transform the global
primal optimization problem into separate dual subprob-
lems distributed across the BSs. Besides, RHFedMTL uses
the convergence-verified stochastic dual coordinate ascent
(SDCA) [19], [20]. This division of the problem also lays a
crucial foundation for developing a resource-aware learning
strategy, evidenced by the established relationship between
learning accuracy and the number of iterations, as well as
the tradeoff between computations on terminals and BSs.
In summary, compared with the existing works, our main
contributions are summarized as follows.

1) We leverage a hierarchical structure for FedMTL on
top of the primal-dual-based SDCA, and propose an
RHFedMTL method, which boosts the flexibility of
MTL and enables coupled MTL over massive terminals
without uploading their raw data.

2) We provide the derived convergence bound of the vanilla
hierarchical FedMTL (HFedMTL), and unveil the rela-
tionship between the terminal iteration number and the
BS iteration number required to converge.

3) On top of the aforementioned derived relationship,
we propose a resource-aware algorithm RHFedMTL,
which dynamically adapts the terminal iteration number
(and corresponding BS iteration number) to balance the
tradeoff between learning accuracy and resource cost, to
maintain the learning performance with limited resource
budget.

4) Through extensive simulations, we evaluate the superior
performance of the RHFedMTL algorithm in terms of
its effectiveness, robustness, and resource-awareness.

The remainder of this article is organized as follows. In
Section II, we discuss the related works. In Section III,
we introduce the details of the system model for FedMTL
and present the formulated resource-constrained problem. In
Section IV, we derive the dual problem for the vanilla
HFedMTL algorithm. Based on the convergence analysis, we

1Notably, in this article, considering the diversified terminologies in the
literature like [18], a “terminal” is not fully equivalent to a “client.”

give the RHFedMTL algorithm and discuss how to dynami-
cally set the terminal iteration number based on the provided
convergence analysis. Section V talks about the simulation
scenarios and demonstrates the numerical results. We conclude
this article in Section VI.

II. RELATED WORKS

As a distributed machine learning framework, FL is privacy-
friendly since it only requires uploading the training gradients
instead of the clients’ raw data [9], [21]. Traced back to
FedAvg by McMahan et al. [9], FL has since witnessed
diverse applications in areas demanding ameliorated data
privacy, such as healthcare and finance [11], [22]. Meanwhile,
there are more works in optimizing the resource overhead of
conventional FL. For example, Yang et al. [16] proposed an
energy-efficient computation and transmission resource allo-
cation scheme in wireless networks. Chen et al. [23] proposed
a probabilistic user selection scheme to reduce the FL conver-
gence time and the FL training loss. Dinh et al. [24] proposed
a resource allocation algorithm over wireless networks to cap-
ture the tradeoff between the wall clock training time and the
terminal energy consumption. Regarding resource utilization
optimization in FL for wireless networks, Yang et al. [25]
primarily developed an analytical model to characterize FL
performance. Liu and Simeone [26] studied the adaptive power
allocation for distributed gradient descent. However, these
works primarily consider single-task learning.

On the other hand, most industry solutions deploy stan-
dalone models for each task [6]. For vehicle networking
scenarios where autonomous vehicles can simultaneously train
on different perception & prediction tasks and tailored to
different geographical areas, single-task strategies inevitably
add to the need for intensive computations and data volume for
effective processing and transmission. Instead of training a sin-
gle unified model across different terminals, FedMTL extends
FL to simultaneously learn multiple tasks, enabling more
personalized and efficient training. The inception of FedMTL
can be attributed to the broader field of MTL [27], which
demonstrated the effectiveness of leveraging shared represen-
tations across coupled tasks to improve model performance
and generalization in fields like natural language processing
and computer vision [28], [29]. Smith et al. [17] showed that
MTL is naturally suited to handle the statistical challenges
in training machine learning models over distributed networks
of devices and proposed a novel systems-aware optimization
method, MOCHA, that is robust to practical systems issues.
Marfoq et al. [18] introduced FedEM, designed for both client-
server frameworks and fully decentralized environments, on
the premise that each local data set can be modeled as a
combination of several unknown underlying distributions. In
scenarios where there are L such underlying distributions,
FedEM’s objective is to derive L unified component parame-
ters across the relevant clients, with each client maintaining
and refining its own set of L unique component parameters
and their corresponding mixture weights.

Recent developments in FedMTL have also focused on
improving resource efficiency and scalability. For example,
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TABLE I
NOTATIONS

Caldas et al. [30] attempted to address the challenge of
terminal resource constraints in FedMTL, and proposed meth-
ods like lossy compression and federated dropout to reduce
the computational and communication burden on terminals,
making FedMTL more accessible and scalable. Furthermore,
Wei et al. [31] explored the integration of differential pri-
vacy with FedMTL to enhance the privacy-preserving aspects
of FedMTL. However, these efforts neglect the hierarchical
network structure and cannot cope with the heterogeneity
challenge [13]. On the other hand, in order to address the
heterogeneity challenge [13], HFL is conjectured upon the
standard FL framework, by adopting a layered approach for
model training. Typically, HFL involves local model training
on edge devices, regional aggregators, and a unified model
updating globally [15]. Besides, Liu et al. [15] demonstrated
the efficacy of HFL in handling heterogeneous data across
different layers and improving learning outcomes in large-
scale networks. However, a limitation in HFL studies belongs
to the possibly unrealistic assumption of the existence of
only a single task within the network. Therefore, originally
designed for single-task applications, these frameworks show
constrained effectiveness in MTL environments [9], [14], [15],
given the exacerbated challenge in cases with stragglers that
lag in processing or communication due to MTL’s heightened
demands.

In conclusion, efforts toward HFL and FedMTL are dis-
entangled, while factors, such as the network hierarchy
and communication efficiency, are not given sufficient

Fig. 1. System model of RHFedMTL.

consideration until recent works in [17] and [18]. Notably,
the proposed RHFedMTL possesses significant differences
from MOCHA [17] and FedEM [18]. In RHFedMTL, each
BS connects to multiple terminals and oversees the training
of a distinct learning task, aided by the connected termi-
nals, with the cloud coordinating the aggregation of results
from multiple tasks. This setting significantly contrasts with
MOCHA [17], wherein one task corresponds to one terminal.
Moreover, despite the partial resemblance to the hierarchical
learner–client–server setting in FedEM [18], RHFedMTL uses
SDCA [19], [20], [32] rather than SGD in FedEM, since the
former offers stronger convergence results than primal-only
methods (e.g., SGD) for the same iteration cost [19], [20].
Meanwhile, RHFedMTL does not assume the existence of
a distinct mixture of distributions for the local data set.
Following our previous work on the HFedMTL algorithm
that allows massive nodes from distributed areas to join in
the federated multi-task learning process [1], RHFedMTL
incorporates a resource-aware hierarchical resource manage-
ment scheme, which takes account of the limitation of the
resource budget and capably adjusts the learning process of
local terminals to balance the tradeoff between resource cost
and MTL performance. To our best knowledge, this belongs to
the very first resource-aware, HFedMTL approach and makes
a significant difference with existing literature in [15], [33],
[34], and [35].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Beforehand, some key notations in this paper are provided
in Table I. Inspired by [17] and [18], we primarily consider
a resource-intense hierarchical mobile computing environment
with multiple task models to be learned. In particular, as shown
in Fig. 1, we assume there exist N BSs (i.e., B1, . . . , BN)

connected to the cloud server, each corresponding to one of
the N coupled tasks. Meanwhile, each BS Bb, b ∈ {1, . . . , N}
covers Nb terminals Tb,t, t ∈ {1, . . . , Nb} (e.g., smartphones,
IoT devices), with each terminal collecting Sb,t samples of
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data. The MTL aims to learn the model parameters wb, for
each of the N tasks, using local data sets, that is

min
W,R

{
1

N

N∑
b=1

(
1

nb

nb∑
i=1

L(wᵀ
b xi

b

)+ λ1

2
‖wb‖2 +Rb(wb)

)}

s.t. yi
b = wᵀ

b xi
b ∀i ∈ {1, . . . , nb}, b ∈ {1, . . . , N} (1)

where nb �
∑Nb

t=1 Sb,t represents the total number of data
distributed under BS b (i.e., task b) and the superscript ᵀ
indicates the transpose operator. yi

b � wᵀ
b xi

b corresponds to
the output for input of xi

b in local data set under BS Bb. In
summary, W � [w1 · · ·wNb ] and R � [R1, . . . ,Rb, . . . ,RN]
represent the weights of all BSs and the MTL regulation
function for all tasks, respectively.

Consistent with the single-task learning, the MTL in (1)
imposes an L2 regulation with constant λ1 > 0. Nevertheless,
MTL adds regulation functions Rb(wb) to reflect the relation-
ship among tasks. Typically, assumptions on MTL regulation
functions can be categorized into two groups, dependent on
the a-priori existence of the relationships amongst tasks [17].
Specifically, [36], [37] assume that the coupling structure
between different tasks is known a priori while [38] assumes
unknown yet learnable relationships between different tasks.
As for the former case, following [39], we could directly adopt
an L2 regulation on W to constrain differences among models
for different tasks while reflecting their potential resemblance
(to a reference task). Mathematically, such a regulation could
be formulated as

Rb(wb) = λ2

2
‖wb − r‖2 (2)

where r � (1/N)
∑N

b=1 wb and λ2 indicates the relative
importance of the multitask regulation to the overall loss in (1).
Meanwhile, as for the latter case, the multitask regulation
function Rb can be set as

Rb(wb) = 1

N
λ2tr

(
W�−1Wᵀ

)
(3)

where tr(·) denotes the trace of a matrix. Furthermore, the
multitask relationship matrix � in (3) can be learned from
data. In this work, we primarily focus on the former case
in (2) while our work can be extended to the latter one with
an additional learning loop.

B. Problem Formulation

In a resource-intense mobile computing environment, it
is of vital importance to limit the amount of resources to
achieve a target error of the loss function, so as to keep

the operational cost low on the basis of no system backlog.
Hence, the formulation in (1) shall be complemented with the
resource constraints. Consistent with [35], the terminology of
“resources” here is generic and includes time, energy & eco-
nomic costs related to both computation and communication.
Without loss of generality, assume that there exists J types of
resources and the resource cost for the same type of terminals
is equal. Cj,tol and Cj,bud, for j ∈ {1, . . . , J}, represent the
total resource consumption and the budget of type-j resource,
respectively. We mainly focus on the resource consumption of
terminals and BSs due to their natural importance in the mobile
network. Besides, the standard resource consumption of type-
j resource for a terminal and a BS to perform an iteration
step is defined as Cj,dev and Cj,BS, respectively. Furthermore,
assume that a hierarchical iteration methodology is adopted
here. In other words, one server iteration includes multiple BS
iterations, while one BS iteration encompasses several terminal
iterations. Consequently, on the basis of M server iterations,
for K BS iterations and Hb terminal iterations under certain
BS Bb (b ∈ {1, . . . , N}), the type-j ∈ {1, . . . , J} resource
consumption shall be bounded as

KM
N∑

b=1

(
Cj,BS + NbHbCj,dev

) ≤ Cj,bud. (4)

In other words, the MTL problem in (1) can be reformulated
as (5). In this article, in order to solve this coupled MTL,
we attempt to develop a resource-aware federated solution
that adheres to the privacy-friendly federated policy (i.e., no
raw data uploading) and involves a learning methodology with
appropriate parameters K and Hb.

IV. RESOURCE-AWARE HIERARCHICAL FEDERATED

MULTITASK LEARNING

A. Dual Formulation

The coupled MTL models make it challenging to directly
compute the parameters without knowing all the data sets
distributed among terminals. In this part, inspired by the
primal-dual methodology, we present the approach to formu-
late the dual formulation of (5) and decompose the global
problem into individual localized subproblems to be indepen-
dently solved by terminals.

We define α as the concatenation of all the dual variables
αi

b. Mathematically, α � [α1, . . . ,αb, . . . ,αN], where αb is
the concatenation of all the dual variables under the same
BS and can be represented in two interchangeable forms:
1) αb � [α1

b, . . . , α
nb
b ] is a simple combination of all the dual

variables distributed among various terminals under one BS,

min
W,R

{
1

N

N∑
b=1

(
1

nb

nb∑
i=1

L(wᵀ
b xi

b

)+ λ1

2
‖wb‖2 +Rb(wb)

)}
∀K, Hb ∈ {1, . . . ,∞}

s.t. KM
N∑

b=1

(
Cj,BS + NbHbCj,dev

) ≤ Cj,bud ∀j ∈ {1, . . . , J} ∀b ∈ {1, . . . , N} (5)

yi
b = wᵀ

b xi
b ∀i ∈ {1, . . . , nb}, b ∈ {1, . . . , N}
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where αi
b is the dual variable for the data point (xi

b, yi
b) and

2) αb � [α[1], . . . ,α[t], . . . ,α[Nb]] where α[t] ∈ R
Sb,t is the

concatenation of dual variables corresponding to the local data
set of terminal Tb,t.

We employ the following lemma to demonstrate the equiv-
alence between the primal problem and the aggregation of
decomposed subproblems at each BS, thus facilitating the
subsequent analysis of a HFedMTL solution.

Lemma 1: For any α, we have

D(α) = 1

N

N∑
b=1

(
1

nb

nb∑
i=1

−L∗(−αi
b

)+R∗b(wb)

)
(6)

= 1

N

N∑
b=1

Db(αb)

where

Db(αb) (7)

� 1

nb

nb∑
i=1

−L∗(−αi
b

)+ λ1λ2‖rb‖2 − ‖Abαb‖2 − 2λ2Abαbrᵀb
2(λ1 + λ2)

and Ab ∈ R
d×nb collects data examples Ai = 1/nbxi

b in
its columns. Given dual variables αb, corresponding primal
variables can be found via wb = [1/(λ1 + λ2)](λ2rb+Abαb).
Moreover, L∗ and R∗b are the conjugate dual functions of L
and Rb, respectively.

Proof: The proof is a direct application of the definition of
the conjugate function and we leave it in Appendix.

Lemma 1 suggests that the MTL problem can be decom-
posed and solved as several subproblems by individual BSs.
Next, we resort to tackling each subproblem of (7) separately.
In that regard, as coordinate ascent methods require no step
size and have a well-defined stopping criterion given by the
duality gap [19], we use SDCA which has proven very suitable
for use in large-scale problems, and give stronger convergence
results than the primal-only methods (e.g., SGD) at the same
iteration cost [32]. Given the formulation of (7), terminals can
find updates �αi

b to the dual variables in αb by accessing only
the locally stored data (xi

b, yi
b). In other words, the terminals

under the same BS can solve the related part of the subproblem
locally and independently, and the algorithm could converge
at a higher speed compared to gradient descent methods.
Therefore, with selected data (xi

b,t, yi
b,t) in the training process,

by Lemma 1, terminal-oriented subproblem can be formulated
as

max
�αi

b

{
−L∗(−(αi

b +�αi
b)
)+ λ2

2
‖rb‖2

−λ1 + λ2

2

⎡
⎣wb + 1

nb(λ1 + λ2)

Sb,t∑
i=1

�αi
bxi

b,t

⎤
⎦

2
⎫⎪⎬
⎪⎭. (8)

Finally, the MTL problem in (6) has been split into several
subproblems across distributed BSs, each of which can be
tackled by terminals locally. Correspondingly, a HFedMTL
solution, which involves a hierarchical iteration mechanism,
including the server iteration, the BS iteration, and the terminal
iteration, can be attained.

1) As for each terminal iteration of the training process, ter-
minals conduct their local training process to maximize
the local optimizing function (8) and communicate with
their BS periodically.

2) During each BS iteration, the BSs update and distribute
model parameters by aggregating intermediate variables
uploaded by terminals and then upload their model to
the server at a lower frequency.

3) Based on the received models, the server updates the
parameters of the regulation function Rb and sends
the updated parameters back to terminals through their
connected BSs. During the server iteration, the server
generates and sends the regulation parameters to all ter-
minals (via BSs) using the uploaded model parameters
of all tasks.

In summary, for each server iteration, the BSs perform K BS
iterations, and during each iteration of BS Bb (where b ∈
1, . . . , N), the terminals conduct Hb terminal iterations.

B. Convergence Analysis

We first present the convergence analysis of HFedMTL,
which will guide the design of the following resource-aware
solution, before delving into the details of resource-aware
HFedMTL. Beforehand, we give a definition of the duality
gap after one terminal iteration.

Definition 1: Within each BS iteration, we define the dual-
ity gap of subproblems specifying how far we are from
the optimum on terminal t with all other terminals fixed.
Mathematically, given α[1] . . . α[Nb] from Nb terminals

EDb,t(αb) � max
α̂[t]

Db
(
α[1], . . . , α̂[t], . . . ,α[Nb]

)
−Db

(
α[1], . . . ,α[t], . . . ,α[Nb]

)
(9)

We also have the following assumption of the updated
duality gap.

Assumption 1: We assume that there exists �b ∈ (0, 1] such
that for any given αb, the subproblem running on terminal
t alone returns a (possibly random) update �α[t] after Hb

terminal iterations such that the expectation of updated duality
gap is bounded as

E
[EDb,t

(
α[1], . . . ,α[t] +�α[t], . . . ,α[Nb]

)] ≤ �b · EDb,t(αb).

(10)

Assume that the loss functions L is (1/γ )-smooth. Then,
consistent with [19, Proposition 1]

�b =
(

1− (λ1 + λ2)nbγ

1+ (λ1 + λ2)nbγ

1

ñb

)Hb

(11)

where ñb � maxt nb,t is the size of the largest local data set
among terminals. Specifically, �b � 1 means that the termi-
nals under task b made no updates and therefore no resource
consumption, while �b → 0 implies that the duality gap
comes to zero, which is unrealistic as the number of terminal
iterations (and correspondingly the resource consumption)
grows to infinity in this case. Therefore, �b indicates the
resource required by the system. We also define � � maxb �b

to facilitate subsequent operations.
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The following theorem gives the convergence analysis of
HFedMTL with respect to the number of BS iterations K.

Theorem 1: Assume the loss functions L is (1/γ )-smooth,
choosing BS iteration number K such that

K >

(
1− (1−�)

η∗

T∗

)
log

∑N
b=1 nb

NεD
(12)

we have

E
[
D
(
α∗
)− D

(
α(K)

)]
≤ εD (13)

where εD is the target convergence duality gap,
T∗ � maxb Nb, η∗ � minb ηb, ηb =
[(λ1 + λ2)γ /nbσ + (λ1 + λ2)γ ] with σ ≥ maxb σbmin and

σbmin � max
α

n2
b

∑Nb
t=1

∥∥A[t]α[t]
∥∥2 − ‖Abαb‖2

‖αb‖2
. (14)

Proof: According to Lemma 1, the value of dual problem
after (k + 1)th BS iteration can be expressed as

D
(
α(k+1)

)
= 1

N

N∑
b=1

Db

(
α

(k)
b +

1

Nb

Nb∑
t=1

�α[t]

)
. (15)

Recalling that D is the pointwise infimum of a family of affine
functions of α as shown in Appendix, D is concave [40]. Using
the concavity of dual function D(α)

D
(
α(k+1)

)
≥ 1

N

N∑
b=1

1

Nb

Nb∑
t=1

Db

(
α

(k)
b +�α[t]

)
. (16)

Denoting α̂∗[t] to be the local maximizer as in (9), we have

E
[
D
(
α(k+1)

)
− D

(
α(k)

)]

≥ 1

N

N∑
b=1

1

Nb

Nb∑
t=1

{
Db

(
α

(k)
b +�α[t]

)
− Db

(
α

(k)
b

)}

≥ 1

NNb

N∑
b=1

Nb∑
t=1

{
Db

(
α

(k)
b +�α[t]

)

− Db

(
α

(k)
[1], . . . , α̂

∗
[t], . . . ,α

(k)
[Nb]

)
+Db

(
α

(k)
[1], . . . , α̂

∗
[t], . . . ,α

(k)
[Nb]

)
− Db

(
α

(k)
b

)}

≥ 1

NNb

N∑
b=1

Nb∑
t=1

{
EDb,t

(
α

(k)
b

)
− EDb,t

(
α

(k)
b +�α[t]

)}
. (17)

Meanwhile, under Assumption 1

E
[
D
(
α(k+1)

)
− D

(
α(k)

)∣∣α(k)
]

≥ (1−�)

N

N∑
b=1

1

Nb

Nb∑
t=1

EDb,t

(
α

(k)
b

)
. (18)

Recalling the definition of Db(αb) in (7), we can obtain (19)
shown at the bottom of the page, where the equalities (a) to
(c) come from Lemma 1. Besides, the inequality (d) is due
to (20) shown at the bottom of the next page, in [19, Th. 2]
with σ in (14), and the inequality (e) is given by introducing an
extra ηb ∈ [0, 1] to link α∗b (i.e., the maximizer of (19)). After

Nb∑
t=1

EDb,t

(
α

(k)
b

)

(a)= max
α̂b

{ Nb∑
t=1

[
Db

(
α

(k)
[1], . . . , α̂[t], . . . ,α

(k)
[Nb]

)
− Db

(
α

(k)
[1], . . . ,α

(k)
[t] , . . . ,α

(k)
[Nb]

)]}

(b)= max
α̂b

{
1

nb

nb∑
i=1

(
−L∗(−α̂i

b

)+ L∗
(
−αi(k)

b

))
+ 1

2(λ1 + λ2)

Nb∑
t=1

(
−2λ2A[t]

(
α̂[t] − α

(k)
[t]

)
rᵀb

−
∥∥∥Abα

(k)
b + A[t]

(
α̂[t] − α

(k)
[t]

)∥∥∥2 +
∥∥∥Abα

(k)
b

∥∥∥2
)}

(c)= max
α̂b

{
Db

(
α̂b
)− Db

(
α

(k)
b

)
+

∥∥Abα̂b
∥∥2 − ‖Abα

(k)
b ‖2

2(λ1 + λ2)

+ 1

2(λ1 + λ2)

Nb∑
t=1

[
−
∥∥∥Abα

(k)
b + A[t]

(
α̂[t] − α

(k)
[t]

)∥∥∥2 +
∥∥∥Abα

(k)
b

∥∥∥2
]}

(19)

(d)≥ max
α̂b

{
Db

(
α̂b
)− Db

(
α

(k)
b

)
− σ

2(λ1 + λ2)n2
b

∥∥∥α̂b − α
(k)
b

∥∥∥2
}

(e)≥ max
ηb∈[0,1]

{
Db

(
ηbα
∗
b + (1− ηb)α

(k)
b

)
− Db

(
α

(k)
b

)
− σ

2(λ1 + λ2)n2
b

∥∥∥ηbα
∗
b + (1− ηb)α

(k)
b − α

(k)
b

∥∥∥2
}

(f )≥ max
ηb∈[0,1]

{
ηbDb

(
α∗b
)+ (1− ηb)Db

(
α

(k)
b

)
− Db

(
α

(k)
b

)
+ γ ηb(1− ηb)

2nb

∥∥∥α∗b − α
(k)
b

∥∥∥2 − η2
bσ

2(λ1 + λ2)n2
b

∥∥∥α∗b − α
(k)
b

∥∥∥2
}

(g)≥ max
ηb∈[0,1]

{
ηb

(
Db

(
α∗b
)− Db

(
α

(k)
b

))
+ ηb

2nb

(
γ (1− ηb)− ηbσ

(λ1 + λ2)nb

)∥∥∥α∗b − α
(k)
b

∥∥∥2
}
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applying the property of (1/γ )-smooth function and simple
mathematical manipulations, we have the inequalities (f ) and
(g), respectively.

Letting (γ (1−ηb)−[ηbσ/(λ1 + λ2)nb]) = 0, we have ηb =
[(λ1 + λ2)nbγ /nbσ + (λ1 + λ2)nbγ ]. Thus

Nb∑
t=1

EDb,t

(
α

(k)
b

)
≥ ηb

(
Db

(
α∗b
)− Db

(
α

(k)
b

))
. (21)

Substituting (21) into (18), we can derive

E
[
D
(
α(k+1)

)
− D

(
α(k)

)
|α(k)

]

≥ (1−�)

N

N∑
b=1

1

Nb
ηb

(
Db

(
α∗
)− Db

(
α(k)

))

≥ β
(

D
(
α∗
)− D

(
α(k)

))
(22)

where β � (1 −�)η∗/T∗, T∗ � maxb Nb and η∗ � minb ηb.
Therefore

E
[
D
(
α∗
)− D

(
α(k+1)

)]
= E

[
D
(
α∗
)− D

(
α(k)

)
−
(

D
(
α(k+1)

)
− D

(
α(k)

))]
≤ (1− β)

(
D
(
α∗
)− D

(
α(k)

))
. (23)

Thus, we have

E
[
D
(
α∗
)− D

(
α(k)

)]
≤ (1− β)k

(
D
(
α∗
)− D

(
α(0)

))
.

Consistent with [17], we use the bound on the initial duality
gap proved in [20, Lemma 10], which states that Db(α

∗
b) −

Db(α
(0)
b ) ≤ nb. Therefore

εD ≤ (1− β)K 1

N

N∑
b=1

nb. (24)

Finally, since when x > 0, x > log x, we have

K ≥
log NεD∑N

b=1 nb

log (1− β)
= log

∑N
b=1 nb
NεD

log 1
1−β

> (1− β) log

∑N
b=1 nb

NεD
.

Remark: Theorem 1 shows that the value of β is mostly
affected by the hardest task and the learning problem will
always converge after an update of Rb if we set the number for
BS iterations K sufficiently large. Hence, HFedMTL is robust
to the change of MTL parameters and guaranteed to converge.

Together with (11), Theorem 1 implies the following
corollary.

Corollary 1: The minimal K increases given a decrease
of terminal iteration number Hb, so there exists a tradeoff
between the terminal iteration number Hb and BS iteration
number K.

C. Resource-Aware Implementation

To meet all the requirements of the resource-aware problem
defined in (5), we extend the vanilla HFedMTL method to a
resource-aware approach, so as to optimize the system model
at a minimum resource cost.

Unlike HFedMTL, which predefines all parameters, the
resource-aware HFedMTL method is aware of the costs and
budget of the system resources, so as to dynamically adjust
the terminal iteration number Hb under BS Bb, b ∈ {1, . . . , N}
and BS iteration number K while meeting the convergence
target of duality gap in (13). Recall Theorem 1, which states
that a larger terminal iteration number Hb linearly increases
resource consumption, but decreases the incurred duality gap
nonlinearly. Given the resource budget, there must exist a
range of feasible Hb, within which choosing a bigger Hb

will increase the terminal iteration cost, but the decreased BS
iteration number K required for convergence will decrease the
overall resource consumption. The following theorem verifies
the aforementioned intuitions.

Theorem 2: Assume that the loss function L is (1/γ )-
smooth, for any convergence target εD, in order to solve the
MTL problem in (5), if there exists a terminal iteration number
Hb, b ∈ {1, . . . , N} satisfying (25), shown at the bottom of the
page, the problem is feasible.

Proof: Considering the constraint in (5), a direct analysis
leads to that the iteration number K under BS Bb should
satisfy

K ≤
⎢⎢⎢⎣ min

j∈{1,...,J}Cj,bud

[
M

N∑
b=1

(
Cj,BS + NbHbCj,dev

)]−1
⎥⎥⎥⎦. (26)

Taking account the convergence analysis in Theorem 1

K >

(
1− (1−�)

η∗

T∗

)
log

∑N
b=1 nb

NεD
. (27)

Rearranging (26) and (27), we can derive that(
1− (1−�)

η∗

T∗

)
log

∑N
b=1 nb

NεD

<

⎢⎢⎢⎣ min
j∈{1,...,J}Cj,bud

[
M

N∑
b=1

(
Cj,BS + NbHbCj,dev

)]−1
⎥⎥⎥⎦. (28)

Substituting (11) into (28), we have the theorem.

max
α̂b

{∥∥Abα̂b
∥∥2 − ‖Abα

(k)
b ‖2 +

Nb∑
t=1

[
−
∥∥∥Abα

(k)
b + A[t]

(
α̂[t] − α

(k)
[t]

)∥∥∥2 +
∥∥∥Abα

(k)
b

∥∥∥2
]}
≥ max

α̂b

{
− σ

n2
b

∥∥∥α̂b − α
(k)
b

∥∥∥2
}

(20)

M
N∑

b=1

(
Cj,BS + NbHbCj,dev

){
1− η∗

T∗

[
1−

(
1− (λ1 + λ2)nbγ

1+ (λ1 + λ2)nbγ

1

ñb

)minb Hb
]}

log

∑N
b=1 nb

NεD
< Cj,bud (25)
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(a) (b)

Fig. 2. BS iteration number K and resource cost Cj,cost until convergence
target εD over different settings of Hb = H, b ∈ {1, . . . , N}. (a) Required K
for convergence. (b) Cj,cost until the convergence target.

Remark: Theorem 2 provides a feasible range of Hb, which
will help determine an appropriate terminal iteration number.
On the basis of that, the chosen BS iteration number will
potentially reduce the overall resource consumption.

As given in Theorem 2, the left side of (25) represents the
needed resource cost to meet the convergence target εD (13)
under a certain number of terminal iterations. In case where
N = 5, Nb = 5, and εD = 0.01, we demonstrate in Fig. 2 the
numerical relationship between the BS iteration number and
the resource cost with respect to a unanimous terminal iteration
number Hb = H, b ∈ {1, . . . , N}. Accordingly, with limited
resource budget Cj,bud, there exist three possible cases and
they are represented by horizontal lines of different colors in
Fig. 2, wherein solid lines mean Cj,bud > Cj,cost while dashed
lines mean Cj,bud < Cj,cost. Besides, the dot indicates the value
of the chosen H.

1) Case 1: The given resource budget Cj,bud is too limited
to converge, just as shown in the red line of Fig. 2. In
this case, RHFedMTL capably traverses all the range of
Hb to minimize the resource cost of terminals (i.e., to
be most resource efficient) and reduce the number of BS
iterations to meet the limited resource budget.

2) Case 2: The given resource budget Cj,bud is just enough
to converge, just as shown in the blue line of Fig. 2. In
this case, RHFedMTL capably traverses all the feasible
range of Hb to satisfy (25), making a balance between
learning speed and efficiency. Correspondingly, it sets
the BS iteration number according to (12).

3) Case 3: The given resource budget Cj,bud leads to
a resource surplus, just as shown in the green line
of Fig. 2. In this case, RHFedMTL can choose an
appropriately smaller valid number of Hb, so as to fully
leverage the resource budget. Notably, the adaption of
Hb also implies the ability to cope with the straggler
issue.

Finally, under the RHFedMTL framework in Algorithm 1,
we present the LOCALDUALMETHOD in Procedure 1.

V. SIMULATION AND NUMERICAL RESULTS

In this part, we illustrate the performance of the proposed
RHFedMTL algorithm. Consistent with the methodology in
MOCHA [17], we analyze accelerometer and gyroscope

Algorithm 1: Resource-Aware HFedMTL Method

Data: (xi
b,t, yi

b,t), t ∈ (1, 2, . . . , Nb), b ∈ (1, . . . , N). Each terminal Tb,t
contains a local data set containing Sb,t samples of data

Input: Cj,dev, Cj,BS, Cj,bud

Initialize : α
(0)
b � 0, wb � 0, rb � 0 ∀b ∈ (1, . . . , N)

1 for j = 0, 1, . . . do server iteration
2 server send regulation parameters rb to terminals through their

connected BSs after gathering the uploaded information
3 for BS (i.e., tasks) Bb, b ∈ (0, 1, . . . , N) in parallel do
4 send T∗, η∗ to all terminals
5 for k = 0, 1, . . . , K do BS iteration
6 for all terminals Tb,t , t ∈ {1 · · ·Nb} in parallel do
7 (�α[t], �wb,t) ←
8 RESOURCESAVINGMETHOD (α[t], wb, rb, Cj,dev,

Cj,BS, Cj,bud, T∗, η∗)

9 wb ← wb + 1
Nb

(
∑Nb

t=1 �wb,t)

10 update regulation parameters rb ← 1
N
∑N

b=1 wb

11 update T∗ ← maxb Nb, η∗ ← minb
(λ1+λ2)γ

nbσ+(λ1+λ2)γ
.

Output: wb, rb ∀b ∈ (1, . . . , N)

Procedure 1: LOCALDUALMETHOD

Data: Local data {(xi
b,t, yi

b,t)}
Sb,t
i=1

Input: α[t], wb, rb, Cj,dev, Cj,BS, Cj,bud, T∗, η∗
Initialize : �α[t] ← 0, �wb,t ← 0, wb,t ← wb,

f (H) � (NbHCj,dev + NCj,BS)(1− η∗
T∗ [1− (1−

(λ1+λ2)nbγ
1+(λ1+λ2)nbγ

1
ñb

)H ]) log
∑N

b=1 nb
NεD

1 H← 0, Hcad ← 0, c←+∞
2 for h = Sb,t, . . . , 1 do
3 if f (h) < c then
4 c← f (h)

5 Hcad ← h

6 if f (h) ≤ Cj,bud and f (h+ 1) > Cj,bud then
7 H← h

8 if H = 0 then
9 H← Hcad

10 for h = 0, . . . , H do terminal iteration
11 choose i uniformly at random in local dataset
12 find �αi

b of αb to maximize the local optimizing function (8)
13 �α[t] ← (�α[t])

i +�αi
b

14 wb,t ← wb,t + 1
λ1+λ2

�αi
bxi

b,t

Output: �α[t], �wb,t � 1
λ1+λ2

( 1
Sb,t

∑Sb,t
i=1 xi

b,tα
i
b)

data from 30 participants engaged in six distinct activities,
including walking variations, sitting, standing, and lying
down [41]. Utilizing 561-feature vectors that capture both
time and frequency domain information for each sample, we
treat each participant as a unique task. The objective is to
differentiate between sitting and other activities based on these
comprehensive feature vectors. Meanwhile, the training data
set of one task is distributed among terminals while the test
data set is stored in BS for performance evaluation.

In order to express the overall performance of the system
more intuitively, we calculate the overall accuracy by aver-
aging the accuracy of all separate tasks on their test data
sets. For simplicity, we primarily consider J = 1 type of
resources and consider energy as the single resource type in
our experiments. The resource cost includes the computational
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TABLE II
DEFAULT SETTINGS

Fig. 3. Chosen H and K under different resource budget Cj,bud.

cost for terminal iteration (i.e., local training process) and
BS iteration (i.e., aggregation and transmission), consistent
with (5). We compare RHFedMTL with FedMTL methods,
such as vanilla HFedMTL [1] and FedEM [18], as well as
federated single-task learning methods like FedAvg [9] and
FedProx [14]. In particular, we simulate federated single-
task learning by learning averaged BS models independently.
Besides, in the context of FedEM [18], each client manages
L learners, with every learner designed to adapt to different
underlying distributions’ parameters. Therefore, the client and
learner in FedEM are somewhat equivalent to BS and terminal
in our work. Hence, the task quantity L in FedEM corresponds
to the terminal number Nb (i.e., L = Nb), while the task
quantity in RHFedMTL is linked to the number of BSs N. In
other words, FedEM can only be fairly compared by setting
N = Nb = L. Accordingly, we incorporate FedEM into
the performance comparison only when N = Nb = 5, as
illustrated in Figs. 4 and 5, while omitting it for cases N �=
Nb, showcased in Figs. 6 and 7. The system parameters are
summarized in Table II.

Our initial experiment investigates how the terminal
iteration number Hb correlates with the BS iteration number
K, and validates the consistency with (13). For simplicity of
representation, we set H � minb Hb as shown in (25) and set
Hb to be the same as H for all BSs. The experiment results
are shown in Fig. 2. In line with our previous discussions
[see (11) and (25)], there exists a negative correlation between
the terminal iteration number H and the BS iteration number
K. However, the relationship between H and the overall system
resource cost does not consistently follow a monotonic pattern.
Hence, when the cost associated with the BS, denoted as
Cj,BS, is relatively high, decreasing the BS iteration number

TABLE III
MODEL ACCURACY WITH DIFFERENT RESOURCE

BUDGETS FOR DIFFERENT ALGORITHMS

(a) (b)

Fig. 4. Model accuracy over terminal iteration cost Cj,dev. (a) Cj,bud = 400.
(b) Cj,bud = 1400.

K may offset the resource expenses incurred by an increase
in the terminal iteration number H. The numerical outcomes
for selected values of H and K, tailored to various resource
budgets Cj,dev, are depicted in Fig. 3. Owing to its limita-
tion in resource adaptability, HFedMTL employs a constant
terminal iteration number and compensates by escalating the
BS iteration number to fully utilize the resource budget.
Conversely, as lately substantiated by the findings in Fig. 6
and Table III, RHFedMTL demonstrates the capability to fine-
tune both H and K concurrently, achieving superior outcomes
within a specified resource allocation.

Fig. 4 explores the impact of terminal iteration costs,
Cj,dev, on model accuracy. As expected, under particular
resource constraints, the high cost associated with Cj,dev
leads to a reduction in terminal iterations, thus decreasing
the learning accuracy. In scenarios of limited resources,
FedEM outperforms FedAvg and FedProx, demonstrating the
benefits of MTL. Besides, with more sufficient resources,
federated single-task learning methods exhibit more significant
performance gains. However, regardless of varying resource
levels, RHFedMTL consistently delivers superior results,
affirming its robust performance.

In Fig. 5, we present the accuracy for individual tasks,
where the resource budget Cj,bud = 1, 400 and the number
of tasks, N = 5. Besides, the model accuracy under various
resource budget conditions is detailed in Table III. It can
be observed from Fig. 5 and Table III that compared to
single-task learning methods like FedProx and FedAvg, which
falter on certain tasks, MTL techniques, such as RHFedMTL
and HFedMTL, capitalize on the coupling among tasks
and secure a more consistent overall performance. Besides,
although FedEM demonstrates stable and quick convergence,
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(a) (b)

(c) (d) (e)

Fig. 5. Task accuracy with N = 5, Cj,bud = 1400. (a) RHFedMTL. (b) HFedMTL. (c) FedAvg. (d) FedProx. (e) FedEM.

(a) (b)

Fig. 6. Model accuracy versus different terminal number Nb. (a) Cj,bud =
400. (b) Cj,bud = 1400.

(a) (b)

Fig. 7. Model accuracy for different task number N. (a) Cj,bud = 400.
(b) Cj,bud = 1400.

its proficiency in exploiting task interrelations falls short of
RHFedMTL. Moreover, consistent with previous discussions,
RHFedMTL outperforms HFedMTL in terms of learning
accuracy.

(a) (b)

Fig. 8. Model accuracy of RHFedMTL with different settings of regulation
parameters. (a) λ1. (b) λ2.

Furthermore, we vary N or Nb to assess the impact of the
number of terminals or BSs on model accuracy. Notably, given
the finite data set size, an increase in N or Nb results in a
reduction of data allocated to each terminal. In Fig. 6, we vary
the number of terminals linked to a BS, ranging from 5 to
15. Consistent with our previous discussions, MTL approaches
outperform single-task learning methods. However, along with
the abundance of system resources, the efficiency of single-
task methodologies, especially FedProx, gets better. In Fig. 7,
we adjust the number of BSs (and equivalently the task
number) within a range of 2 to 15. Notably, under constrained
resources (e.g., Cj,bud = 400), FedProx and FedAvg exhibit
comparable results. With a moderate increase in resources,
FedProx demonstrates consistent performance enhancements
over FedAvg. In contrast, RHFedMTL, equipped with
a resource-aware mechanism, generally achieves superior
outcomes.

Subsequently, we delve into the sensitivity of RHFedMTL’s
model accuracy to variations in the regularization parameters
λ1 and λ2. The findings, depicted in Fig. 8, reveal that
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the model’s accuracy diminishes when the self-regulation
parameter λ1 is set too low, compromising its self-regulatory
function. Conversely, an excessively high λ1 can also impair
performance. A similar pattern is observed with the multitask
regulation parameter λ2. Consequently, we select default val-
ues as λ1 = 10−4 and λ2 = 10−6, respectively, to effectively
balance performance and regulation.

VI. CONCLUSION

In this article, we have addressed the importance of network
AI and proposed an RHFedMTL framework based on the
primal-dual method for tackling federated MTL problems with
stragglers. In particular, RHFedMTL has considered the hierar-
chy of cellular networks and encompassed a three-tier iteration
mechanism, including server iteration, BS iteration, and
terminal iteration. Moreover, the primal-dual method SDCA
has been leveraged to effectively transform the coupled MTL
into some local optimization subproblems within BSs. We
have analyzed the convergence bound of the proposed frame-
work, and derived a guiding relationship between terminal
iteration and BS iteration. Afterwards, we have developed
a resource-aware learning strategy for local terminals and
BSs to obtain more satisfactory learning performance under a
given resource budget. Extensive experimentation results have
demonstrated the effectiveness and robustness of the proposed
method.

APPENDIX

PROOF OF LEMMA 1

Proof: Recalling the relationship yi
b � wᵀ

b xi
b in (1), the

Lagrangian dual of the problem could be derived as follows:

D(α)

= inf
W,yi

b

1

N

N∑
b=1

{
λ1

2
‖wb‖2 + λ2

2
‖wb − rb‖2

+ 1

nb

nb∑
i=1

(L(yi
b

)+ αi
b

(
yi

b − wᵀ
b xi

b

))}

= inf
yi

b,t

1

N

N∑
b=1

1

nb

nb∑
i=1

(L(yi
b

)+ αi
byi

b

)+ inf
W

1

N

N∑
b=1(

λ1

2
‖wb‖2 + λ2

2
‖wb − rb‖2 − 1

nb

nb∑
i=1

αi
bwᵀ

b xi
b

)

= − 1

N

N∑
b=1

1

nb

nb∑
i=1

sup
yi

b

(−αi
byi

b,t − L(yi
b

))+ inf
W

1

N

N∑
b=1(

λ1

2
‖wb‖2 + λ2

2
‖wb − rb‖2 − 1
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b xi
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(29)

Since the optimization of wb in (29) is independent of the
models in other tasks, after taking the gradient of wb in the
second term and setting it to zero, for any model wb we would
have

wb = 1

λ1 + λ2

(
λ2rb + 1

nb

nb∑
i=1

αi
bxi

b

)
. (30)

Substituting the chosen wb in (30) into (29), we get the
lemma.
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