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Abstract—Connected Autonomous Vehicles (CAVs) have at-
tracted significant attention in recent years and Reinforcement
Learning (RL) has shown remarkable performance in improving
the autonomy of vehicles. In that regard, Model-Based RL (MBRL)
manifests itself in sample-efficient learning, but the asymptotic
performance of MBRL might lag behind the state-of-the-art Model-
Free RL (MFRL) algorithms. Furthermore, most studies for CAVs
are limited to the decision-making of a single vehicle only, thus un-
derscoring the performance due to the absence of communications.
In this study, we try to address the decision-making problem of mul-
tiple CAVs with limited communications and propose a decentral-
ized Multi-Agent Probabilistic Ensembles (PEs) with Trajectory
Sampling (TS) algorithm namely MA-PETS. In particular, to better
capture the uncertainty of the unknown environment, MA-PETS
leverages PE neural networks to learn from communicated samples
among neighboring CAVs. Afterward, MA-PETS capably develops
TS-based model-predictive control for decision-making. On this
basis, we derive the multi-agent group regret bound affected by the
number of agents within the communication range and mathemat-
ically validate that incorporating effective information exchange
among agents into the multi-agent learning scheme contributes
to reducing the group regret bound in the worst case. Finally, we
empirically demonstrate the superiority of MA-PETS in terms of
the sample efficiency comparable to MFRL.

Index Terms—Autonomous vehicle control, multi-agent model-
based reinforcement learning, probabilistic ensembles with
trajectory sampling.

I. INTRODUCTION

R ECENTLY, there has emerged significant research interest
towards Connected Autonomous Vehicles (CAVs) with

a particular emphasis on developing suitable Reinforcement
Learning (RL)-driven controlling algorithms [2], [3] for the
optimization of intelligent traffic flows [4], decision-making [5],
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and control of AVs [6]. Notably, these RL methods capably learn
complex tasks for CAVs through effective interaction between
agents and the environment, and existing RL works for CAVs can
be classified as Model-Free Reinforcement Learning (MFRL)
and Model-Based Reinforcement Learning (MBRL), the key
differences of which lie in whether agents estimate an explicit
environment model for the policy learning [7].

Conventionally, MFRL, which relies on collected rewards on
recorded state-action transition pairs, has been widely applied
to model complex mixed urban traffic systems in multi-vehicle
scenarios, showing excellent performance in various situations
of autonomous driving [8], [9]. Typical examples of MFRL
include MADDPG [10], COMA [11], QMIX [12], SVMIX [13].
However, the computational complexity of most MFRL al-
gorithms grows exponentially with the number of agents. To
solve training data scarcity-induced out-of-distribution (OOD)
problems, MFRL is typically required to repetitively interact
with the real world to collect a sufficient amount of training
data, which might be infeasible in practice and possibly lead
to learning instability and huge overhead. On the contrary, due
to the impressive sample efficiency, MBRL promises to solve
CAVs issues [14] more capably and starts to attain some research
interest [15], [16].

Typically, MBRL is contingent on learning an accurate prob-
abilistic dynamics model that can clearly distinguish between
aleatoric and epistemic uncertainty [17], where the former is
inherent to the system noise, while the latter stems from sample
scarcity and contributes to solving the OOD problem to a certain
extent. Afterward, based on the learned dynamics model from
the collected data, MBRL undergoes a planning and control
phase by simulating model-consistent transitions and optimizing
the policy accordingly. However, the asymptotic performance
of MBRL algorithms has lagged behind state-of-the-art MFRL
methods in common benchmark tasks, especially as the environ-
mental complexity increases. In other words, although MBRL
algorithms tend to learn faster, they often converge to poorer
results [18], [19]. Consequently, the deployment of model-
based strategies to intricate tasks often encounters substantial
compounded errors, which may impede trajectory learning.
However, by extending single-agent RL [20] to multi-agent
contexts through efficient communication protocols, one can
compensate for the learning deficiency to some extent [21],
[22]. In that regard, despite the simplicity of assuming the
existence of a central controller, it might be practically infeasible
or cost-effective to install such a controller in many real-world
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scenarios. Meanwhile, it is often challenging to establish fully
connected communication between all agents, where the re-
quired communication overhead can scale exponentially [8],
[10]. Instead, a more complex communication-limited decen-
tralized multi-agent MBRL for CAVs becomes feasible, and
specifying a suitable protocol for cooperation between agents
turns crucial.

On the other hand, to theoretically characterize the sampling
efficiency of RL, the concept of the regret bound emerges, which
targets to theoretically measure the T -time-step difference be-
tween an agent’s accumulated rewards and the total reward that
an optimal policy (for that agent) would have achieved. Without
loss of generality, for an H-episodic RL environment with S
states and A actions, contingent on Hoeffding inequality and
Bernstein inequality, tabular upper-confidence bound (UCB)
algorithms can lead to a regret bound of Õ(

√
H4SAT ) and

Õ(
√
H3SAT ) respectively [23], [24], where Õ(·) hides the

logarithmic factors. On the other hand, for any communicating
Markov decision process (MDP) with the diameter D, Jaksch
et al. propose a classical confidence upper bound algorithm
UCRL2 algorithm (abbreviation of Upper Confidence bound for
RL) to achieve the regret bound Õ(DS

√
AT ). In the literature,

there only sheds little light on the regret bound of collaborative
Multi-Agent Reinforcement Learning (MARL). In this paper,
inspired by the regret bound of UCRL2, we investigate the
regret bound of decentralized communication-limited MBRL,
and demonstrate how communication among the multi-agents
can be used to reduce the regret bound and boost the learning
performance.

In this paper, targeted at addressing the sample efficiency issue
in a communication-limited multi-agent scenario, we propose a
fully decentralized Multi-Agent Probabilistic Ensembles with
Trajectory Sampling (MA-PETS) algorithm. In particular, MA-
PETS could effectively exchange collected samples from indi-
vidual agents to neighboring vehicles within a certain range, and
extend the widely adopted single-agent Probabilistic Ensemble
(PE) technique to competently reduce both aleatoric and epis-
temic uncertainty while fitting the multi-agent environmental
transition. Furthermore, MA-PETS employs Model Predictive
Control (MPC) [25], [26], due to its excellence in scenarios
that necessitate the joint prediction and optimization of future
behavior, to generate appropriate control actions from a learned-
model-based Trajectory Sampling (TS) approach. Compared to
the existing literature, the contribution of the paper can be
summarized as follows:
� We formulate the decentralized multi-agent decision-

making issue for CAVs as a parallel time-homogeneous
Markov Decision Process (MDP). On this basis, we de-
vise a sample-efficient MBRL solution MA-PETS which
utilizes a multi-agent PE to learn the unknown environ-
mental transition dynamics model from data exchanged
within a limited range, and calibrate TS-based MPC for
model-based decision-making.

� We analyze the group regret bound of MA-PETS, which
is based on UCRL2 and fundamentally different from the
approach in [22] that utilizes a mere superposition of

TABLE I
THE KEY PARAMETERS FOR THE ALGORITHMS

single-agent regret bounds. By incorporating the concept
of clique cover [27] for a limited-communication, undi-
rected graph, we theoretically demonstrate that, even in
the worst case, augmenting a multi-agent algorithm with
additional communication information still results in a
sub-linear group regret relative to the number of agents,
and accelerates convergence. This validates that multiple
agents jointly exploring the state-action space in similar
environments could communicate to discover the optimal
policy faster than individual agents operating in parallel.

� We further illustrate our approach experimentally on a
CAV simulation platform SMARTS [28] and validate the
superiority of our proposed algorithm over other MARL
methods in terms of sample efficiency. Besides, we eval-
uate the impact of communication ranges on MA-PETS
and demonstrate the contributing effects of information
exchange.

The remainder of the paper is organized as follows. Section II
briefly introduces the related works. In Section III, we introduce
the preliminaries of MDPs and formulate the system model. In
Section IV and Section V, we present the details of MA-PETS
and unveil the effect of communication range on the convergence
of the MARL via the group regret bound, respectively. Finally,
Section VI demonstrates the effectiveness and superiority MA-
PETS through extensive simulations. We conclude the paper in
Section VII.

II. RELATED WORKS

A. Multi-Agent Reinforcement Learning of CAVs

Decision-making and planning are crucial components of
CAV systems, with significant implications for enhancing the
safety, driving experience, and efficiency of CAVs [3], [29]. The
decision-making of CAVs in high-density mixed-traffic intersec-
tions belongs to one of the most challenging tasks and attracts
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significant research interest [30], [31], [32], towards improving
traffic efficiency and safety. In this regard, Centralized Training
and Decentralized Execution (CTDE) has become one of the
most popular paradigms. For instance, within the actor-critic
MFRL framework, [10], [11] proposes using a central critic
for centralized training coupled with multiple actors for dis-
tributed execution. However, as the number of agents increases
or the action space expands, the computational complexity of
MFRL algorithms like MA-DDPG can rise exponentially, pre-
senting a significant challenge. To mitigate this computational
burden, [12] proposes QMIX to involve the value decomposi-
tion of the joint value function into separate individual value
functions for each agent. In addition, [13] proposes to adopt a
stochastic graph neural network to capture dynamic topological
features of time-varying graphs while decomposing the value
function. To avoid the large number of communication over-
heads that frequent information exchange incurs, [33] develops
a consensus-based optimization scheme on top of the periodic
averaging method, which introduces the consensus algorithm
into Federated Learning (FL) for the exchange of a model’s
local gradients.

Although these studies showcase the robust post-training per-
formance of RL in real-time applications, the MFRL algorithm
is still plagued by high overhead, stemming from the extensive
computational and sampling requirements. This issue is par-
ticularly pronounced in scenarios such as CAVs [34], where
data acquisition is challenging, interactions between agents and
the environment are inefficient, and each iteration yields only
a limited amount of data. Therefore, as data samples become
scarce, the performance of MFRL can quickly degrade and
become unstable.

B. Model-Based Reinforcement Learning

To address the sampling efficiency and communication over-
head issues in MFRL, MBRL naturally emerges as an alternative
solution. Unfortunately, MBRL suffers from performance defi-
ciency, as it might fail to accurately estimate the uncertainty in
the environment and characterize the dynamics model, which
belongs to a critical research component in MBRL. For ex-
ample, [35] proposes a DNN-based method that is, to some
extent, qualified to separate aleatoric and epistemic uncertainty
while maintaining appropriate generalization capabilities, while
PILCO [36] marginalizes aleatoric and epistemic uncertainty
of a learned dynamics model to optimize the expected per-
formance. [19] takes advantage of MPC to optimize the RL
agent’s behavior policy by predicting and planning within the
modeled virtual environment at each training step. Another type
of MBRL falls within the scope of Dyna-style methods [37],
where additional data is generated from interactions between
the RL and the virtual environment, thus improving the effi-
ciency of the RL. [15] proposes an uncertainty-aware MBRL
and verifies that it has competitive performance as the state-of-
the-art MFRL. [8] proposes an RL training algorithm MAPPO
that incorporates a prior model into PPO algorithm to speed
up the learning process using current centralized coordination
methods. However, centralized coordination methods face issues

such as high resource-intensiveness, inflexibility, and annoying
delays, since the central node must process a large amount of
information and handle decision-making for the entire system. In
addition, there is still little light shed on the multi-agent MBRL
scenario, especially in the communication-limited case [38].
Considering the substantial communication overhead associated
with centralized coordination methods, we mainly focus on the
fully decentralized multi-agent MBRL algorithm under commu-
nication constraints.

C. Regret Bounds of Reinforcement Learning

Understanding the regret bound of online single-agent RL-
based approaches to a time-homogeneous MDP has received
considerable research interest. For example, [39] discusses the
performance guarantees of a learned policy with polynomial
scaling in the size of the state and action spaces. [40] introduces
a UCRL algorithm and shows that its expected online regret
in unichain MDPs is O(log T ) after T steps. Furthermore,
[41] proposes the a UCRL2 algorithm which is capable of
identifying an optimal policy through Extended Value Iteration
(EVI), by conjecturing a set of plausible MDPs formed within
the confidence intervals dictated by the Hoeffding inequality.
Moreover, [41] demonstrates that the total regret for an optimal
policy can be effectively bounded by Õ(DS

√
AT ). Afterward,

many variants of UCRL2 have been proposed for the generation
of tighter regret bounds. For instance, [42] proposes a UC-

CRL algorithm that derives sub-linear regret bounds Õ(T
2+α

2+2α )
with a parameter α for un-discounted RL in continuous state
space. By using more efficient posterior sampling for episodic
RL, [43] achieves the expected regret bound Õ(ιS

√
AT ) with

an episode length ι. [44] introduces a non-parametric tailored
multiplier bootstrap method, which significantly reduces regret
in a variety of linear multi-armed bandit challenges. Similar to
the single-agent setting, agents in MARL attempt to maximize
their cumulative reward by estimating value functions, and the
regret bound can be analyzed as well. For example, [45] proposes
that a specific class of online, episodic, tabular multi-agent
Q-learning problems with UCB-Hoeffding exploration through
communication yields a regret O(

√
IH4SATι), where I is the

number of RL agents and ι := log(SATI/p). Nevertheless,
despite the progress on single-agent regret bound and the group
regret bound for fully connected multi-agent cases [22], the
group regret of MBRL in communication-limited multi-agent
scenarios remains an unexplored area of research. Consequently,
we integrate dynamic graph theory, akin to that is found in [45],
with an analysis of small blocks to explore the group regret
bounds within a distinct MARL algorithm.

III. PRELIMINARIES AND SYSTEM MODEL

In this section, we briefly introduce some fundamentals and
necessary assumptions of the underlying MDPs and the frame-
work of MBRL. On this basis, towards the decision-making
issue for CAVs, we highlight how to formulate MBRL-based
problems.
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A. Preliminaries

1) Parallel Markov Decision Process: The decision-making
problem of CAVs can be formulated as a collection of
parallel time-homogeneous stochastic MDPs M := {MDP
(S(i),A(i),P(i),R(i), H)}Ii=1 among agents i ∈ [I] :=
{1, 2, . . . , I} for H-length episodes [46]. Despite its
restrictiveness, parallel MDPs provide a valuable baseline
for generalizing to more complex environments, such as
heterogeneous MDPs. Notably, agents have access to identical
state and action space (i.e., S(i) = S(j) and A(i) = A(j),
∀i, j ∈ [I]). We assume bounded rewards, where all rewards are
contained in the interval [0, rmax] with mean r̄(s, a). Besides,
we assume the transition functions P(i) and reward functions
R(i) only depend on the current state and chosen action of
agent i, and conditional independence applies between the
transition function and the reward function. Furthermore,
we focus exclusively on stationary policies, denoted as
π(i) : S(i) → A(i), which indicates the taken action a

(i)
t ∈ A(i)

for an agent i ∈ [I] after observing a state s
(i)
t ∈ S(i) at

time-step t. Based on the taken action, the agent i receives a
reward r(i)t = R(i)(s

(i)
t , a

(i)
t ), and the environment transitions to

the next state s(i)t+1 according to an unknown dynamics function

P(i)(s
(i)
t+1 | s(i)t , a

(i)
t ) : S(i) ×A(i) → S(i). In other words,

each agent interacts with the corresponding homogeneous MDP
and calculates an expectation over trajectories where action
a
(i)
t+1 follows the distribution π(i)(s

(i)
t ).

On the other hand, an MDP is called communicating, if
for any two states s, s′ ∈ S , there always exists a policy π
that guarantees a finite number of steps Lπ(s, s

′) to transition
from state s to state s′ when implementing policy π. In such
a communicating MDP, the opportunity for recovery remains
viable even if an incorrect action is executed. As previously
mentioned, the diameter D of the communicating MDP M (i),
which measures the maximal distance between any two states
in the communicating MDP, can be defined as

D(M (i)) := max
s,s′∈S

min
π(i)

Lπ(i) (s, s′) . (1)

Moreover, unlike cumulative rewards over T steps, we take
account of average rewards, which can be optimized through
a stationary policy π∗(i) [47]. The objective is for each agent to
learn a policy π∗(i) that maximizes its individual average reward
after any T steps, i.e,

π∗(i) = arg supπ∈Π(i)

{
lim inf
T→+∞

Eπ

[
1
T

∑T

t=1
r
(i)
t

]}
, (2)

where Π(i) is the set of the plausible stationary randomized
policies.

Lemma 1 (Lemma 10 of [48]): Consider M (i) as a time-
homogeneous and communicating MDP with a diameter of D.
LetR∗(i)T (M (i)) represent the optimal T -step reward, and ρ∗(i)

denote the optimal average reward under the reward function
R(i). It can be asserted that for any MDP M (i), the disparity be-
tween the optimal T -step reward and the optimal average reward

is minor, capped at a maximum of order D. Mathematically,

R∗(i)T (M (i)) ≤ Tρ∗(i)(M (i)) +D · r(i)max. (3)

Hence, by Lemma 1, the optimal average reward ρ∗(i) serves
as an effective approximation for the expected optimal reward
over T -steps. To evaluate the convergence of the RL algorithms
for each agent i, we consider its regret after an arbitrary number
of steps T , defined as

Regret(i)(T ) := Tρ∗(i) −
∑T

t=1
r
(i)
t . (4)

In the CAV scenario, as it is challenging to consider each agent’s
regret bound independently, we introduce the concept of multi-
agent group regret, which is defined as

RegretG(T ) =
∑I

i=1
Regret(i)(T ). (5)

2) Model-Based Reinforcement Learning: An MBRL frame-
work typically involves two phases (i.e., dynamics model
learning, and planning & control). In the dynamics model
learning phase, each agent i ∈ [I] estimates the dynamics
model P̃(i) from collected environmental transition samples
by a continuous model (e.g., DNNs). Afterward, based on
the approximated dynamics model P̃(i), the agent simulates
the environment and makes predictions for subsequent action
selection. In that regard, we can evaluate w-length action se-
quences A

(i)
t:t+w−1 = (a

(i)
t , . . . , a

(i)
t+w−1) by computing the ex-

pected reward over possible state-action trajectories τ (i)t:t+w−1 =

(s
(i)
t , a

(i)
t , . . . , s

(i)
t+w−1, a

(i)
t+w−1, s

(i)
t+w), and optimize the policy

accordingly. Mathematically, this planning & control phase can
be formulated as

A
∗(i)
t:t+w−1 =

(i)
argmax
At:t+w−1

∑t+w−1

t′=t
r
(i)
t′

s.t. s
(i)
t+1 ∼ P̃(i)

(
s
(i)
t , a

(i)
t

)
. (6)

Limited by the non-linearity of the dynamics model, it is
usually difficult to calculate the exact optimal solution of (6).
However, many methods exist to obtain an approximate solu-
tion to the finite-level control problem and competently com-
plete the desired task. Common methods include the traversal
method, Monte Carlo Tree Search (MCTS) [49], Iterative Linear
Quadratic Regulator (ILQR) [50], etc.

B. System Model

As illustrated in Fig. 1, we consider a mixed autonomy traffic
system model with I CAVs and some human-driving vehicles
(HVs). Consistent with the terminology of parallel MDPs, the
state s

(i)
t ∈ S(i) = (v

(i)
t , x

(i)
t , y

(i)
t , v

(i)
t,a, v

(i)
t,e, l

(i)
t,a, l

(i)
t,e) for agent

i ∈ [I] at time-step t encompasses information like its veloc-
ity v

(i)
t ∈ R, its position z

(i)
t = (x

(i)
t , y

(i)
t ) ∈ R2, the velocity

and relative distance of the vehicles ahead and behind (i.e.,
v
(i)
t,a, v

(i)
t,e, l

(i)
t,a, l

(i)
t,e ∈ R). Meanwhile, each vehicle i is controlled

by an adjustable target velocity v̄
(i)
t ∈ R (i.e., a(i)t = (v̄

(i)
t )).

Furthermore, we assume the dynamics model shall be learned
via interactions with the environment. At the same time, the
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Fig. 1. The complex mixed urban traffic control scenario with unsignalized
lane merging and intersections.

reward function can be calibrated in terms of the velocity and
collision-induced penalty, thus being known beforehand.

For simplicity, let tk be the start time of episode k.
Within the framework of decentralized multi-agent MBRL,
we assume the availability of state transition dataset D(i)

0:t =

{s(i)t′ , a
(i)
t′ , s

(i)
t′+1}tt′=0 and each agent approximates P̃(i), ∀i ∈ [I]

by DNNs parameterized by θ based on historical dataset and
exchanged samples from neighbors. In particular, for a time-
varying undirected graph Gk constituted by I CAVs, each CAV
can exchange its latest H-length1 dataset D(i)

tk−H:tk
with neigh-

boring CAVs within the communication range d ∈ [0, D(Gk)] at
the end of an episode k, where D(Gk) is the dynamic diameter2

of graph Gk. Therefore, when d = 0, the multi-agent MBRL
problem reverts to I parallel single-agent cases. Mathematically,
the dataset for dynamics modeling at the end of an episode
k could be denoted as D(i)+

0:tk := D(i)+
0:tk−H−1 ∪ {D(j)

tk−H:tk
} for

all CAV j ∈ F (i)
d,k, where the set F (i)

d,k encompasses all CAVs
satisfying dist(i, j) ≤ dwith dist(i, j) computing the Euclidean
distance between CAV i and j at the last time-step tk +H .
Furthermore, the planning and control objective for multi-agent
MBRL in a communication-limited scenario can be re-written
as

J
(
P̃(i), d

)
= Eπ∼P̃(i)

[∑H

t′=0
r
(i)
t′ | s(i)0

]
s.t. P̃(i) ∝ D(i)+

0:t , 0 ≤ d ≤ D(Gk)
s
(i)
0 ∼ p(s0), s

(i)
t+1 ∼ P̃(i)(s

(i)
t , a

(i)
t ), ∀t ∈ [H], (7)

1Notably, the applied length could be episode-dependent but is limited by the
maximum value H , as will be discussed in Section IV.

2We slightly abuse the notation of the diameter for an MDP and that for a
time-varying undirected graph.

where P̃(i) is the learned dynamics model based on D(i)+
0:t . In

this paper, we resort to a model-based PETS solution for solving
(7) and calculating the group regret bound.

IV. THE MA-PETS ALGORITHM

In this section, we discuss how to extend PETS [19] to a
multi-agent case and present the dynamics model learning and
planning & control phases in MA-PETS, which can be depicted
as in Fig. 2.

A. Learning the Dynamics Model

In MA-PETS, we leverage an ensemble of bootstrapped prob-
abilistic DNNs to reduce both aleatoric and epistemic uncer-
tainty. In particular, in order to combat the aleatoric uncertainty,
we approximate the dynamics model at time-step t (i.e., P̃(s(i)t+1 |
s
(i)
t , a

(i)
t ), ∀i ∈ [I]) by a probabilistic DNN, by assuming that the

conditioned probability distribution of st+1 follows a Gaussian
distribution N (μθ, σθ) with mean μθ and diagonal covariance
σθ parameterized by θ. In other words,

P̃(i)
θ = arg minθ

1∣∣∣D̂(i)+
∣∣∣ lossGauss(θ), (8)

where D̂(i)+ denotes a sub-set sampled from D(i)+ and
lossGauss(θ) is defined as in (9) shown at the bottom of the
page. Consistent with the definition of states and actions in
Section III-B, μθ(s, a) ∈ R7 and σθ(s, a) ∈ R7×7.

In addition, in order to mitigate the epistemic uncertainty,
which arises primarily from the lack of sufficient data, a PE
method is further adopted. Specifically, MA-PETS consists ofB
bootstrap models in the ensemble, each of which is an indepen-
dent and identically distributed probabilistic DNN P̃(i)

θb
, b ∈ [B]

from a unique dataset D̂(i)+
b uniformly sampled from D(i)+

with the same size. Typically, [19] points out that B = 5 yields
satisfactory results.

B. Planning and Control With Learned Dynamics

Based on a learned dynamics model P̃(i), MA-PETS tries
to obtain a solution to (6) by resorting to a sample-efficiency
controller MPC [25]. Generally speaking, MPC excels in pro-
viding high-precision trajectory planning, thus reducing the risk
of collisions during vehicle operation. Moreover, it can predict
both aleatoric and epistemic uncertainty accurately within the
learned dynamics model [32]. Without loss of generality, assume
that for a time-step t, agent i observes the state s

(i)
t . Afterward,

agent i leverages the Cross-Entropy Method (CEM) [51] to
generate Q candidate action sequences within a w-horizon of
MPC. Initially, each candidate action sequence A(q,i)

t:t+w−1, ∀q ∈

lossGauss(θ) = −
∑

(st,at,st+1)∈D̂(i)+
log P̃(i)

θ (st+1 | st, at)

=
∑

(st,at,st+1)∈D̂(i)+

{
[μθ (st, at)− st+1]

 σ−1
θ (st, at) [μθ (st, at)− st+1] + log detσθ (st, at)

}
(9)
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Fig. 2. The illustration of the MA-PETS algorithm for CAVs.

[Q] is sampled following a Gaussian distribution N (μφ, σφ)
parameterized by φ. Meanwhile, agent i complements pos-
sible next-time-step states from the dynamics model ensem-
bles, by adopting particle-based TS [52]. In other words, for
each candidate action sequence A(q,i)

t:t+w−1, TS predicts plausible
state-action trajectories by simultaneously creating P particles
that propagate a set of Monte Carlo samples from the state
s
(i)
t . Due to the randomness in the learned and assumed time-

invariant dynamics model, each particle p ∈ [P ] can be propa-
gated by s

(i)
t′+1,p = P̃(i)

θb
(s

(i)
t′,p, wherea

(i)
t′ ) (t′ ∈ [t, t+ w − 2]),

and P̃(i)
θb

, b ∈ [B] is a randomly selected dynamics model in
the ensemble model. Therefore, the set of plausible state-action
trajectories for each candidate action sequence A

(q,i)
t:t+w−1 =

(a
(q,i)
t , . . . , a

(q,i)
t+w−1) (q ∈ [Q]) consists of P parallel propagated

states with the same action sequenceA(q,i)
t:t+w−1. Afterward, given

the calibrated known reward function R(i), the evaluation of a
candidate action sequence can be derived from the average cu-
mulative reward of P different parallel action-state trajectories,
that is,

J(A
(q,i)
t:t+w−1) = E

⎡
⎣ 1
P

P∑
p=1

t+w−1∑
t′=t

R(i)
(
s
(i)
p,t′ , a

(q,i)
t′

)⎤⎦ . (10)

After sorting Q candidate action sequences in terms of the eval-
uation J(A

(i)
t:t+w−1), elite candidate sequences X ≤ Q can be

selected to update the Gaussian-distributed sequential decision-
making function N (μφ, σφ). Such a TS-based CEM procedure

can repeat until convergence of φ. Therefore, it can yield the
desired optimal action sequence satisfying (6) and the MPC
controller executes only the first action a

∗(i)
t , transitions the

actual environment into the state s
(i)
t+1, and re-calculates the

optimal action sequence at the next time-step.
Finally, we summarize our model-based MARL method MA-

PETS in Algorithm 1.

V. REGRET BOUND OF MA-PETS

Next, we investigate its group regret bound of MA-PETS, by
first introducing how to construct an optimistic MDP from a
set of plausible MDPs through EVI. Based on that, we derive
the group regret bound facilitated by communications within a
range of d.

A. EVI for an Optimistic MDP

Beforehand, in order to better exemplify the sample efficiency,
we make the following assumptions.

Assumption 1: The continuous state and action space (i.e.,
S(i) and A(i)) can be quantized. Correspondingly, S = |S(i)|
and A = |A(i)| denote the size of the discrete state space and
action space, respectively.

Assumption 2: All agents in MA-PETS could enter into the
next episode in a “simultaneous” manner, while the episodic
length can be tailored to meet some pre-defined conditions.

Assumption 3: For simplicity of representation, we can scale
the reward r from [0, rmax] to [0,1].
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Algorithm 1: The MA-PETS algorithms.

Input: communication range d, initial state N (μφ0 , σφ0),
rarity parameters α, max iteration of CEM Y , accuracy ε.

1: Initialize vehicle’ dataset D(i),D(i)+ = ∅, ∀i ∈ [I];
2: Randomly sampling action in the initial episode and

update D(i)+
0:H , ∀i ∈ [I];

3: for Vehicle i and episode k, ∀i ∈ [I], ∀k ∈ [K] do
4: Train the virtual environment dynamics ensemble

model P̃i given D(i)+ for each vehicle i;
5: for step t = 1, 2, . . . H do do
6: while j ≤ Y and σφj

− σφj−1 ≤ ε do
7: Each vehicle samples Q candidate action

sequences
A

(1,i)
t:t+H−1, . . . ,A

(Q,i)
t:t+H−1 ∼iid N (μφj

, σφj
);

8: Propagate state particles s(q,i)t,p by using
ensemble model and TS method;

9: Evaluate action sequences by (10);
10: Select the top α% of action sequences with the

high rewards;
11: Update N (μφj+1 , σφj+1) distribution by high

reward action sequences;
12: end while
13: Only execute first action a

∗(i)
t , ∀i ∈ [I] from

optimal actions A∗(i)t:t+w−1;

14: Obtain reward r
(i)
t , and observe next-step state

s
(i)
t+1;

15: end for
16: Determine neighboring vehicle i′, ∀dis(i, i′) ≤ d

(i.e., within the communication range d of vehicle i)
to exchange information;

17: Update dataset D(i)+ ← D(i)+ ∪ {D(i′)
t−H:t}.

18: end for

Notably, Assumption 1 holds naturally, if we neglect the
possible discretization error of DNN in MA-PETS, as it has
a trivial impact on understanding the sample efficiency incurred
by information exchange. The quantization discussed here in-
volves discretizing continuous state and action spaces. Common
discretization methods [53] include uniform quantization, which
divides each dimension of the continuous state space into inter-
vals of equal width (bins). These intervals define the precision
of discretization, with each interval representing a discrete state.
Besides, non-uniform quantization may discretize based on the
distribution or importance of states, and clustering algorithms
(such as k-means or DBSCAN [54], [55]) can group points in
the state space, with each cluster center representing a discrete
state. Meanwhile, text encoding (e.g., Tile Coding [56]), which
involves overlaying different tiles on the states and assigning one
bit to each tile, belongs to an alternative solution. Therefore, if
an agent is in a certain position, the corresponding discrete state
can be represented by one bit-vector, with activated positions
set to 1 and all other positions set to 0. On the other hand,
Assumption 2 could be easily met by intentionally ignoring
the experienced visits of some “diligent” agents. Moreover,

Assumption 3 implies unanimously scaling the group regret
bound by rmax, which does not affect learning the contributing
impact from inter-agent communications.

Based on these assumptions, we incorporate the concept
of a classical MBRL algorithm UCRL2 into the analyses of
MA-PETS. In particular, UCRL2 primarily implements the “op-
timism in the face of uncertainty”, and performs an EVI through
episodes k = 1, 2, . . . , each of which consists of multiple time
steps. The term N

(i)
k (s, a) denotes the number of visits to

the state-action pair (s, a) by agent i before episode k. Next,
UCRL2 determines the optimal policy for an optimistic MDP,
choosing from a collection of plausible MDPsMi constructed
based on the agents’ estimates and their respective confidence
intervals, as commonly governed by the Hoeffding inequality
for an agent [57].

Consistent with UCRL2, we allow each agent i to enter into
a new episode k + 1 once there exists a state-action pair (s, a)
that has just been played and satisfies u(i)

k (s, a) = N
(i)+
k (s, a).

Hereu(i)
k (s, a) denotes the number of state-action (s, a) visits by

agent i in the episode k and N
(i)+
k (s, a) = max{1, N (i)

k (s, a)}.
By Assumption 2, all agents could enter into the next episode
in a “simultaneous” manner, by intentionally ignoring the expe-
rienced visits of a “diligent” agent i after meeting u

(i)
k (s, a) =

N
(i)+
k (s, a) in episode k. Therefore, at the very beginning of

episode k + 1, for each agent i, N
(i)
k+1(s, a) = N

(i)
k (s, a) +

u
(i)
k (s, a) for all state-action pairs(s, a). This setting is similar

to the doubling criterion in single-agent UCRL2 and ensures
that each episode is long enough to allow sufficient learning.
Furthermore, different from the single-agent UCRL2, at the end
of an episode k, consistent with in MA-PETS, each agent i has
access to all the set of neighboring CAVsF (i)

d,k, so as to obtain the

latest datasetD(j)
tk−H:tk

, ∀j ∈ F (i)
d,k and constituteD(i)+

0:tk . Again,

according to Assumption 2, H =
∑

s,a u
(i)
k (s, a). Afterward,

the EVI proceeds to estimate the transition probability function
P(i)(· | s, a). In particular, various high-probability confidence
intervals of the true MDP M (i) can be conjectured according
to different concentration inequalities. For example, based on
Hoeffding’s inequality [57], the confidence interval for the esti-
mated transition probabilities can be given as∥∥∥P̃(i)(· | s, a)− P̂(i)

k (· | s, a)
∥∥∥

1
≤

√
14S log(2Atk/δ)

N+
k (s, a)

,

(11)

and it bounds the gap between the EVI-conjectured (estimated)
transition matrix P̃(i)(· | s, a) derived from the computed policy
π̃
(i)
k and the empirical average one P̂(i)

k (· | s, a) in episode k.
Besides, δ ∈ [0, 1] is a pre-defined constant.

Furthermore, a setM(i)
k of plausible MDPs (12) is computed

for each agent i as

M(i)
k

def
=

{
M̃ (i) = 〈S(i),A(i),R(i), P̃(i)〉

}
. (12)

Correspondingly, a policy for an optimistic MDP can be attained
from learning in the conjectured plausible MDPs, and then the
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impact of the communication range d on the performance of
MA-PETS can be analyzed, in terms of the multi-agent group
regret in (5).

B. Analyses of Group Regret Bound

The exchange of information in MA-PETS enhances the
sample efficiency, which will be further shown in the derived
multi-agent group regret bound. In other words, the difference
between single-agent and multi-agent group regret bounds man-
ifests the usefulness of information sharing among agents.

1) Results for Single-Agent Regret Bound: Before delving
into the detailed analyses of multi-agent group regret bound,
we introduce the following useful pertinent results derived from
single-agent regret bound [41].

Consider M (i) as a time-homogeneous and communicating
MDP with a policy π′∗(i). Meanwhile, by Lemma 1, the optimal
T -step reward R∗(i)T (M (i)) can be approximated by the opti-
mistic average reward ρ∗(i). Therefore, if π′∗(i) is implemented
in M (i) for T steps, and we define the regret in a single episode
k as Δ(i)

k :=
∑

(s,a) u
(i)
k (s, a)(Tρ∗(i) − r̄(i)(s, a)), which cap-

tures the difference between the T -step optimal reward ρ∗(i) and
the mean reward r̄(i)(s, a), with

∑
k u

(i)
k (s, a) = N

(i)
k+1(s, a)

and
∑

(s,a) N
(i)
k (s, a) = T , we have the following lemma.

Lemma 2 (Equations (7)– (8) of [41]): Under Lemma 1, the
differences between the observed rewards r

(i)
t , acquired when

agent i follows the policy π′∗(i) to choose action a
(i)
t in state

s
(i)
t at step t, and the aforementioned optimistic average reward
ρ∗(i) forms a martingale difference sequence. Besides, based on
Hoeffding’s inequality, with a probability at least 1− δ

12(T )5/4 ,
the single-agent bound can be bounded as

Regret(i)(T ) = TR∗(i)T (M (i))−
∑T

t=1
r
(i)
t (st, at)

≤
∑

k
Δ

(i)
k +

√
C1 T log(8T/δ), (13)

where C1 = 5
8 is a constant.

Lemma 2 effectively transforms the cumulativeT -step regrets
into individual episodes of regret. Moreover, the regret bound∑

k Δ
(i)
k in Lemma 2 can be classified into two categories,

depending on whether the true MDP M (i) falls into the scope
of plausible MDPsM(i)

k . As for the case where the true MDP

M (i) is not included in the set of plausible MDPs M(i)
k , the

corresponding regret Δ(i)

k,M(i)/∈M(i)
k

can be bounded by the fol-

lowing lemma.
Lemma 3 (Regret with Failing Confidence Intervals, Equation

(13) of [42]): As detailed in Sec. 5.1 of [42], at each step t, the
probability of the true MDP not being encompassed within the
set of plausible MDPs is given by P{M (i) /∈M(i)

k )} ≤ δ
15t6 .

Correspondingly, the regret attributable to the failure of confi-
dence intervals is ∑

k
Δ

(i)

k,M(i)/∈M(i)
k

≤
√
T . (14)

On the other hand, under the assumption thatM (i) falls within
the setM(i)

k , in light of (8) from [58], we ascertain that due to

the approximation error of the EVI,

ρ̃
(i)
k ≥ ρ∗(i) − 1√

tk
, (15)

where ρ̃(i)k represents the optimistic average reward obtained by

the optimistically chosen policy π̃
(i)
k , while ρ∗(i) signifies the

actual optimal average reward.
Define Δ

r(i)

k,M(i)∈M(i)
k

:=
∑

s,a u
(i)
k (s, a)

(
r̃
(i)
k (s, a)− r̄(i)

(s, a)
)

as the accumulated regret in reward estima-

tion over all state-action pairs. r̃
(i)
k (s, a) denotes the

maximal possible reward according to a confidence
interval similar to (11). Meanwhile, Δ

p(i)

k,M(i)∈M(i)
k

:=

(u
(i)
k )

(
(P̃(i)

k (· | s, π̃k(s)))s − I
)
w

(i)
k quantifies the regret

from the estimation of transition probabilities. Additionally,
u
(i)
k := (u

(i)
k (s, π̃k(s)))s denotes the vector representing the

final count of state visits by agent i in episode k, as determined
under the policy π̃k(s), where the operator (·)s concatenates the
values for all s ∈ S . (P̃(i)

k (· | s, π̃k(s)))s is the transition matrix

of the policy π̃
(i)
k in the optimistic MDP M̃

(i)
k computed via

EVI and I typically represents the identity matrix. Furthermore,
w

(i)
k denotes a modified value vector to indicate the state value

range of EVI-iterated episode k specific to agent i, where
w

(i)
k (s) := η

(i)
k (s)− 1

2 (mins∈S(i) η
(i)
k (s) + maxs∈S(i) η

(i)
k (s))

and η
(i)
k (s) is the state value given by EVI. We can then

decompose the aggregate regret considering M (i) ∈M(i)
k ,

which leads to the result in Lemma 4.
Lemma 4 (Regret with M (i) ∈M(i)

k , Sec. 5.2 of [58]): By

the assumption M (i) ∈M(i)
k and the gap derived from (15), the

regret Δ(i)
k of agent i accumulated in episode k could be upper

bounded by

Δ
(i)

k,M(i)∈M(i)
k

≤ Δ
r(i)

k,M(i)∈M(i)
k︸ ︷︷ ︸

(a)

+Δ
p(i)

k,M(i)∈M(i)
k︸ ︷︷ ︸

(b)

+ 2
∑
s,a

u
(i)

k(M(i)∈M(i)
k )

(s, a)
√
tk

, (16)

As previously noted in Section III-B, we posit that the agents’
reward functionsRi are predetermined, often designed based on
task objectives. In line with MA-PETS, the regret contributed by
the term (a) in (4) can be disregarded. Therefore, we have the
following corollary.

Corollary 1: By the assumption M (i) ∈M(i)
k and the gap

derived from (15), the regret Δ(i)
k of agent i accumulated in

episode k could be upper bounded by

Δ
(i)

k,M(i)∈M(i)
k

≤ Δ
p(i)

k,M(i)∈M(i)
k︸ ︷︷ ︸

(b)

+2
∑

s,a

u
(i)

k,M(i)∈M(i)
k

(s, a)
√
tk

.

(17)
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On the other hand, the item (b) (i.e., Δ
(i)

k,M(i)∈M(i)
k

) in

Lemma 4 (as well as Corollary 1) can be further decomposed
and bounded as (18) shown at the bottom of this page, where, as
demonstrated in (23) of [58], the modified value vector w

(i)
k

satisfies ‖w(i)
k ‖∞ ≤ D(M(i))

2 . In other words, the state value
range is bounded by the diameter D of the MDP at any EVI
iteration. By slight rearrangement of Δ

(i)

k,M(i)∈M(i)
k

, we have

(18), which can be bounded by the following lemma.
Lemma 5 (Equations (16)– (17) of [41]): Contingent on the

confidence interval (11), based on our assumption that both M̃ (i)
k

and M (i) belong to the set of plausible MDPsM(i)
k , the term

Δ
p1(i)
k in (18) can be bounded as

Δ
p1(i)
k ≤ D

√
C2S log (2AT/δ)

∑
k

∑
s,a

u
(i)
k (s, a)√
N+

tk
(s, a)

, (19)

whereC1 denotes a constant. Moreover, by applying the Azuma-
Hoeffding inequality, the term Δ

p2(i)
k in (18) can be bounded as

Δ
p2(i)
k ≤ D

√
4C1 T log (8T/δ) +DSA log2 (8T/SA) ,

(20)

where C2 denotes a constant.
2) Analysis for Group Regret With Limited-Range Commu-

nications: Before analyzing the group regret in the multi-agent
system within a constrained communication range, we start with
some necessary notations and assume all CAVs constitute a
graph. Considering the power graph Gd,k, which is derived by
selecting nodes from the original graph and connecting all node
pairs in the new graph that are at a distance less than or equal
to a specified value d in the original graph. The neighborhood
graph G(i)d,k = (F (i)

d,k, E(i)d,k) represents a sub-graph of Gd,k, where

E(i)d,k comprises the set of communication links connecting the

agents i and i′ ∈ F (i)
d,k. We also define the total number of

state-action observations for agent i, which is calculated as
the sum of observations from its neighbors within the com-
munication range d ∈ [0, D(Gk)] before episode k, denoted as

N
(i)+
d,k (s, a) := N

(i)+
d,k−1(s, a) +

∑
i′∈G(i)d,k

u
(i′)+
k (s, a). Given the

complication to directly estimate N (i)+
d,k (s, a), we introduce the

concept of clique cover [27] for F (i)
d,k, which is a collection of

cliques that can cover all vertices of a power graph. Further,

let Cd,k denote a clique cover of Gd,k and a clique C ∈ Cd,k.
Meanwhile, |C| represents the size of the clique C. Additionally,
the clique covering number χ̄(Gd,k) signifies the minimum
number of cliques to cover the power graph Gd,k within the
communication. Furthermore, characterized by a clique cover-
ing number χ̄(Gd) := maxk∈[K]{χ̄(Gd,k)}, Cd constitutes the
clique cover for the graph Gd.

Lemma 6 ((6) of [45]): LetCd,k represent the clique covering
of the graph Gd,k, where the graph Gd,k consists of I nodes, and
the cliques within Cd,k have node counts |CC∈Cd,k

|. The min-
imum clique cover χ̄(Gd,k) maintains a consistent relationship∑
C∈Cd,k

√|C| = √
χ̄(Gd)I .

In this setup, all agents within a clique C explore in proportion
to the clique’s size and share the collected samples among
themselves. For simplicity, we assume that Gd,k is connected,
meaning that all cliques can communicate with one another.
Meanwhile, we take N+

C,k(s, a) to be the number of samples
exchanged within the clique C before an episode k that are
available for all agents i ∈ C. In the most challenging scenario,
characterized by uniformly random exploration, the algorithm
fails to capitalize on any inherent structures or patterns within
the environment to potentially refine its learning approach. Con-
sequently, this necessitates a maximum quantity of samples to
ascertain an optimal policy, thus giving the worst case. Under
these conditions, we present the following lemma.

Lemma 7 (Theorem 1 of [45]): In the worst case, where the
exploration is uniformly random, the number of samples within
each clique can be approximated as NC,k(s, a) = |C|Hk/SA,
where H is the maximum horizon, K is the number of episodes,
S and A represents the state and action spaces, respectively.

Based on the results of the single-agent regret bound described
in Section V-B-1, it is ready to analyze the upper bound on the
group regret of the multi-agent setting under limited communi-
cation range, as shown in Theorem 1.

Theorem 1: (Hoeffding Regret Bound for Parallel MDP with
Limited-Range Communications) With probability at least 1−
δ, it holds that for all initial state distributions and after any
T steps, the group regret with limited communication range is
upper bounded by (21) shown at the bottom of the next page.

Proof: The proof of Theorem 1 stands consistently with that
of Lemma 2. However, it contains significant differences, due to
the information exchange-induced distinctive empirical sample
size for the transition probabilities.

In particular, the T -step group regret in the MDP settings
could be bounded based on (5) and (13), that is, by Lemma 2

∑
k

Δ
p(i)

k,M(i)∈M(i)
k

≤
∑
k

∑
s

∥∥∥∥u(i)
k (s, π̃k(s))

((
P̃(i)
k (· | s, π̃k(s))

)
s

−
(
P(i)
k (· | s, πk(s))

)
s

)∥∥∥∥
1

∥∥∥w(i)
k

∥∥∥
∞︸ ︷︷ ︸

Δ
p1(i)
k

+
∑
k

∑
s

∑
s′

u
(i)
k (s, π̃k(s))

(
P(i)
k (s′ | s, πk(s))− Is,s′

)
w

(i)
k (s′)

︸ ︷︷ ︸
Δ

p2(i)
k

(18)
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with a high probability at least 1− δ
12(IT )5/4 ,

RegretG(T ) =
I∑
i

[
Tρ∗(i) −

T∑
t=1

r
(i)
t (st, at)

]

≤
I∑
i

K∑
k

[
Δ

(i)

k,M(i)/∈M(i)
k

+Δ
(i)

k,M(i)∈M(i)
k

]

+
√

C1IT log(8IT/δ) (22)

As elucidated in Lemma 3, the portion of group regret∑I
i

∑
k Δ

(i)

k,M(i)/∈M(i)
k

resulting from failed confidence regions

can be bounded by I
√
T with a probability of at least δ

15t6 .
On the other hand, for each episode k, under the premise that

the true MDP is encompassed within the set of plausible MDPs
(Mi

k, ∀k), the term Δ
(i)

k,M(i)∈M(i)
k

is further dissected according

to Corollary 1. With Lemma 5, we have

I∑
i

K∑
k

Δ
(i)

k,M(i)∈M(i)
k

≤
I∑
i

K∑
k=1

Δ
p(i)

k,M(i)∈M(i)
k

+ 2
I∑
i

K∑
k

∑
s,a

u
(i)
k (s, a)√

N
(i)+
k (s, a)

≤ D
√
C2S log (2AT/δ)

K∑
k=1

∑
C∈Cd,k

∑
i∈C

∑
s,a

u
(i)
k (s, a)√
N+
C,k(s, a)

+DSAI log2 (8T/SA) +D
√

4C1TI log (8TI/δ)

+ 2
I∑
i

K∑
k=1

∑
s,a

u
(i)

k,M(i)∈M(i)
k

(s, a)√
N

(i)+
k (s, a)

. (23)

Leveraging the definition that N
(i)+
k+1 (s, a) =

max{1,∑k
i=1 u

(i)
k (s, a)}, and applying Jensen’s inequality

and the inequality in Lemma 8 in Appendix, we obtain the
following results

I∑
i

K∑
k=1

∑
s,a

u
(i)

k,M(i)∈M(i)
k

(s, a)√
N

(i)+
k (s, a)

≤ (
√

2 + 1)I
√
SAT . (24)

Furthermore, by Lemma 7,
∑

(s,a) N
+
C,k(s, a) = |C|Hk. Thus,

we have

K∑
k=1

∑
C∈Cd,k

∑
s,a

∑
i∈C u

(i)
k (s, a)√

N+
C,k(s, a)

≤
K∑
k=1

∑
C∈Cd,k

∑
s,a

uC,k(s, a)√
N+
C,k(s, a)

≤
∑
C∈Cd

(
√

2 + 1)
√
|C|SAKH

= (
√

2 + 1)
√

χ̄ (Gd) ISAT , (25)

where uC,k(s, a) :=
∑

i∈C u
(i)
k (s, a) represents the frequency

of visits within the clique C to a state-action pair after the
communications at the end of episode k.

In summary, we conclude the proof of Theorem 1 and estab-
lish that the total regret is bounded by (21) with a probability
of 1− δ

4T 5/4 . When considering all values of T = 2, . . ., it is
evident that this bound holds simultaneously for all T ≥ 2 with
a probability of at least 1− δ. �

Theorem 1 unveils the group regret bound and demonstrates
that concerning T , a sub-linear increase in the group regret
bound is attained in (21). On the contrary, in the standard
non-communicative reinforcement learning setting for the same
type of algorithm, the group regret is essentially equal to the
sum of the single-agent regrets, as implied in Lemma 2.

VI. EXPERIMENTAL SETTINGS AND NUMERICAL RESULTS

A. Experimental Settings

In this section, we evaluate the performance of MA-PETS
within the domain of autonomous vehicle control and demon-
strate the superiority of our proposed algorithm over sev-
eral other state-of-the-art RL methods, including FIRL [33],
SVMIX [13], MAPPO [8], MADDPG [10], DQN [59], SAC [60].
Specifically, we run our experiments using the CAV simulation
platform SMARTS [28] and select the “Unprotected signal-free
Intersection” scenario in the closed single-lane and multi-lane
“Figure Eight” loop, which is a typical mixed autonomy traffic
scenario as illustrated in Fig. 3, for the evaluation. In these exper-
iments, we deploy a fixed number (i.e., I) CAVs respectively,
managed by our MA-PETS algorithm, and a random number
Ihv of human-driven vehicles (HVs) controlled by the envi-
ronment within the SMARTS framework. All CAVs will start
from a one-way lane with an intersection, and drive circularly
by passing through the intersection while avoiding collisions
and congestion. Following the MDP defined in Section III, the
corresponding MDP for CAVs in “Unprotected Intersection” is
defined as below.
� State and Observation: Except for information about the

vehicle itself, each CAV can only observe the information
of the vehicle ahead and behind. Hence, it has the infor-
mation about current state containing the velocity vt ∈ R,
position zt = (xt, yt) ∈ R2 of itself, the speed and distance

RegretG(T ) ≤
√

C1IT log(8IT/δ) + I
√
T
[
1 + (1 +

√
2)
√
SA

]
+D

√
4C1IT log(8IT/δ)

+DSAI log2 (8T/SA) + (1 +
√

2)DS
√
C2χ̄ (Gd) IAT log (2AT/δ) (21)
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Fig. 3. The “Unprotected Intersection” scenario in the closed single-lane and multi-lane “Figure Eight” loop for simulations. (a) presents an aerial view of the
“Figure Eight” loop, while (b) and (c) provide the regional enlarged view of the single-lane and multi-lane “Unprotected Intersection”, respectively. (a) “Figure
Eight” loop. (b) Single-lane “Unprotected Intersection”. (c) Multi-lane “Unprotected Intersection”.

of the vehicles ahead and behind vt,a, vt,e, lt,a, lt,e ∈ R.
Hence, as mentioned earlier, the state of vehicle i can be
represented as s(i)t = (v

(i)
t , x

(i)
t , y

(i)
t , v

(i)
t,a, v

(i)
t,e, l

(i)
t,a, l

(i)
t,e).

� Action: As each CAV is controlled via the target velocity
v ∈ R and the special actions indicating whether to make
a lane change c ∈ {0, 1}, decided by itself, the action of
vehicle i can be represented as a(i)t = {v(i)t , c

(i)
t }. Besides,

for the single-lane scenario, c nulls.
� Reward: CAVs aim to maintain a maximum velocity based

on no collision. Accordingly, the reward functionR(i) can
be defined as

r
(i)
t = R(i)

(
s
(i)
t , a

(i)
t

)
= v

(i)
t + v

(i)
t,a + v

(i)
t,e + β, (26)

where the extra term β imposes a penalty term on collision,
that is,β = −10 if a collision occurs; and it nulls otherwise.

Notably, given the definition of the reward function in (26),
a direct summation of the rewards corresponding to all agents
could lead to the computation duplication of some vehicles, thus
misleading the evaluation. Therefore, we develop two evaluation
metrics from the perspective of system agility and safety. In
particular, taking account of the cumulative travel distanceΛx(i)

t

of vehicle i at time-step t and the lasting-time tc before the
collision, we define

Agility(K) = Eπ∼P̃k
1
I

∑I

i=1

1

t
(i)
c

∑t
(i)
c

t=0
Λx

(i)
t (27)

and

Safety(K) = Eπ∼P̃k
1
I

∑I

i=1

t
(i)
c

H
, (28)

where P̃k (∀k ∈ [K]) refers to a learned dynamics model until
the episode k.

In our configuration, the number of episodes is K = 15, and
in the event of no collisions, the length of each episode can
reach up to H = 200 for single-lane scenarios and H = 400
for multi-lane scenarios, respectively. All of our experiments
are conducted on the NVIDIA GeForce RTX 4090 with 5 inde-
pendent simulations. Moreover, typical parameters, including
the simulation environment setup, deep neural network, and
MA-PETS, are summarized in Table II.

TABLE II
LIST OF KEY PARAMETER SETTINGS FOR THE SIMULATION

B. Numerical Results

Firstly, we evaluate the performance of MA-PETS for CAVs
with I = 8 and communication range d = 100 in the single-
lane scenario, and present the performance comparison with
MFRL algorithms in Fig. 4. Besides, we testify the real-time
performance for each step of the 10-th episode in the simulation
process in Fig. 5. It can be observed from Figs. 4 and 5 that our
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Fig. 4. Comparison of utility in the single-lane “Unprotected Intersection”
scenario. (a) Agility. (b) Safety.

Fig. 5. Real-time utility comparison for each step of the 10-th episode under
the single-lane “Unprotected Intersection” scenario. (a) Agility. (b) Safety.

Fig. 6. Comparison of utility in the multi-lane “Unprotected Intersection”
scenario. (a) Agility. (b) Safety.

algorithmMA-PETS significantly yields superior outcomes than
the others in terms of both agility and safety. More importantly,
MA-PETS converges at a faster pace.

Building upon these single-lane results, we further increase
the complexity of the simulation scenarios by establishing a
multi-lane intersection without traffic lights and utilizing I = 22
CAVs controlled by our algorithm MA-PETS, as depicted in
Fig. 6. In this setting, we perform a comparative evaluation of our
algorithm against a suite of state-of-the-art RL methods with a
communication range d = 100. As can be observed from Fig. 6,
while our algorithm may initially exhibit a marginally reduced
efficacy in terms of collision avoidance relative to MAPPO,
SVMIX, and SAC, it nearly achieves a collision-free state by the
13-th episode. Simultaneously, our algorithmMA-PETS notably
excels in agility and achieves convergence at a significantly
accelerated pace compared to other algorithms.

To validate the rationality of Assumption 1 and the feasi-
bility of MA-PETS after quantization, we conduct supplemen-
tary simulation experiments. We compare the performance of
MA-PETS using the tile coding method [53] to discretize our
six-dimensional continuous state space and two-dimensional

Fig. 7. Performance comparison of the MA-PETS with continuousness and
discretization at the single-lane “Unprotected Intersection” scenario.

Fig. 8. Performance comparison under different communication range d.
(a) Agility. (b) Safety.

TABLE III
THE COMMUNICATION OVERHEADS OF DIFFERENT COMMUNICATION RANGE d

continuous action space withMA-PETS operating in continuous
state and action spaces within a single-lane “Figure Eight” loop
scenario, depicted in Fig. 7. It can be observed that although
the discretized MA-PETS algorithm after quantization exhibits
larger fluctuations during the learning process, with the increase
in the number of training episodes (e.g., post-15 episodes), the
MA-PETS with discretization can also achieve performance
similar to the continuousMA-PETS in terms of agility and safety.
This demonstrates that MA-PETS remains effective even in a
discretized setting after quantization.

Furthermore, we show the performance of MA-PETS con-
cerning different values of communication range d by varying
from 0 to 200 in Fig. 8 and Table III. It can be observed
from Table III that consistent with our intuition, the increase
in communication range leads to a significant boost of the
communications overheads. Meanwhile, as depicted in Fig. 8,
it also benefits the learning efficiency of the CAVs, thus greatly
upgrading agility and safety. On the other hand, Fig. 8 also
unveils that when the communication range increases to a certain
extent, a further increase of d contributes trivially to the agility
and safety of learned policies. In contrast, Table III indicates an
exponential increase in the average communications overhead.
In other words, it implies a certain trade-off between the learning
performance and communication overheads. Consistent with the
group regret bound detailed in Section V, we further investigate
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Fig. 9. Correlation between number of minimum clique cover χ̄(Gd,k) and
communication distance d.

Fig. 10. Comparison of utility for different communication constraints.
(a) Agility. (b) Safety.

the numerical interplay between the minimum number of clique
covers χ̄(Gd,k) and communication distance d in 15 independent
trials. It can be observed from Fig. 9 that while the minimum
number of clique covers remains constant beyond a specific
communication range threshold, a generally inverse correlation
exists between the minimum clique cover number and the com-
munication radius, which aligns with both our theoretical proofs
and the experimental findings presented in Fig. 8.

To further illustrate the feasibility and robustness of MA-
PETS under more complex and variable real-world communi-
cation scenarios, such as vehicles experiencing communication
hindrances while passing through tunnels or other challeng-
ing environments, we conduct simulations under dynamic and
unpredictable communication constraints. In our simulations,
we assume the possibilities of each CAV controlled by the
MA-PETS to potentially encounter communication blockages or
failures as 0%, 25%, and 50% when attempting to communicate
with other vehicles within a communication range of d = 100
at the end of each episode. The results of these simulations are
presented in Fig. 10. From Fig. 10, it is evident that dynamic and
unpredictable communication constraints at varying probabili-
ties can cause fluctuations in the MA-PETS’s safety and agility
to some extent. However, the algorithm can effectively learn
within 15 episodes, demonstrating its feasibility and robustness
in real-world autonomous vehicle control environments.

To clarify the effect of the MPC horizon w in MA-PETS,
we perform supplementary experiments. As depicted in Fig. 11,
from a security point of view, extending the MPC horizon w
gradually enhances security. However, beyond a horizon length
of w = 25, further increases yield only marginal security im-
provements. In terms of agility, the choice of the MPC horizonw
is crucial for the performance of the system. In particular, a “too

Fig. 11. Performance comparison under different horizon w of MPC.
(a) Agility. (b) Safety.

Fig. 12. Performance comparison under different ensembles for dynamics
model.

Fig. 13. Performance comparison under different particles for TS.

short” horizon introduces a substantial bias in the performance of
MA-PETS, as it hampers the ability to make accurate long-term
predictions due to the scarcity of time steps. Conversely, a “too
long” horizon also results in a noticeable bias. This is due to
the increased divergence of particles over extended periods,
which reduces the correlation between the currently chosen
action and the long-term expected reward. This bias escalates
as the horizon w increases. Hence choosing an excessively long
horizon adversely affects performance.

Our research also investigates the influence of the number
of ensembles B and the number of particles P in MA-PETS.
In terms of agility, Figs. 12 and 13 show the corresponding
results respectively, which are derived from 15 training episodes
through 15 independent simulation runs. It can be observed from
Fig. 12 that along with the increase in B, the learning becomes
more regularized and the performance improves. However, the
performance improvement is no longer apparent for a suffi-
ciently large B, and this improvement is more pronounced in
more challenging and complex environments that require the
learning of intricate dynamical models, leaving more scope for
effective exploitation of the strategy without the use of model
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TABLE IV
THE COMPARISON OF MEANS AND STANDARD DEVIATIONS OF THE AVERAGE DECISION-MAKING TIME PER STEP IN TESTING MARL

METHODS IN “FIGURE EIGHT”

integration. In Fig. 13, superior performance can be reaped
for a larger number of particles, because more particles allow
for a more accurate estimation of the reward for state-action
trajectories influenced by transition probabilities.

To conduct a more in-depth numerical analysis of the com-
plexity and computational time of MA-PETS, we compare the
average decision-making time and its standard deviation of
different MARL methods after learning 15 episodes, in both
single-lane loop and multi-lane loop scenarios as shown in
Table IV. The results reveal that the average decision time of
MA-PETS is slightly higher than that of FIRL and MAPPO in
both scenarios, but faster than SVMIX. Overall, compared to
FIRL and MAPPO, MA-PETS has smaller variance and lower
variability in decision times, demonstrating greater stability.

VII. CONCLUSION AND DISCUSSION

In this paper, we have studied a decentralized MBRL-based
control solution for CAVs with a limited communication range.
In particular, we have proposed the MA-PETS algorithm with
a significant performance improvement in terms of sample effi-
ciency. Specifically,MA-PETS learns the environmental dynam-
ics model from samples communicated between neighboring
CAVs via PE-DNNs. Subsequently, MA-PETS efficiently de-
velops TS-based MPC for decision-making. Afterward, we have
derived UCRL2-based group regret bounds, which theoretically
manifests that in the worst case, limited-range communications
in multiple agents still benefit the learning. We have validated the
superiority of MA-PETS over classical MFRL algorithms and
demonstrated the contribution of communication to multi-agent
MBRL.

There are many interesting directions to be explored in the
future. For example, MA-PETS encounters significant chal-
lenges in more realistic scenarios. As environmental complexity
escalates, scenarios with numerous variables or agents heighten
the learning and computational requirements of MA-PETS.
Moreover, if the dynamics of the environment are unpredictable,
MA-PETS may face difficulties due to the probabilistic nature
of its ensemble predictions. Another critical factor is the avail-
ability of computational resources. The computational power at
hand can significantly influence the performance of MA-PETS,
especially as more intricate environments or accurate ensemble
methods demand robust processing capabilities. The key next
steps involve optimizing the algorithm, reducing its reliance on
computational resources, minimizing its decision delays, and
improving its adaptability to rapidly changing and complex en-
vironments. Furthermore,MA-PETS confronts significant OOD
challenges resulting from scarce training data, which can lead

to learning instability and substantial overhead. Consequently,
designing more accurate models to mitigate OOD issues is a
critical priority that requires urgent attention. Finally, we have
only derived the worst case of group regret bound, and the results
for more general cases can be explored.

Lemma 8 (Appendix C.3 of [41]): For any sequence of num-
bersx1, . . . , xn with 0 ≤ xk ≤ Xk−1 := max{1,∑k−1

i=1 xi}, we
have ∑n

k=1

xk√
Xk−1

≤ (
√

2 + 1)
√

Xn. (29)
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