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Abstract—Collaborative perception by leveraging the shared
semantic information plays a crucial role in overcoming the individ-
ual limitations of isolated agents. However, existing collaborative
perception methods tend to focus solely on the spatial features
of semantic information, while neglecting the importance of the
temporal dimension. Consequently, the potential benefits of collab-
oration remain underutilized. In this article, we propose Select2Col,
a novel collaborative perception framework that takes into account
the spatial-temporal importance of semantic information. Within
the Select2Col, we develop a collaborator selection method that
utilizes a lightweight graph neural network (GNN) to estimate the
importance of semantic information (IoSI) of each collaborator in
enhancing perception performance, thereby identifying contribu-
tive collaborators while excluding those that potentially bring neg-
ative impact. Moreover, we present a semantic information fusion
algorithm called HPHA (historical prior hybrid attention), which
integrates multi-scale attention and short-term attention modules
to capture the IoSI in feature representation from the spatial
and temporal dimensions respectively, and assigns IoSI-consistent
weights for efficient fusion of information from selected collabo-
rators. Extensive experiments on three open datasets demonstrate
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that our proposed Select2Col significantly improves the perception
performance compared to state-of-the-art approaches.

Index Terms—Collaborative perception, importance of semantic
information, spatial-temporal dimensions, semantic information
fusion, hybrid attention.

I. INTRODUCTION

P ERCEPTION is an essential capability for agents, espe-
cially for autonomous vehicles (AVs). However, in real-

world scenarios involving occluded or distant objects, relying
solely on single-agent individual perception capabilities often
encounters significant challenges [1], and possibly leads to
catastrophic outcomes, as depicted in Fig. 1. Fortunately, the
emergence of the Internet of Vehicles (IoV) allows AVs to
communicate with other agents, thereby acquiring additional
perception information [2]. Consequently, collaborative per-
ception, wherein participating agents (e.g., vehicles and road
infrastructures) exchange their perception information to obtain
an enhanced understanding of surroundings beyond their indi-
vidual capabilities, has become a promising solution to avoid
perception difficulties encountered by isolated agents [3]. In an
illustrative scenario in Fig. 1, the ego vehicle becomes capable
of detecting the occluded Vehicle A by leveraging perception
information provided by other agents (i.e., its collaborators).
Hence, it not only enhances the perception performance of the
ego vehicle but also improves its ability to respond to abnormal
situations, thus mitigating potential traffic conflicts.

In terms of the embedded characteristics of shared infor-
mation, collaborative perception can be classified as early fu-
sion [4], late fusion [5], [6], and intermediate fusion [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. Specifically,
the former two categories, which share the raw data directly
or perception results (e.g., object classification and regression
results), could either inflict significant communication cost or
yield limited performance due to the inadequately shared scene
context. Instead, intermediate fusion, which involves to share
extracted feature information (i.e., semantic information) from
raw perception data, has been consistently demonstrated as
a promising strategy to effectively balance perception perfor-
mance and communication overhead [9], [10], [11].

However, as semantic information suffers from multi-level
heterogeneity (e.g., diverse transmission latency, different sen-
sor configurations, and distinct views of agents), the shared
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Fig. 1. Limitation of single-agent perception. From the perspective of the ego
vehicle, Vehicle A is occluded, causing a dangerous collision risk when both
vehicles accelerate. Such collisions occur frequently.

semantic information could be rather asynchronous and mis-
aligned in both temporal and spatial dimensions. For instance,
the semantic information of different agents may offer incon-
sistent sizes and locations for the same object. Therefore, the
direct fusion of semantic information could be troublesome.
Moreover, the selection of appropriate collaborators becomes
crucial, as unsuitable candidates have the potential to introduce
disruptive noise interference, which ultimately results in a deteri-
oration of the overall perception performance [12]. Nonetheless,
identifying beneficial collaborators that can enhance perception
performance is not straightforward, due to their diverse spatial-
temporal perspectives.

In order to realize efficient collaborative perception, several
recent studies have been proposed [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], and prominent works include
CoFF [8], V2VNet [9], V2X-Vit [10], Where2comm [11],
Who2com [12] and When2com [13]. However, these studies
solely focus on the spatial aspect of semantic information,
disregarding the importance of the temporal dimension. Given
the heterogeneous nature of inter-agent sensors and the time
required for information transmission, shared semantic informa-
tion inherently encounters latency in real-world scenarios [10].
Disregarding the temporal dimension of semantic information
in collaborative perception results in limited or even degraded
performance enhancement. For instance, relying on outdated
shared semantic information, such as depicting objects that are
no longer present in the focus region, has the potential to confuse
the ego and lead to misleading perception outcomes. Therefore,
comprehensive consideration of both the spatial and temporal
dimensions of semantic information becomes indispensable for
successful collaborative perception. Furthermore, considering
the diverse temporal and spatial characteristics of semantic infor-
mation from various collaborators, the importance of semantic
information in enhancing perception performance also varies.
Therefore, integrating the importance of semantic information
(IoSI) into collaborative perception is highly attractive. This
can be achieved by assigning distinctive spatial-temporal im-
portance weights to different semantic information and utilizing

these weights to guide both collaborator selection and semantic
information fusion.

In this article, motivated by the aforementioned discussions
and the significant contributions of artificial intelligence stud-
ies [19], [20], [21], we propose an IoSI-based collaborative per-
ception framework called Select2Col to more comprehensively
take account of the spatial-temporal importance of semantic
information. Within the Select2Col framework, we develop an
IoSI-based method for collaborator selection, which enables ef-
ficient selection of contributive collaborators from both temporal
and spatial dimensions. Moreover, we design a historical prior
hybrid attention (HPHA) fusion algorithm to achieve more ef-
fective information fusion by assigning IoSI-consistent weights.
Compared to existing works [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], the main contributions of this article can be
summarized as follows.

1) We propose the Select2Col1 framework for collaborative
perception, which allows to capture the IoSI from spatial
and temporal dimensions for both effective collaborator
selection and meaningful information fusion.

2) We design a semantic information fusion algorithm
HPHA, which employs a multi-scale attention module
and a short-term attention module to efficiently aggregate
semantic information from the spatial and temporal di-
mensions of IoSI. Moreover, we present a collaborator se-
lection method based on IoSI, ensuring that only semantic
information from contributive collaborators is leveraged.

3) We carry out a comprehensive evaluation of our pro-
posed Select2Col on three open datasets OPV2V [14],
V2XSet [10], and V2V4Real [22]. The experimen-
tal results show that Select2Col is more effective in
improving perception performance than state-of-the-art
(SOTA) works, such as V2VNet [9], V2X-Vit [10], and
Where2comm [11].

The remainder of this article is organized as follows.
Section II reviews the related works on collaborative perception.
Section III presents the system model and formulates the prob-
lem. Section IV elaborates on our proposed Select2Col frame-
work. Sections V and VI introduce our innovative collaborator
selection method and semantic information fusion algorithm
HPHA, respectively. We conduct experiments to verify our
proposed Select2Col in Section VII. Finally, we conclude this
article with a summary in Section VIII.

II. RELATED WORKS

A. Perception Means in IoV

Perception plays a crucial role in various tasks of IoV (espe-
cially AVs), such as 3D object detection [23], multiple object
tracking [24], semantic segmentation [25], and depth estima-
tion [26]. In particular, 3D object detection, which aims to
accurately identify predefined object categories by providing
classification and regression information [27], is considered as
one of the fundamental perception tasks within the field of
computer vision.

1The codes for our proposed Select2Col are available at https://github.com/
ZJUNICE/Select2Col/.
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Given commonly utilized perception sensors in autonomous
vehicles, methods for 3D target detection can be categorized
into camera-based and LiDAR-based methods [28]. Meanwhile,
LiDAR-based detection methods are particularly favored due
to the inherent 3D information of LiDAR point clouds, which
maintain excellent performance even under challenging weather
and lighting conditions [27]. However, LiDAR point clouds
often suffer from sparsity and disorderliness, which pose chal-
lenges for the direct processing of individual points [29]. To
address this limitation, it commonly turns point clouds into
alternative structures, such as voxel [30] or pillar [31], to improve
the processing efficiency. Notably, compared to voxels, pillar
structures offer advantages in terms of reduced computational
and memory resources [32]. For example, PointPillars [33], a
widely adopted technique for object detection in point clouds,
organizes point clouds into vertical columns and operates on
pillars instead of voxels. Consequently, all critical operations can
be performed efficiently using 2D convolutions, thus eliminating
the need for manual tuning of vertical direction binning. Given
the requirement for real-time inference in detection models
for autonomous vehicles, many state-of-the-art collaborative
perception methods, such as V2VNet [9], V2X-Vit [10], and
Where2comm [11], integrate the backbone of PointPillars in
their respective models.

Consistent with these works, we primarily consider LiDAR-
based 3D object detection as our perception task and focus on
how to enhance the performance of collaborative perception,
given the inherent limitations of single-agent perception [32].

B. Related Studies in Collaborative Perception

Collaborative perception allows agents to share the perception
information through the IoV, overcoming the inherent limita-
tions of single-agent perception. Early research primarily fo-
cuses on effectively fusing feature information from collabora-
tors, with the pioneering V2VNet [9] being one such example.
Specifically, V2VNet employs a space-aware graph neural net-
work (GNN) to aggregate information from neighboring agents.
Similarly, in [15], a collaborative perception solution is proposed
by using a graph attention network-based aggregation strategy
to fuse intermediate representations. In addition, V2X-ViT [10]
introduces a unified vision transformer architecture with het-
erogeneous multi-agent self-attention to effectively capture the
spatial relationship between agents, leading to efficient feature
fusion. Another related work [16] designs adaptive feature
fusion models using trainable neural networks in the spatial
dimension. Meanwhile, the CoFF approach [8] fuses feature
information by enhancing the spatial feature information of
the original perception data. In another related study [17], a
feature fusion method that leverages a repair network module
and a specially designed V2V attention module is proposed to
mitigate the influence of shared feature loss during transmission.
Furthermore, CoAlign [18] introduces a collaborative percep-
tion framework that effectively handles unknown pose errors by
utilizing a novel agent-object pose graph model.

Although the incorporation of multiple agents in collabo-
rative perception yields performance improvement, studies of

TABLE I
COMPARISON BETWEEN SELECT2COL AND HIGHLY RELATED WORKS

Who2com [12] and literature [34] demonstrate that bluntly
adding more collaborators does not always guarantee perfor-
mance benefits and can even result in counter-intuition negative
effects. Therefore, the selection of effective collaborators and
the fusion of meaningful information becomes crucial for col-
laborative perception. For example, When2com [13] proposes to
forge several communication groups from neighboring agents in
terms of the spatial feature similarity of the shared information
and determines when to collaborate within these groups. On
the other hand, Where2comm [11] employs a spatial confidence
map to select collaborators and utilizes multi-head attention to
fuse the shared semantic information.

Despite the remarkable progress, the lack of exploring the
temporal dimension of semantic information makes these works
far from optimality. To address this performance gap, our pro-
posed Select2Col highlights the importance of both spatial and
temporal dimensions of IoSI for collaborator selection and se-
mantic information fusion, thereby achieving further improve-
ments in perception performance. As outlined in Table I, Se-
lect2Col exhibits notable distinctions from existing works.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Beforehand, Table II presents a list of notations used in this
manuscript.

Consistent with SOTA methods, such as [9], [10], [11], we
adopt a collaborative perception scenario wherein at a given
time-slot t, there exists an ego agent i performing collaborative
perception with a set of neighboring agents N t

i (e.g., vehicles
and/or road infrastructures with perception and communication
functionalities), as depicted in Fig. 1. From the ego’s perspec-
tive, the objective of collaborative perception is to effectively
leverage the received semantic information to maximize its
perception performance.

Mathematically, we denote that at the very beginning of t,
agent i obtains its raw perception data Xi from its sensors and
receives semantic information transmitted by its neighboring
agents. From that time, the collaborative perception undergoes
the following procedures.

1) Semantic Information Extraction: We adopt the interme-
diate feature fusion strategy [9]. In other words, et each time-slot
t, agent i employs an encoder fenc to extract semantic infor-
mation from its raw perception data Xi, such as LiDAR point
cloud data [11]. For any agent i, the corresponding semantic
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TABLE II
NOTATIONS AND EXPLANATION

information F t
i is extracted at time-slot t as follows

F t
i = fenc (Xi) . (1)

In addition, for a simpler and more consistent representation
of semantic information, we employ the notation F

t−τji
j to

denote the semantic information of agent j ∈ N t
i ∪ {i}, where

τji represents the information latency between the source agent j
and the target agent i. Specifically, when j equals i, τji is set to 0 as
there is no latency between agent i and itself. Otherwise, τji can
be defined as the sum of inter-agent asynchronous overhead tasyn

ji ,

the semantic information extraction latency text
ji , the semantic

information transmission latency ttx
ji, and the idle time tidle

ji

caused by the lack of synchronization between the perception
system and communication system [10]. In other words,

τji = tasyn
ji + text

ji + ttx
ji + tidle

ji . (2)

According to the specification 3GPP TR 38.901 [35], network
transmission latency ttx

ji can be approximately derived from a
path-loss driven channel as

ttx
ji =

size
(
F

t−τji
j

)
bji log2 (1 + 100.1(ptx

ji −ploss
ji −pnoise

ji ) )
, (3)

where size(·) denotes a function that calculates the size of
the transmitted semantic information. Besides, bji, ptx

ji, p
noise
ji

and ploss
ji = 28.0 + 22 log10(dji) + 20 log10(fc) represent agent

j’s transmission bandwidth, transmission power, transmission
noise power, and transmission path loss to agent i, respectively.
Furthermore, dji denotes the distance between agent j and i in
meters, and fc represents the center frequency in GHz.

2) Contributive Collaborator Selection: The semantic infor-
mation of neighboring agents is derived from a variety of raw
perception data with various spatial and temporal dimensions.
It is important to note that not all semantic information is
beneficial. In certain cases, the semantic information provided
by specific agents may degrade perception performance due to
excessive delay or unreasonable spatial viewpoint [12]. There-
fore, agent i employs a selector fselect to determine a contributive
collaborator set Ct

i from N t
i , namely,

Ct
i = fselect

({
F

t−τji
j

}
j∈N t

i ∪{i}

)
. (4)

3) Semantic Information Fusion: After selecting contribu-
tive collaborators, agent i utilizes a fuser ffuse to aggregate its
semantic information F t

i with selected collaborators’ semantic
information {F t−τji

j }j∈Ct
i

and correspondingly obtain the fused
semantic information Hi with a more comprehensive represen-
tation of features. The semantic information fusion expression
can be written as

Hi = ffuse

({
F

t−τji
j

}
j∈Ct

i∪{i}

)
. (5)

4) Semantic Information Decoding: Finally, for each agent
i, the fused semantic information Hi needs to be converted into
appropriate perception results Ŷi by a decoder fdec. Mathemati-
cally, the expression for this process is as

Ŷi = fdec(Hi). (6)

B. Problem Formulation

Consistent with all collaborative perception works, we use
the average precision (AP) metric to evaluate the perception
performance, that is

AP = feva(Ŷi, Yi), (7)
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Fig. 2. Overview of our proposed Select2Col framework.

where Yi represents the ground truth of agent i’s perception
results, and feva(·) is a standard perception performance evalu-
ation function [36] that measures the accuracy of the perception
results relative to the ground truth.

Thus, in order to maximize the perception performance (i.e.,
maximize the AP), together with (4) to (7), the collaborative
perception problem can be formulated as

maxAP = feva

(
fdec

(
ffuse

({
F

t−τji
j

}
j∈Ct

i∪{i}

))
, Yi

)

s.t. Ct
i = fselect

({
F

t−τji
j

}
j∈N t

i ∪{i}

)
. (8)

As implied in (8), it turns to optimize the design of the selector
fselect(·) and fuserffuse(·), since thefenc(·),fdec(·), andfeva(·) are
typically common and well-established elements [9], [10], [11].
Furthermore, the former fselect(·) involves identifying effective
collaborators that can provide high-quality perception semantic
information, while the latter considers the correlation of seman-
tic information to improve the feature representations. Neverthe-
less, it is non-trivial to describe these two functions in compact,
mathematical formulations. Hence, vanilla approaches [9], [10],
[11], [12], [13], [14] approximate these functions with the guid-
ance of intuitive observations. For example, collaborators with
larger ego interest regions promise to be more contributive in
improving the perception performance of ego. Furthermore, as-
signing higher weights to more important semantic information
for fusion can contribute to yielding an enhanced feature repre-
sentation. However, these approaches ignore the importance of
semantic information from the temporal dimension, resulting in
limitations in accurately fitting these functions.

Therefore, to address these challenges, we leverage
lightweight GNN and hybrid attention modules to calibrate the
selector fselect(·) and fuser ffuse(·) based on the IoSI from spatial-
temporal dimensions. The details shall be given in Sections V
and VI.

IV. SELECT2COL: AN IOSI-BASED COLLABORATIVE

PERCEPTION FRAMEWORK

Based on the previous analysis, we propose Select2Col, an
IoSI-based collaborative perception framework. As depicted in
Fig. 2, Select2Col comprises four components (i.e., encoder fenc,
selector fselect, fuser ffuse, and decoder fdec) to implement the
entire process of collaborative perception. We briefly introduce
these components of Select2Col in this section, while leaving
the innovative design of collaborator selection and information
fusion in Sections V and VI, respectively.

A. Overview of Select2Col

Typically, the Select2Col framework encompasses the follow-
ing components.

1) Encoder: The encoder extracts semantic information
from raw perception data. In this article, we focus on LiDAR-
based 3D object detection as the perception task. Correspond-
ingly, we adopt the backbone of Pointpillars [33] as our encoder
because of its low inference latency and optimized memory
usage, consistent with the literature [9], [10], [11].

2) Selector: This selector is invoked to determine con-
tributive collaborators Ct

i using the semantic information
{F t−τji

j }j∈N t
i ∪{i} obtained from the outputs of the encoder.

As mentioned earlier, we design an IoSI-based collaborator
selection method, the details of which are given in Section V.

3) Fuser: This fuser is responsible for obtaining the fused
semantic information Hi using {F t−τji

j }j∈Ct
i∪{i}. In particular,

we propose a semantic information fusion algorithm named
HPHA to enhance the fusion feature representation as further
discussed in Section VI.

4) Decoder: This decoder outputs the perception results
Ŷi based on the fused semantic information Hi. Consistent
with [11], we utilize a two-layer convolution block to down-
sample the fused semantic information and then employ a
single-layer convolutional classification head and a single-layer
convolutional regression head to obtain the classification and
regression information of objects, respectively.
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Fig. 3. Diagram of our collaborator selection method.

B. End-to-End Network Model

We employ an end-to-end neural network model to effectively
integrate the components above, given that the output of each
component serves as the input for the next one.

This network model takes the raw perception data of the ego
agent and its neighboring agents as input. It produces collabo-
rative perception results (i.e., the results of 3D object detection,
including the classification and regression information) for the
ego agent. Therefore, the loss function of the model consists of
a classification loss and a regression loss. In line with PointPil-
lars [33], we utilize focal loss [37] for the classification loss and
smooth L1 loss [38] for the regression loss.

Furthermore, the network model is trained in an end-to-end
manner under the supervision LiDAR-based 3D object detection
task. During training, a random agent is selected as the ego from
the training subset of the open datasets, such as OPV2V [14],
V2XSet [10], and V2V4Real [22]. The training method and
parameters are consistent with the SOTA works [9], [10], [11],
and more details can be found in our open-source code.

V. COLLABORATOR SELECTION BASED ON IOSI

Given the spatial-temporal variability of agents, this sec-
tion introduces our proposed IoSI-based collaborator selection
method, that is the fuser ffuse(·), to address the challenges of
identifying contributive collaborators.

Specifically, the collaborator selection method, as illustrated
in Fig. 3, consists of two steps. In the first step, we employ a
lightweight GNN module to estimate the enhanced weight of
each agent from spatial-temporal dimensions. These enhanced
weights indicate the individual IoSI in enhancing the percep-
tion performance of the ego. In the subsequent step, contribu-
tive collaborators are selected based on the acquired enhanced
weights, and the feature information of the chosen collabora-
tors is enhanced accordingly. Different from solely relying on
spatial relationships to determine contributive collaborators, our
method takes into account both spatial and temporal dimensions,
resulting in a more precise selection of contributors and more
effective utilization of their feature information.

Algorithm 1: Collaborator Selection Method.
1: Input: semantic information of ego and its neighboring

agents {F t−τji
j }j∈N t

i ∪{i}.
2: Output: selected collaborator set Ct

i , and corresponding
enhanced semantic information {F t−τji

j }j∈Ct
i∪{i}.

3: initialize Ct
i as neighboring agent set N t

i .
4: for each agent j ∈ N t

i ∪ {i} do
5: get the corresponding sparse map M j using (9);
6: if (j = i) then
7: the latency between ego and itself is 0, i.e.,

τji = 0;
8: end if
9: using (M j , τji) as agent’s spatial-temporal

information;
10: end for
11: agents in N t

i ∪ {i} as nodes to build the GNN network;
12: GNN outputs each agent’s enhanced weight {wen

ji }j∈N t
i
;

13: for each agent j ∈ N t
i do

14: if (wen
ji � wthreshold) then

15: delete invalid agent j from Ct
i ;

16: else then
17: enhanced semantic information of selected

collaborator using (10);
18: end if
19: end for
20: Return Ct

i , {F t−τji
j }j∈Ct

i∪{i}.

A. Enhanced Weight Estimation

For each agent j in N t
i ∪ {i}, we first utilize a convolution

module convmap [11] to extract its sparse map M j from its
semantic information F

t−τji
j . Mathematically, the expression

for this process is as

M j = convmap

(
F

t−τji
j

)
. (9)

In addition, given that the sparse map contains the spatial
location information of potential objects, the element in the
sparse map takes either 0 or 1 depending on the existence of
potential objects (i.e., 1 indicates the existence, while 0 implies
only the existence of the background).

Subsequently, we employ a lightweight GNN [19] as the
backbone to estimate the importance of each agent in enhancing
ego i’s perception performance from spatial-temporal dimen-
sions. Within this GNN module, each node corresponds to an
agent and comprises its sparse map along with the semantic
information latency, which respectively indicates the spatial and
temporal characteristics of this agent. For each agent j in N t

i ,
the trained GNN generates its enhanced weight wen

ji , reflecting
the importance of this agent’s semantic information to the ego.

B. Collaborator Selection and Enhancement

We utilize the acquired enhanced weights to determine the
contributive agents. For any agent j in N t

i , if its enhanced
weight wen

ji exceeds a pre-defined threshold, we consider it as
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Fig. 4. Diagram of our HPHA fusion algorithm.

a contributive agent; otherwise, we classify it as an ineffective
collaborator. After eliminating all ineffective collaborators in
N t

i , we then obtain a selected collaborator set Ct
i .

It is important to note that not all selected individuals con-
tribute equally to the improvement of perception performance.
Inspired by the idea in [8], we employ the acquired enhanced
weights to appropriately enhance the features of the selected
collaborators. Specifically, for each selected collaborator, such
as agent j, we perform multiplication between its original feature
information F

t−τji
j and the respective enhanced weights wen

ji .
Then, we proceed to conduct elementwise multiplication of
the enhanced feature information with its sparse graph M j .
The enhanced semantic information F

t−τji
j for agent j in Ct

i is
obtained as

F
t−τji
j = F

t−τji
j × wen

ji ⊗M j , (10)

where ⊗ represents the elementwise multiplication. Recalling
the definition of sparse map M j in (9), (10) implies the en-
hanced weight wen

ji is only applied to regions with potential
objects, which can effectively improve the object features while
suppressing background noise.

In conclusion, by identifying contributive collaborators and
enhancing their semantic information based on IoSI, the col-
laborator selection method provides high-quality perception in-
formation for subsequent semantic information fusion, thereby
further ensuring the effectiveness of the fused semantic infor-
mation. We summarize the details of the collaborator selection
method in Algorithm 1.

VI. HPHA: A HISTORICAL PRIOR HYBRID ATTENTION

INFORMATION FUSION ALGORITHM

In this section, we introduce our proposed semantic informa-
tion fusion algorithm HPHA to develop the fuser ffuse(·).

As illustrated in Fig. 4, to enhance the feature presentation
of the aggregated semantic information, HPHA leverages a
multi-scale attention module and a short-term attention module
to learn the IoSI in feature presentation from spatial and temporal

Algorithm 2: HPHA: Information Fusion Algorithm.
1: Input: semantic information of ego and its selected

collaborators {F t−kT
i }k={0,1···K}, {F t−τji

j }j∈Ct
i
.

2: Output: fused semantic information Hi.
3: for each scale s in S do
4: for each agent j ∈ Ct

i ∪ {i} do
5: calculate the corresponding spatial-attention

weight W sa
s,ji using (11);

6: end for
7: obtain aggregated information Hs with

spatial-attention weight at specific s using (12);
8: convert Hs into unified scale sms using (13);
9: end for

10: combine all information {Hs}s∈S to produce the
ultimate aggregated semantic information Hms using
(14);

11: create a temporary semantic information Hh with
historical prior information {F t−kT

i }k={1,2···K} using
(15);

12: get temporal-attention weight W ta using (16);
13: refine the final fused semantic information Hi with

temporal-attention weight W ta using (17);
14: Return Hi.

dimensions respectively, and assigns IoSI-consistent weights
to different semantic information for optimal feature fusion.
Specifically, the multi-scale attention module captures the corre-
lation between the ego and its collaborators under various spatial
resolutions, while the short-term attention module effectively
measures the temporal importance in terms of the correlation
between past and present features. Furthermore, our proposed
HPHA algorithm is outlined in Algorithm 2.

A. Semantic Information Aggregated From Spatial Dimension

To enhance the object feature representation from the spatial
dimension, we first introduce a multi-scale attention module [20]
to extract spatial attention weights at various spatial resolutions
and utilize the spatial-attention weight to indicate the impor-
tance of a collaborator’s semantic information. Specifically, the
spatial-attention weight of agent j to agent i at a specific spatial
scale s (s ∈ S) is represented as W sa

s,ji and can be defined as

W sa
s,ji= sa

(
conv(F t

i, s ), conv (F t−τji
j , s )

)
, (11)

whereS is the set of spatial scales, conv(F, s) denotes a convolu-
tion block [39] that reshapes the scale of semantic informationF
to s, and sa(·) represents the spatial attention operation, referring
to the dot-product attention [40]. Moreover, when j equals i, the
spatial-attention weight in (11) is reduced to the self-attention
weight, resulting in a simpler and more consistent equation.

Next, we aggregate the semantic information of selected
collaborators by assigning spatial-attention weights obtained in
(11) to generate the aggregated semantic information Hs with a
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specific scale s as

Hs =
∑

j∈Ct
i∪{i}

W sa
s,ji ⊗ conv (F t−τji

j , s ). (12)

Subsequently, in order to ensure the scale consistency of the
aggregated semantic information after spatial attention opera-
tion, we reshape it to a unified scale sms by a deconvolution
block [41] as

Hs = deconv (Hs, sms ), (13)

where deconv(H, s) denotes the deconvolution block that re-
shapes the scale of semantic information H to s.

Finally, we combine all the information {Hs}s∈S acquired
at various attention scales to produce the ultimate aggregated
semantic information Hms, that is,

Hms = concat
({Hs}s∈S

)
. (14)

The multi-scale attention module effectively learns the spatial
correlation between the ego and its collaborators at different
spatial resolutions, which enhances the aggregated features and
presents a comprehensive representation of features.

B. Semantic Information Refined From Temporal Dimension

Furthermore, considering that the historical semantic infor-
mation of the ego contains rich object information, we design a
historical prior short-term attention module to refine the aggre-
gated semantic information from the temporal dimension.

First, the ego’s historical semantic information
{F t−kT

i }k={1,2···K} and the last-step aggregated semantic
information Hms are concatenated to produce a new semantic
information Hh, such as

Hh = concat
(
Hms,

{
F t−kT

i

}
k={1,2···K}

)
, (15)

where T represents the sensor sampling interval, and K repre-
sents the number of historical frames.

Next, the semantic information Hh is processed using av-
erage pooling and max pooling operations to generate average
pooling features and max pooling features, respectively. Subse-
quently, we devise a short-term attention operation to process
the two features to obtain the temporal-attention weight W ta,
that is,

W ta = ta (avgpool (Hh ),maxpool (Hh )) , (16)

where avgpool(·) and maxpool(·) represent the operations of
average pooling and max pooling respectively, and ta(·) denotes
a temporal attention operation, and refers to the channel attention
in [18].

Finally, the temporal-attention weight W ta is multiplied by
the semantic informationHh to produce the final fused semantic
information Hi as

Hi = W ta ⊗Hh. (17)

By incorporating historical prior semantic information, the
short-term attention module effectively captures the temporal
correlation between past and present features. This enables it to
identify discriminating object features, thereby enhancing the
quality of object representation.

TABLE III
EXPERIMENTAL PARAMETERS

Overall, the proposed HPHA provides an enhanced and com-
prehensive feature representation for the fused semantic infor-
mation Hi, derived from both spatial and temporal dimensions.
Consequently, the decoder fdec(·) can more efficiently decode
the fused semantic informationHi to generate perception results
Ŷi, as depicted in (6).

VII. EXPERIMENTAL EVALUATION

This section provides a comprehensive performance compari-
son of the proposed Select2Col with the existing SOTA methods,
such as V2VNet [9], V2X-Vit [10], and Where2comm [11].
Furthermore, in order to demonstrate the superiority of Se-
lect2Col, we conduct various ablation studies to showcase the
performance improvements.

A. Experimental Settings

Rather than evaluating on popular datasets such as KITTI [42]
and Nuscenes [43], which mainly provide single-agent sam-
ples, all experiments in this article are conducted on open
collaborative perception datasets OPV2V [14], V2XSet [10]
and V2V4Real [22]. Specifically, OPV2V is the first large-
scale open dataset targeted at vehicle-to-vehicle collaborative
perception, generated using CARLA [44] and SUMO [45].
On the other hand, V2XSet is an open dataset that focuses
on vehicle-to-vehicle and vehicle-to-infrastructure collaborative
perception, generated employing CARLA and OpenCDA [46].
Consequently, these two popular datasets are inherently distinct.
In addition, the V2V4Real dataset which comprises collabora-
tive perception data extracted from real-world road scenarios
spans a three-day period of driving in Columbus, Ohio, cov-
ering a total driving area of 410 kilometers, incorporating 347
kilometers of highway roads and 63 kilometers of city roads.

To comprehensively evaluate the performance of our pro-
posed Select2Col, we utilize the average accuracy (AP) at IoU
(Intersection over Union) thresholds of 0.3, 0.5, and 0.7. All
experiments are conducted on an X86 station equipped with an
Intel TM i7-11700 @2.50 GHz, 128-core CPU, 256 GB RAM,
and NVIDIA RTX3090 GPU.

As presented in Table III, the key parameters employed in
our study are in line with V2VNet [9], V2X-Vit [10], and
Where2comm [11]. In addition, (3) is further adopted for a more
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TABLE IV
OVERALL PERCEPTION PERFORMANCE

realistic calculation of the transmission time, where the related
parameters are consistent with the literature [47]. Notably, we al-
locate equal bandwidth to each individual agent. Consequently,
our setting is more precise compared to V2X-Vit [10] and
Where2comm [11], which employ a fixed transmission rate of
27 Mbps for all agents. Furthermore, the semantic information
extraction latency text

ji is obtained based on our computing
device. More experimental parameters can be found in our
open-source code.

B. Perception Performance Comparison

In this experiment, we evaluate the overall perception perfor-
mance of our proposed Select2Col on a total of 664 test data
from the OPV2V dataset, 1,466 test samples from the V2XSet
dataset, and 1,993 test samples from the V2V4Real dataset. To
reduce randomness, we use their average inference results as our
experimental outcomes.

As presented in Table IV, our proposed Select2Col outper-
forms V2VNet [9], V2X-Vit [10], and Where2comm [11] in
terms of AP. For example, at an IoU threshold of 0.7, Select2Col
achieves gains of 24.69%, 2.09%, and 6.30% in AP performance
compared to V2VNet, V2X-Vit, and Where2comm, respec-
tively, on the OPV2V dataset. Furthermore, Select2Col proves
to be highly effective and robust, even in real-world situations
obtained from V2V4Real. Notably, at an IoU threshold of 0.3,
Select2Col demonstrates a remarkable improvement of 15.43%
in AP performance compared to single-agent perception (i.e., no
fusion).

Discussions: The remarkable results achieved by Select2Col
are attributed to its introduction of innovative features. First,
selecting contributive collaborators while pruning less effective
ones can reduce noise and interference, thereby improving the
perception performance. Second, by enhancing the effective
features while suppressing noise, the effectiveness of semantic
information is boosted. Third, a multi-scale attention module
aggregates semantic information from different collaborators
with IoSI-consistent weights from the spatial dimension, which
provides a comprehensive representation of features. Finally,
a short-term attention module is applied with historical prior
semantic information, which refines the final fused semantic

TABLE V
NUMBER OF NETWORK MODEL PARAMETERS

Fig. 5. Comparison of computing efficiency.

information from the temporal dimension and further improves
the perception performance. Overall, unlike other works that
only focus on the spatial dimension, Select2Col comprehen-
sively considers collaborative perception from both spatial and
temporal dimensions and yields unparalleled performance.

C. Computational Efficiency Comparison

Table V and Fig. 5 present the computing efficiency of
Select2Col. Specifically, as demonstrated in Table V, our Se-
lect2Col has fewer network model parameters than V2X-Vit and
V2VNet and a similar number of parameters to Where2comm.
In other words, compared to other spatial dimension-only solu-
tions, the incorporation of both spatial and temporal dimensions
of IoSI in selecting collaborators and fusing semantic informa-
tion does not add any computational complexity. Furthermore, as
depicted in Fig. 5, the inference time of our proposed Select2Col
is significantly lower than that of V2VNet and V2X-Vit, and
slightly higher than that of Where2comm due to the introduction
of the lightweight GNN and the short-term attention module;
however, Select2Col outperforms Where2comm in terms of
perception performance. The inference time of Select2Col is
much less than 100 ms, which is acceptable given the perception
cycle (i.e., 10 Hz) of the LiDAR sensor device.

Discussions: Compared to Where2comm, the newly added
lightweight GNN and short-term attention modules can enhance
perception performance and are easily handled by mainstream
computing devices without an excessive computational burden.
Overall, Select2Col generates superior perception performance
with a high computational efficiency.

D. Perception Performance Under Localization Noise

Notably, localization noise can be widely observed due to
the impact of spatial and temporal misalignment. To evaluate
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TABLE VI
PERCEPTION PERFORMANCE UNDER NOISE

the robustness of our proposed Select2Col, we add localization
noise to the test data, which follows a Gaussian distribution with
a standard deviation of 0.2 for both position and heading.

As presented in Table VI, localization noise impairs the per-
ception performance of all approaches, and the reduction is more
noticeable when the IoU threshold is larger (i.e., the detection
difficulty is increased). This indicates that high-precision detec-
tion is more vulnerable to noise. However, compared to other
methods, our proposed Select2Col shows superior noise sup-
pression ability. For instance, on the V2XSet dataset, Select2Col
maintains an AP of 78.74% and 58.41% at IoU thresholds of
0.5 and 0.7, presenting an improvement of 10.20%/22.18%,
1.72%/1.51% and 3.85%/7.26% compared to V2VNet, V2X-
Vit, and Where2comm, respectively. The same conclusion can
be observed in the OPV2V dataset.

Discussions: Select2Col introduces historical prior semantic
information and utilizes a short-term attention module to learn
the correlation of semantic information from the temporal di-
mension. This enables the suppression of spatial localization
noise for the current semantic information by using historical
information. As a result, the localization noise has less impact
on Select2Col.

E. Perception Performance Under Distance

Collaborative perception improves the agent’s ability to per-
ceive objects that are located far away. Given the scarcity of
object samples beyond 120 meters in test datasets, we solely
evaluate the perception performance of objects within 120 me-
ters to avoid the inherent randomness arising from an inadequate
number of samples. Figs. 6–8 illustrate the perception perfor-
mance of our proposed Select2Col and other SOTA methods at
different object distances on the OPV2V and V2XSet datasets.

Intuitively, as the distance between the agent and the object
increases, the probability of accurately detecting the object
decreases. Consequently, the perception performance tends to
decline as the distance increases. Nonetheless, our proposed
Select2Col is still able to achieve the highest perception accuracy
in long-distance perception scenarios. For instance, at an IoU
threshold of 0.5 and object distance of 60 meters, Select2Col
improves the AP performance by 16.97%/9.18%/10.07% in
comparison to V2VNet, V2X-Vit and Where2comm, respec-
tively, on the V2XSet dataset.

Fig. 6. Perception performance under distance at IoU 0.3. (a) AP at IoU 0.3
on OPV2V dataset. (b) AP at IoU 0.3 on V2XSet dataset.

Fig. 7. Perception performance under distance at IoU 0.5. (a) AP at IoU 0.5
on OPV2V dataset. (a) AP at IoU 0.5 on V2XSet dataset.

Fig. 8. Perception performance under distance at IoU 0.7. (a) AP at IoU 0.7
on OPV2V dataset. (a) AP at IoU 0.7 on V2XSet dataset.

Discussions: The efficacy of Select2Col in perceiving distant
objects lies in its ability to enhance the fused semantic infor-
mation of collaborators in both spatial and temporal dimensions
with multi-scale attention and short-term attention, thus enhanc-
ing the capability to perceive distant objects.

F. Perception Performance Under Latency

This experiment aims to evaluate the influence of information
latency on perception performance. To achieve this, we ran-
domly add a collaborator with a specific latency in test samples.
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Fig. 9. Perception performance under latency at IoU 0.3. (a) AP at IoU 0.3 on
OPV2V dataset. (b) AP at IoU 0.3 on V2XSet dataset.

Fig. 10. Perception performance under latency at IoU 0.5. (a) AP at IoU 0.5
on OPV2V dataset. (b) AP at IoU 0.5 on V2XSet dataset.

Fig. 11. Perception performance under latency at IoU 0.7. (a) AP at IoU 0.7
on OPV2V dataset. (b) AP at IoU 0.7 on V2XSet dataset.

Figs. 9–11 demonstrate the corresponding results under dif-
ferent IoU thresholds. As depicted in these figures, the collabora-
tor with a small latency has the potential to enhance perception
performance, whereas a large latency has a negative impact.
Furthermore, our proposed Select2Col exhibits the best perfor-
mance among all approaches and remains performance-stable
even under large latency. For instance, at an IoU threshold of
0.3, when the latency of the collaborator is 400 ms, Select2Col

TABLE VII
INNOVATIVE COMPONENT ABLATION STUDY RESULTS

enhances the AP performance by 11.19%/7.75%/5.23% on
the V2XSet dataset compared to V2VNet, V2X-Vit, and
Where2comm, respectively.

Discussions: As anticipated, the results of the experiment
support our hypothesis that the collaborator with notable latency
has a minimal or even negative impact on enhancing the ego’s
perception performance. Furthermore, it validates the signifi-
cance of collaborator selection and strongly supports the effec-
tiveness of selecting collaborators from both temporal and spa-
tial dimensions to eliminate the negative impact. In Select2col,
we utilize a collaborator selection method that considers both
temporal and spatial dimensions, thus effectively eliminating
collaborators with significant latency. In contrast, other methods
either neglect collaborator selection entirely or solely rely on
spatial criteria, resulting in a decline in perception performance
as latency increases. Consequently, Select2Col ensures stable
perception performance even in situations with notable latency
and is more robust than other methods.

G. Ablation Studies

In this subsection, we evaluate the effectiveness of the inno-
vations incorporated in our proposed Select2Col. As previously
mentioned, Select2Col includes two novel innovations: i) the
collaborator selection method; ii) the semantic information fu-
sion algorithm HPHA.

Table VII presents the results of our ablation studies. The
outcome clearly illustrates that each innovative component sig-
nificantly contributes to the advancement of perception perfor-
mance. Specifically, the collaborator selection method enhances
the perception performance of AP by 1.71%, 2.40%, and 3.40%,
respectively, on the V2XSet dataset. Moreover, HPHA improves
the perception performance of AP by 9.92%, 10.68%, and 14.4%
on the V2XSet dataset. In addition, we conclude that the gains
from the collaborator selection method and HPHA are more
pronounced when the value of the IoU threshold is larger (i.e.,
the detection difficulty is increased). This trend is in line with our
previous experimental findings and is more apparent in HPHA.

Discussions: The collaborator selection method benefits the
removal of unsuitable collaborators that cause noise, resulting
in improved perception performance. Likewise, the gain from
HPHA is obtained due to the efficient utilization of the cor-
relation between temporal and spatial dimensions embedded
in the semantic information for information fusion. Thus, both
techniques can effectively enhance the perception performance.
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VIII. CONCLUSION

In this article, we have proposed Select2Col, a novel collab-
orative perception framework that improves perception perfor-
mance based on IoSI from both spatial and temporal dimensions.
Specifically, we have designed a collaborator selection method
that capably selects contributive collaborators efficiently. To
further boost the perception performance, we have presented
a semantic information fusion algorithm named HPHA by inte-
grating a multi-scale attention module and a short-term attention
module to capture the IoSI from both spatial and temporal
dimensions and aggregate semantic information by assigning
IoSI-consistent weights. Extensive experimental results are con-
ducted on three open datasets, OPV2V, V2XSet, and V2V4Real,
and demonstrate that Select2Col outperforms SOTA methods in
terms of perception performance.

There still exist many promising means to improve the perfor-
mance of our Select2Col framework. For instance, the current
approach for calculating enhanced weights overlooks the IoU
threshold, leading to situations where a collaborator may be
deemed effective at a low IoU threshold but fails to enhance
perception performance at higher IoU thresholds. Thus, a more
accurate enhanced weight determination method is highly an-
ticipated. Furthermore, the sharing of perception information
inherently carries the risk of privacy leakage. Therefore, it is
worthwhile to investigate collaborative privacy protection tech-
niques with malicious behavior avoidance to enhance collabo-
rators’ willingness to participate in sharing information.
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