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Abstract
Large language models (LLMs) have triggered 

tremendous success to empower our daily life 
by generative information. The personalization 
of LLMs could further contribute to their appli-
cations due to better alignment with human 
intents. Towards personalized generative services, 
a collaborative cloud-edge methodology is prom-
ising, as it facilitates the effective orchestration of 
heterogeneous distributed communication and 
computing resources. In this article, we put for-
ward NetGPT to capably synergize appropriate 
LLMs at the edge and the cloud based on their 
computing capacity. In addition, edge LLMs 
could efficiently leverage location-based informa-
tion for personalized prompt completion, thus 
benefiting the interaction with the cloud LLM. In 
particular, we present the feasibility of NetGPT 
by leveraging low-rank adaptation-based fine-tun-
ing of open-source LLMs (i.e., GPT-2-base model 
and LLaMA model), and conduct comprehensive 
numerical comparisons with alternative cloud-
edge collaboration or cloud-only techniques, so 
as to demonstrate the superiority of NetGPT . 
Subsequently, we highlight the essential changes 
required for an artificial intelligence (AI)-native net-
work architecture towards NetGPT, with emphasis 
on deeper integration of communications and 
computing resources and careful calibration of 
logical AI workflows. Furthermore, we demon-
strate several benefits of NetGPT, which come 
as by-products, as the edge LLMs’ capability to 
predict trends and infer intents promises a unified 
solution for intelligent network management & 
orchestration. We argue that NetGPT is a promis-
ing AI-native network architecture for provisioning 
beyond personalized generative services.

Introduction
With the remarkable success of deep learning 
spanning from decision-making in AlphaGo to 
human-level interaction like ChatGPT, it is antic-
ipated that artificial intelligence (AI) will be 
embodied in 6G networks. Along with the 
enhanced edge computing capabilities, AI could 
benefit the effective orchestration of network 
resources and improve the quality of service 
(QoS). Correspondingly, investigation on efficient 

AI-based service provisioning has attracted intense 
research interest. On the other hand, the applica-
tion of one AI model is often limited to certain 
scenarios or tasks. In this context, large language 
models (LLMs) (e.g., generative pre-trained 
transformer, GPT) could perform well in various 
natural language processing (NLP) and computer 
vision tasks. These inspiring advancements 
shed light on revolutionizing cellular networks 
by LLMs. For instance, [1] harnesses collective 
intelligence for efficient network management, by 
delving into the deployment of on-device LLMs 
and proposing a multi-agent system architecture. 
Similarly, [2] challenges traditional network par-
adigms for LLM training, and proposes a novel, 
cost-effective architecture tailored to LLM-specific 
communication patterns, with a demonstrated 
75% network cost reduction without sacrificing 
the performance. These progresses [1], [2] under-
score the importance of integrating LLMs with 
innovative network architectures, a key to unlock 
greater efficiency and performance in advanced 
network environments. Notably, towards provi-
sioning personalized generative services (e.g., 
personalized assistance and recommendation 
systems), fine-tuning is still a prerequisite to align 
pre-trained LLMs to follow human intents [3] and 
yield personalized outputs. Nevertheless, it might 
be cost-ineffective to simply deploy multiple 
copies of bloated model parameters to support 
different purposes, and a feasible solution remains 
under-investigated.

In order to boost the personalization of 
LLMs, a collaborative cloud-edge methodology 
is essential [4]. Compared to the cloud-only LLM 
deployment, such a cloud-edge collaboration 
enjoys multi-folded merits. Firstly, it provides more 
freedom to allow edge servers to deploy various 
fine-tuned LLMs and adapt to environmental dif-
ferences, thus making the service personalization 
and customization possible. Meanwhile, it contrib-
utes to bridging data-abundant generative devices 
with more adjacent servers. Therefore, it could 
reduce the latency and save the communication 
overhead to upload all data to more remote cloud 
servers. Incorporating generative LLMs into the 
edge networks promises to facilitate the effec-
tive utilization of communication and computing 
(C&C) resources.
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As illustrated in Fig. 1, there are several dis-
tinctive ways to implement the cloud-edge 
collaboration for deployment of LLMs (e.g., 
local fine-tuning, model splitting). Specifically, 
by offloading cloud-trained LLMs, local edge 
servers tailor the cloud-trained LLMs to accom-
modate personalized and customized services 
based on the user preference and specified sce-
narios. However, such an approach might face 
severe implementation issues in practice, as 
repetitive fine-tuning of complete LLMs implies 
significant computational burden, and also dis-
tributed deployment of proprietary LLMs might 
raise intellectual property concerns from model 
developers. Meanwhile, force-fitting an entire 
LLM on edge possibly strains the limited comput-
ing resources of edge servers and makes the cost 
of edge computing unacceptable. Alternatively, 
splitting LLMs to cloud and edge servers [5], by 
deploying some layers of large-scale deep neural 
network (DNNs) at the edge while leaving the 
remaining layers to the cloud, can effectively bal-
ance the disproportionate computing resources 
of edge and cloud servers. Within the model 
splitting, how to effectively partition the DNNs 
between the edge and the cloud belongs to one 
of the most challenging issues, as it should min-
imize the end-to-end latency while maintaining 
a sufficiently small model size for the edge serv-
ers [5]. Such a model partitioning can be even 

more intricate, given billions of parameters in a 
typical LLM. Besides, the LLMs might leak pri-
vate details from the data for training [6]. In other 
words, it might be challenging to directly adopt 
both local fine-tuning and model splitting as an 
implementation means of collaborative cloud-
edge methodology.

In this article, we put forward NetGPT  that 
aims to respect the cloud-edge resource imbal-
ance and synergize different sizes of functional 
LLMs at the edge and cloud, thus promising to 
foster improved prompt responses and person-
alized outputs. Specifically, in apparent contrast 
to AI-exogenous network with decoupled C&C 
resources, NetGPT  could leverage converged 
C&C to deploy smaller edge LLMs for the edge 
while larger one for the cloud, and meaningfully 
realize collaborative cloud-edge computing to 
provision personalized content generation ser-
vices. Besides, NetGPT incorporates a logical AI 
workflow that could be developed to determine 
performance-consistent communication links. For 
example, in NetGPT , the performance-driven 
communication link could terminate at the edge 
to accelerate the response assuming the avail-
ability of satisfactory edge LLM-induced content. 

FIGURE 1. An illustration of candidate means to realize the could-edge collaboration for NetGPT and comparison between alternative 
cloud-edge frameworks. Specifically, transmission latency is calculated for 10,000 “concise prompts” with an average size of 12 
bytes (correspondingly 95-byte “comprehensive prompt”) and a transmission rate of 1 Gbps. For the “LLM Splitting” framework, 
we take an example of splitting 1/4 of the LLaMA-7B model at the edge, with D ≈ 10, 922 representing the ratio of intermediate 
layer data volume to input token size.

Notably, fine-tuning is a prerequisite to align pre-trained LLMs to yield personalized outputs.
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Otherwise, inspired by the idea of prompt learn-
ing [7], the LLMs at the edge can infer the context 
and actively append (or fill in) some local or per-
sonalized information, so as to acquire a more 
comprehensive result at the cloud. Furthermore, 
as a by-product, the edge LLMs contribute to a 
unified solution for intelligent network manage-
ment & orchestration (e.g., user intent inference 
and popularity prediction). Therefore, consistent 
with the trend to deeply integrate C&C, NetGPT 
represents an AI-native LLM synergy architecture 
and implies the enhanced collaboration between 
edge and cloud LLMs.

Implementation Showcase of NetGPT
As illustrated in Fig. 2, we present a synergistic 
cloud-edge framework to accomplish personal-
ized generative services, by leveraging distinctive 
pre-trained LLMs for cloud and edge (e.g., base 
stations [BSs]) deployment. In particular, limited 
by the availability of open-source LLMs, we select 
and deploy the LLaMA-7B model [8] and the GPT-
2-base model, which consist of approximately 6.7 
and 0.1 billion parameters, at the cloud and the 
edge, respectively. However, it should be noted 
that NetGPT allows the utilization of other LLMs 
as well. On this basis, we delve into implementa-
tion details of cloud-edge LLM synergy towards 
NetGPT in an incremental manner. In particular, 
we start with detailed DNN structures of two LLMs 
(i.e., LLaMA-7B model and GPT-2-base model). 
Then, we discuss the effective means to fine-tune 
these LLMs on computation-limited devices, and 
demonstrate the effectiveness of synergizing edge 
LLMs and cloud LLM for location-based person-
alized generative services. Notably, the “LLM 
synergy” framework significantly contrasts with 
split learning [5] and federated learning [3], which 

aims to train the divided segments of a DNN 
on different clients, or jointly learn from data 
distributed across multiple nodes in a data privacy- 
friendly manner. Orthogonal to split learning and 
federated learning, our framework focuses on 
effective cloud-edge collaboration with prompt 
enhancement & de-duplication at the edge and 
personalized responses at the cloud.

DNN Structure of LLMs at the Edge and Cloud
1) DNN Structure of GPT-2-Base Model: The 
GPT-2-base model, which is the smallest version 
of the GPT-2 series, encompasses 12 stacked lay-
ers of the original transformer structure (i.e., an 
8-head self-attention sublayer and an FNN sub-
layer). A fixed absolute positional encoding of sine 
and cosine positions is employed to pre-transform 
the input sequence. In addition, GPT-2 leverages 
a rectified linear unit (ReLU) activation function 
(i.e., f x xReLU max ).( ) ( , )= 0  Due to its relatively 
exceptional performance and minimal computa-
tional requirements, it can be appropriate to be 
deployed at the network edge.

2) DNN Structure of LLaMA Model: LLaMA, 
which is trained on a large set of unlabeled data 
and is ideal for fine-tuning for downstream tasks, 
features various parameter versions as well [8]. 
Compared to GPT-3, LLaMA incorporates several 
specific enhancements to maintain similar perfor-
mance while significantly reducing the number of 
parameters [8]. For example, in order to enhance 
training stability, LLaMA normalizes the input of 
each sub-layer instead of normalizing the output. 
Moreover, it adopts the root mean square layer 
normalization (RMSNorm) function as a simplified 
replacement for layer normalization, by employing 
the root mean square (RMS) rather than the stan-
dard deviation. Additionally, RMSNorm introduces 

FIGURE 2. A framework of collaborative cloud-edge computing towards NetGPT.
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a learnable scaling factor that enables adaptive 
feature scaling. Thus, it contributes to improv-
ing normalization effects across diverse features 
with distinctive value ranges. Secondly, LLaMA 
replaces the ReLU activation function with Swish-
gated linear unit (SwiGLU) [9], which combines 
the Swish function (i.e., f x x xSwish ( ) ( )= ⋅σ β  with 
σ ( )x

e x=
+ −

1
1

 and a trainable parameter β) with 

GLU (i.e., f x x Wx bGLU( ) ( )= ⋅ +σ  parameterized 
by trainable parameters W and b), thereby possi-
bly activating neurons according to the input in a 
more selective manner and imparting smoothness 
to effectively capture intricate non-linear relation-
ships. Lastly, LLaMA introduces rotary position 
embedding (RoPE) [10], which encodes positional 
information with a pre-defined rotation matrix 
and naturally incorporates explicit relative posi-
tion dependency in the self-attention formulation. 
Compared to absolute position encoding which 
assigns a distinct encoded representation to each 
position in the sequence, the taken form of rel-
ative position encoding in RoPE enables a more 
effective modeling of long-range dependencies 
within the contextual information. Thereby, RoPE 
could align with intuitive understanding and exhib-
its superior performance in practice.

Low-Rank Adaptation and Cloud LLM Fine-Tuning
As LLaMA lacks the capability to generate 
responsive text [8], an extra fine-tuning is still 
required. However, a direct fine-tuning of LLMs 
such as a LLaMA still requires significant com-
putational resources. For example, it demands 
112 GB video random access memory (VRAM) 
to fine-tune the LLaMA-7B model, far more than 
the capacity of NVIDIA A100 Tensor Core GPU. 
Therefore, we leverage a low-rank adaptation 
(LoRA) technique [11], a parameter efficient 
fine-tuning (PEFT) technique, to achieve param-
eter-efficient fine-tuning on a consumer-level 
hardware. Notably, for NetGPT, PEFT techniques 
are not indispensable components. Instead, 
LoRA just demonstrates the feasibility of fine-tun-
ing on computation-limited network elements of 
NetGPT.

In particular, in order to fine-tune a complete 
parameter matrix W ∈ ×d din out ,  LoRA specially 
adds a bypass pathway to simulate the matrix 
update ∆W  by using two downstream parame-
ter matrices A∈ ×d rin  and B∈ ×r dout  with the 
intrinsic rank r. In other words, under the condi-
tion that r d dmin ,in out( , )  LoRA successfully 
transforms large parameter matrix ∆W  into 
lower-rank dimensional ones with ∆W AB≈ .  
Our experiment shows that it only costs 28 GB 
VRAM to fine-tune the LLaMA-7B model, without 
significantly elongating the training duration. Addi-
tionally, the required storage space for fine-tuning 
could be greatly reduced from 12.55  GB to 
50 MB.1 On the basis of LoRA, we can utilize 
the Stanford Alpaca dataset [12] to fine-tune 
LLaMA-7B model and obtain a qualified respon-
sive LLaMA-7B model.

Edge LLM Fine-Tuning
1) Mathematical Formulation: In the “LLM syn-
ergy” framework, the edge node plays a pivotal 
role in prompt enhancement. This transformation 
from “concise prompt” Pcon  to “comprehensive 

prompt” Pcom can be mathematically formu-
lated as P Pcom con personalizedLLM ,= θ ( );   where 
LLMθ  represents the processing function of the 
edge LLM parameterized by θ, and personalized  
encompasses localized or personalized infor-
mation. Notably, the transformation process 
leverages the astonishing generative capability of 
LLM in a non-transparent “black box” manner. 
Meanwhile, the transformation effectiveness has 
been validated in Fig. 3.

On the other hand, this transformation requires 
a fine-tuning process of the edge LLM on collected 
dataset ,  which can be conceptualized as an 
optimization problem. In other words, it is equiva-
lent to finding an appropriate set of parameters θ  
that could minimize the cumulative loss between 
edge LLM-generated “comprehensive prompts” 
and human-intended ones Pintent .  Mathematically, 
θ

θ

θ
* con personalizedargmin LLMcon intent= ∑ ∈( , ) ( ; ,( )P P PD I  

Pintent ,)  where   denotes a loss function (e.g., 
cross-entropy).

2) LLM-Instructed Data Collection: Differ-
ent from the cloud LLM, which is fine-tuned 
with web-based conversational datasets [12], 
so to respond to “comprehensive prompts” 
in a manner that is informed, contextually rich, 
and aligns with the broader conversational con-
text, the data collection for edge LLMs requires 
extra efforts. This differentiation in data sources 
underlines the collaborative efficacy of the syn-
ergy architecture, with each component playing 
a specialized role in the data processing work-
flow. In order to implement personalized edge 
LLM, it is crucial to grant the GPT-2-base model 
the capability to extend a “concise” prompt by 
appending location-based information. Basically, 
the positioning information can be conveniently 
obtained according to the locations of affiliated 
BSs stored in the 5G access and mobility man-
agement function (AMF). Meanwhile, in order 
to complement more comprehensive informa-
tion, we take the self-instruct approach [13] 
and leverage OpenAI’s Text-Davinci-003 model 
to generate useful text samples. In particular, as 
for each location, we use a set of manually writ-
ten location-related prompts to interact with the 
OpenAI’s Text-Davinci-003 model, and leverage 
the generative response texts as the “intended 
prompt”, which augments the most likely word 
following the “concise prompt” and describes 
the corresponding more comprehensive intent. 
For example, as illustrated on the top-left side 
of Fig. 3, from a perspective of real-life linguis-
tic patterns, “libraries” frequently correlates with 
the contextual word “collections”. Besides, the 
top-right part of Fig. 3 demonstrates how post-
fine-tuning edge LLM can generate an elongated 
and more comprehensive prompt in response to 
the “concise prompt”. On this basis, a series of 
mappings between the “concise prompt” and an 
“intended prompt” can be collected. Considering 
the size and task complexity of the edge LLM, 
we collect a dataset comprising approximately 
4,000 samples for directly fine-tuning the GPT-2-
base model towards a prompt-completion model. 
Notably, for scenarios where stronger generality 
is required, edge LLMs can be enhanced with a 
larger-scale LLM, and fine-tuning techniques such 
as LoRA can be employed as well.

1 Such statistics are obtained 
under the configuration 
that r = 8 and a learning 
rate-related scalar factor 
equals 16.
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Performance Showcase

Fig. 3 further demonstrates the performance 
of NetGPT. In particular, as illustrated in Fig. 3, 
the edge LLM is capable of complementing the 
“concise prompt” according to the chart at the 
top-left part of Fig. 3, which highlights most 
frequently used words for generating each corre-
sponding “comprehensive prompt”. Furthermore, 
different BSs add location-based personalized 
information so as to satisfy distinctive require-
ments. Subsequently, the edge LLM processes 
the user-submitted “concise prompt”, and feeds 
the complemented prompt to the cloud. Next, 
a more complete generative response could be 
anticipated. It can be observed from the top-right 
part of Fig. 3 that NetGPT could yield different 
location-based responses, which manifests the 
capability to handle personalized generative ser-
vices through effective cloud-edge synergy.

The LLM synergy brings multiple merits (e.g., 
context-aware processing and prompt optimiza-
tion) within a resource-constrained environment. 
In particular, the edge LLM lays the groundwork 
for efficient cloud processing through personal-
ized treatment and request optimization. In other 
words, the “LLM synergy” framework competently 
processes multiple requests at the edge in a batch 
manner. Additionally, the “LLM synergy” frame-
work could take advantage of the de-duplication 
capability of the edge to filter redundant requests. 
Therefore, it promises to further reduce the 

communication burden, and is more qualified 
for prompt-intensive application scenarios. On 
the other hand, the “LLM synergy” framework 
strengthens data privacy and security, as the data 
processing capability of edge nodes also prom-
ises to limit the transmission of sensitive data 
and reduce potential security risks. Meanwhile, 
the high-performance processing capabilities 
of the cloud LLM ensure the quality and com-
plexity of request handling, thus collectively 
facilitating an efficient and accurate end-to-end 
service provisioning.

Discussions
1) Comparison With Cloud-Edge Solutions: As 
shown in Fig. 1, we compare the three cloud-
edge collaborative frameworks in terms of 
the requirements on storage, fine-tuning and 
inference VRAM, as well as the end-to-end trans-
mission latency. Notably, in the experiments, 
“concise prompts” consume averaging 12 bytes, 
while “comprehensive prompts” correspond to 
95 byte consumption on average. On this basis, 
the transmission latency is computed by process-
ing 10,000 at a transmission rate of 1 Gbps for 
both the end-to-edge and edge-to-cloud links. 
Besides, for the “LLM splitting” framework, how 
to determine an ideal point for model division, 
which appropriately balances communication 
cost and performance, remains a critical chal-
lenge. Therefore, we showcase the results after 
partitioning 1/4 of the LLaMA-7B model at the 

FIGURE 3. Comparison between “LLM synergy” framework and cloud-only solution. Top-left: Inferring contextual words following 
“concise prompts”. Top-right: Examples of generated “comprehensive prompts” by regional edge LLMs under “LLM synergy” 
framework, as well as more personalized cloud LLM responses. Bottom-left: Simpler, non-personalized responses from cloud-only 
solution for the same prompts. Bottom-right: Numerical comparison between “LLM synergy” and cloud-only frameworks.
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edge. In this case, if we use D to denote the 
quantified ratio between data volume in the 
model’s middle layer and the input token size, 
we have D := ×hidden layer dimension data type size

average input sizze
=  

4096 4
12

10 922×
≈ , .

By Fig. 1, the “LLM offload” framework can 
directly handle the prompts dependent on the 
offloaded LLM at the edge, and thus could more 
significantly reduce the transmission delay. Nev-
ertheless, such a benefit comes at the expense 
of significant storage and computing resource 
consumption. Meanwhile, the “LLM split-
ting” framework could alleviate the resource 
requirements on the edge, but suffer from the 
engineering challenge of determining an appro-
priate splitting point without sacrificing model 
performance. Furthermore, “LLM splitting” inev-
itably adds communication overhead. On the 
contrary, the “LLM synergy” framework demands 
minimal storage and computing resources at the 
edge without sacrificing the essential efficiency, 
which manifests its superiority in terms of both 
performance and flexibility.

2) Comparison With Cloud-Only Solution: In 
the aforementioned scenario, in order to simul-
taneously transmit and process 100 “concise 
prompts” averaging 12 bytes under a transmis-
sion rate of 1 Gbps, the “LLM synergy” framework 
yields an end-to-end latency of just 3.35 seconds 
and significantly outperforms the cloud-only solu-
tion, which instead requires 20.19 seconds. This 
performance superiority lies in that in cloud-only 
setups, the inherent queuing latency gets exac-
erbated by high volumes of concurrent requests 
and each individual request necessitates the 
establishment of an independent communication 
connection with the cloud infrastructure, poten-
tially leading to increased handshake signaling 
overheads and more frequent re-transmissions.

Moreover, as opposed to the cloud-only 
approach’s lack of edge resource usage, the “LLM 
synergy” framework consumes approximately 
1.65 GB edge VRAM for obtaining “comprehen-
sive prompts”. Through the enhancement of edge 
computing, the cloud in “LLM synergy” frame-
work places a personalized prompt generator on 
the edge to improve the resource efficiency, so 
that the cloud can generate personalized content 
without increasing the computational cost. Mean-
while, for each request, “LLM synergy” framework 
transfers approximately 31 bytes, compared 
to the cloud-only approach’s around 12 bytes. 
Despite the higher data transfer volume, for the 
bandwidth-abundant edge-cloud links, the extra 
tokens in the “comprehensive prompt” sound triv-
ial. Also, the “LLM synergy” framework ensures 
that the communication is more meaningful by 
providing a richer context for the cloud’s language 
model, leading to more personalized and accurate 
output content. Given identical concise prompt 
inputs, as demonstrated in Fig. 3, the “LLM syn-
ergy” framework is able to generate more specific 
and personalized output content. In summary, the 
“LLM synergy”-based NetGPT exhibits superior 
performance over cloud-only solution.

3) Extension to Large Multi-Modal Models 
(LMMs): The emergence of LMMs marks a sig-
nificant leap beyond text-only tasks and NetGPT 
could naturally benefit from the integration with 

LMMs. For example, deploying smaller, versatile 
LMMs at the edge allows for the collection and 
refinement of local data, and generates prompts 
that are more comprehensively aligned with 
immediate surroundings. On the other hand, pow-
erful LMMs located in the cloud, such as DALL-E 
and Sora, contribute to generating detailed multi-
modal responses on top of enriched information 
from the edge. Notably, the effective integra-
tion with LMMs requires further attention due 
to multi-modal dataset scarcity, increased model 
complexity, and semantic gap across modalities.

AI-Native Network Architecture 
Toward NetGPT

We argue that NetGPT provides the opportunity 
to transform cellular networks into an AI-native 
networking architecture, which provisions per-
sonalized, networked and inclusive intelligence 
for end users and grants users more privilege 
to access generative services anytime and any-
where. Nevertheless, such a transformation does 
come at a cost. It requires substantial changes, 
far more than installing racks of servers at the 
edge location and local break-out of the traffic 
for edge processing. In particular, compared with 
conventional connectivity-oriented communica-
tions systems, wherein a typical service establishes 
connections between two specific terminals and 
the communication source and destination are 
clearly defined by end users, NetGPT requires 
to establish generative performance-driven con-
nections more implicitly. Moreover, as NetGPT 
involves more frequent data collection and pro-
cessing modules for training personalized LLM 
models, computing resources shall be consis-
tently scheduled to accomplish NetGPT , and 
an independent computing plane (CmP), which 
coordinates computing resources and perform 
AI-related functionalities, becomes complemen-
tary to the control plane (CP) and user plane 
(UP). In other words, as shown in Fig. 4, NetGPT 
necessitates the design of deeply converged C&C 
in radio access networks (RANs). On top of these 
novel features, a logical AI workflow shall be 
devised to establish (beyond) generative service 
orchestration.

Converged c&c Resource Management
As part of provisioned services in future cel-
lular networks, the orchestration of resources 
for NetGPT  shares some similarities with that 
for other network services, including seamless 
connectivity control in the CP and reliable infor-
mation transmission in the UP. However, it also 
poses additional challenges. For example, for the 
advocated CmP in NetGPT , orchestrating het-
erogeneous computing resources effectively is 
of paramount importance, considering that the 
central processing units (CPUs) capably han-
dle general computing tasks, while the graphics 
processing units (GPUs) specialize in parallel 
processing tasks such as neural network compu-
tations, and the video processing units (VPUs) 
excel in the real-time image and video processing. 
Therefore, it is crucial to accommodate tasks with 
the most appropriate resources to enhance system 
efficiency and performance, in an orchestrated 
manner with intelligent adaptation. In addition, 
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since the scope of resources spans distributed 
nodes from the cloud to the terminal, novel pro-
tocol stack needs be carried on radio control 
signaling (e.g., RRC) or radio data protocol (e.g. 
PDCP or SDAP) to transmit AI-generative mes-
sages and implement model update & distribution. 
In that regard, introducing new RRC messages or 
flags that would prioritize AI data, could ensure 
rapid allocation of network resources for real-time 
AI workflows. Furthermore, as quantization tech-
niques are widely used in developing light-weight 
AI models, refining PDCP header compression 
algorithms to better identify and compress AI 
data payloads promises improved data processing 
efficiency. Additionally, defining a dynamic con-
figuration module/sublayer within the protocol 
stack, tailored to specific AI tasks, allows for the 
establishment of a closed-loop mechanism for 
real-time adjustments.

Data Processing and Privacy Protection
As discussed in the section “Implementation 
Showcase Of NetGPT,” data processing (e.g., 
data collection and fine-tuning) is heavily lever-
aged to lay the very foundation for producing 
generative LLM models. Besides collecting 
and storing data, it is feasible to filter duplicate 
prompts at the edge, so as to reduce the com-
munication burden. In addition, it is essential to 
introduce data desensitization modules as key 
data processing services, so as to avoid privacy 
risks and protect the privacy embedded in the 
data. Meanwhile, data policy enforcement mod-
ules, which handle data according to regulatory 
as well as non-regulatory rules (e.g., geographic 
restrictions), will be executed by default to 
ensure the integrity and legitimation of data 

processing. Moreover, contingent on the regula-
tion and data usage policy, it is also feasible to 
devise some data processing model libraries and 
expose the capabilities with appropriate access 
control for entities to utilize the data services.

Personalized Profiling
In order to create a highly customized NetGPT, 
location-oriented profiling shall be significantly 
enhanced to support the definition and opera-
tion of personalized generative AI services. For 
example, local venue and facility information can 
be specially gathered to train edge LLMs. On the 
other hand, user service nodes (USN) can con-
tain customized services at end-user level as well, 
so as to meet diversified customer requirements. 
Meanwhile, it could further support to establish 
the user profiling and characterize connected 
terminals.

Logical AI Workflow
In order to effectively provision AI services, it is 
critical to develop some logical AI workflows to 
parse and orchestrate NetGPT services. Notably, 
a logical AI workflow, which facilitates a set of net-
work functions physically distributed at both the 
edge and the cloud to coherently deliver “concise 
prompt”, “comprehensive prompt” and “gener-
ative responses”, regulates data processing and 
profiling to train personalized LLMs at the CmP. 
Furthermore, logical AI workflows are mapped to 
physical resources during service deployment, so 
as to take into account the QoS requirements of 
related services. Notably, as the workflow covers 
a wide scope of network functions, the process-
ing may be serial or directed acyclic graph-based, 
and thus involves comprehensive optimization 
techniques beyond the scope of this article. On 
the other hand, the logical AI workflow is not lim-
ited to generative services. As discussed in the 
section “LLM-Based Unified Solution for Net-
work Management & Orchestration” lately, the 

FIGURE 4. The illustration of an AI-native network architecture and logical AI workflow for NetGPT.

In order to effectively provision AI services, it is critical to develop some logical AI workflows to parse 
and orchestrate NetGPT services.
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logical AI workflow significantly contributes to 
the improvement of QoS in a more customizable 
manner.

LLM-Based Unified Solution for Network 
Management and Orchestration

Apart from providing personalized generative 
services, NetGPT and the AI-native architecture 
could provide a unified solution for intelligent 
network management & orchestration, on top of 
deployed edge LLMs.

Popularity Prediction
Popularity prediction could significantly contribute 
to improving networking efficiency by adapting 
the C&C resources to predicted demands [14]. 
Considering the underlying principles of DNN 
structure, GPT-2 promises the ability to interpret 
users’ preferences from historical visiting records 
from affiliated terminals at the RAN. Furthermore, 
by incorporating location-specific data, the edge 
LLM can be rather different to better capture per-
sonalized characteristics unique to each area.

In order to test the prediction capability of the 
edge LLM (i.e., the GPT-2-base model), we take 
the Netflix audience behavior dataset as a show-
case. In order to mitigate the data sparsity, the 
range of time is first divided into intervals based 
on a 6-hour cycle and tagged a number. Subse-
quently, 20 movies with the highest frequency are 
selected and labeled according to the presence 
or absence of each movie in a particular interval. 
Later, benefiting from the data format capability 
in CmP, the related historical information is con-
verted into some natural languages conforming 
to a specific template. For example, “In interval 1, 
movie ‘Iron man 2’ appear :1” indicates the movie 
“Iron man 2” appears in the Interval 1, which 
corresponds to some specific date-time given in 
the left-bottom part of Fig. 5. Meanwhile, special 
tokens are added to create a prompt template 
that aids the language model in information 

comprehension and response generation. After 
direct fine-tuning, the edge LLM could generate 
labels following the prompt template format, i.e., 
whether the movie appears under the interval. 
Furthermore, to enhance model universality, we 
specifically utilize data from the last half year in 
the dataset for experimentation, and divide the 
dataset as the training set and test set according to 
the proportion 95% to 5%. Fig. 5 finally presents 
the prediction accuracy of the edge LLM. It can 
be observed that GPT-2 exhibits an acceptable 
level of accuracy on this task, and significantly out-
performs other classical algorithms (e.g., LSTM, 
GRU). Solely contingent on the edge LLM (i.e., 
the GPT-2-base model), this prediction capability 
demonstrates the potential of edge LLMs in inter-
preting and utilizing data within NetGPT.

Intent Inference
Intent-based networking aims to tackle the 
increased difficulty of applying template-based 
services to vertical business, and it needs to per-
ceive the real-time requirements of customers 
before replacing the manual processes of con-
figuring networks and reacting to network issues 
[15]. In that regard, how to precisely understand 
the intent of customers and translate it into feasi-
ble network configuration belongs to one of the 
most fundamental issues.

Coincidentally, edge LLMs exactly satisfy 
such intent-recognition process [15] and benefit 
the accurate understanding of more verbal state-
ments. In particular, by adopting the self-instruct 
approach [13] as before, we first obtain a dataset 
encompassing 4,000 input-keyword pairs, which 
map between linguistic network intents and typ-
ical network configuration keywords (e.g., bps 

FIGURE 5. Edge LLM for popularity prediction: From data-sample template, fine-tuning to prediction accuracy.

As a by-product, we have presented a possible unified AI solution for network management & 
orchestration empowered by edge LLMs through exemplifying the performance for popularity 

prediction and intent inference.
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and network protection). After fine-tuning on the 
dataset, there emerges the capability in the edge 
LLMs to understand and extract keywords from 
arbitrary natural language input. For example, the 
post-fine-tuning results in Fig. 6 demonstrate that if 
one user wants to establish a 10 Gbps connection 
from Access 1 to Cloud 2 with traffic protection, 
accurate keywords could be conveniently extracted 
by GPT-2-base model regardless of statement dis-
tinctions. Therefore, it avoids the cumbersome 
template design and customer learning process. In 
other words, compared to conventional NLP tools, 
LLMs manifest stronger capability towards fulfilling 
intent-driven networking, not only in understand-
ing the semantics of user requests but also in the 
pragmatic application of these requests to network 
configuration tasks. Moreover, such a qualification 
for the intent-based network management also 
verifies the potential for LLMs to be reconfigured 
on-the-fly to accommodate speech patterns or 
evolving network commands, without the need for 
extensive re-training or manual intervention.

Conclusion and Future Work
In this article, based on LLMs, we have advo-
cated an AI-native network architecture, namely 
NetGPT , for provisioning network services 
beyond personalized generative content. In par-
ticular, through the effective cloud-edge LLM 
synergy, we have demonstrated the feasibility of 
NetGPT for location-based personalized services 
by deploying some representative open-source 
LLMs (e.g., GPT-2-base model and LLaMA model) 
at the edge and the cloud, and evaluating their 
coherent performance with the adoption of 
low-rank adaptation-based parameter-efficient 
fine-tuning techniques. Besides, we have com-
prehensively demonstrated the superiority of 
NetGPT over alternative cloud-edge or cloud-only 
techniques. On top of that, we have highlighted 
some substantial architectural changes (e.g., deep 
C&C integration and a logical AI workflow) that 
NetGPT will require. As a by-product, we have 
presented a possible unified AI solution for net-
work management & orchestration empowered by 
edge LLMs through exemplifying the performance 
for popularity prediction and intent inference.

While NetGPT  is a promising AI-native 
network architecture for provisioning beyond per-
sonalized generative services, in this article, we 
have not discussed all of the major research chal-
lenges. For successful deployment of NetGPT , 
the following questions will need to be answered.
•	 Given the success of LLaMA to shrink model 

sizes through effective algorithmic and struc-
tural updates, how to implement the infer-
ence and fine-tuning at the terminals, so as 
to satisfy the limited computing capability in 
cost-limited devices?

•	 Considering the continual evolution of 
knowledge, how to emulate Microsoft Copi-
lot in Bing2 and implement online learn-
ing-based LLMs to adapt to the dynamicity 
of wireless environment at the edge? Mean-
while, how to collect, distribute and process 
the data while maintain the essential privacy 
at the edge and cloud?

•	 Due to the limited sensitivity for numerical 
inference and possible deception effects, 
how to further improve the rigorousness of 
LLMs and what lessons can be learned from 
the latest LLM? Meanwhile, how to incorpo-
rate the evaluation metric of LLM to derive 
a suitable logical AI workflow?

•	 How to evaluate the interpretability and 
reliability of the model’s outputs? How to 
bypass the hallucination effect of LLMs to 
meet stringent requirements for low-latency 
and ultra-reliability? More importantly, in 
addition to reinforcement learning from 
human feedback (RLHF), what techniques 
can be leveraged to satisfy users’ stringent 
requirements amidst significant model 
uncertainties, before practically deploying 
LLMs in scenarios where decision-making 
critically relies on AI insights?

•	 How to incorporate the latest LMMs 
more effectively to provision personalized 
services beyond text? For different data 
modalities, how to effectively orchestrate 
heterogeneous computing resources to 
maximize operational efficiency?

•	 Regarding the cloud-edge collaboration, 
how to accurately learn the variations of 

2 Microsoft Copilot in Bing 
refers to GPT-empowered 
search engine available at 
https://www.bing.com/chat  
(access available as of Mar. 9, 
2024).

FIGURE 6. Edge LLM for intent inference.
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availability of computing resources and 
develop adaptive resource management 
strategies to dynamically respond to fluc-
tuating computational demands? Besides 
personalized assistance and recommenda-
tion systems, other real-world applications 
(e.g., AI copilot, embodied AI agent, etc.) 
can be explored to fully unleash the capa-
bility of NetGPT. Correspondingly, how can 
NetGPT be evolved to meet the emerging 
demands?
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