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Graph Attention Network-Based Multi-Agent
Reinforcement Learning for Slicing Resource
Management in Dense Cellular Network

Yan Shao ¥, Rongpeng Li

Abstract—Network slicing (NS) management devotes to provid-
ing various services to meet distinct requirements over the same
physical communication infrastructure and allocating resources on
demands. Considering a dense cellular network scenario that con-
tains several NS over multiple base stations (BSs), it remains chal-
lenging to design a proper real-time inter-slice resource manage-
ment strategy, so as to cope with frequent BS handover and satisfy
the fluctuations of distinct service requirements. In this paper, we
propose to formulate this challenge as a multi-agent reinforcement
learning (MARL) problem in which each BS represents an agent.
Then, we leverage graph attention network (GAT) to strengthen the
temporal and spatial cooperation between agents. Furthermore,
we incorporate GAT into deep reinforcement learning (DRL) and
correspondingly design an intelligent real-time inter-slice resource
management strategy. More specially, we testify the universal ef-
fectiveness of GAT for advancing DRL in the multi-agent system,
by applying GAT on the top of both the value-based method deep
Q-network (DQN) and a combination of policy-based and value-
based method advantage actor-critic (A2C). Finally, we verify the
superiority of the GAT-based MARL algorithms through extensive
simulations.

Index Terms—S5G, network slicing, multi-agent reinforcement
learning, graph attention network, resource management.

I. INTRODUCTION

HE fifth-generation (5G) mobile system devotes to offering
supports for tremendous subscribers with diverse service
requirements [2]. A total of 190 million 5G subscribers are
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expected by the end of 2020. In 2025, 5G networks will carry
nearly 45 percent of the world mobile data traffic and cover
up to 65 percent of the demands of global population [3]. The
large amount and sharp growth of data traffic has brought severe
pressure to current mobile networks, which gives rise to the
research, aiming at the improvements of the network through-
put, utilization, quality of service (QoS), and the combinations
thereof. Facing such huge traffic demands, current researches
mainly focus on two schemes which complement each other
based on 5G. The evolutionary scheme aims to scale up and im-
prove the efficiency of mobile networks including but not limited
to spectrum reuse, massive multiple-input and multiple-output
(MIMO) and higher frequency bands (e.g., millimeter-wave
and Tera-Hertz communications) [4]. The other one is service-
oriented trying to cater to a wide range of services differing
in their requirements and types of devices which is also the
focus of this article. Three typical scenarios serving for diverse
demands based on this scheme are enhanced mobile broadband
(eMBB), massive machine-type communications (mMTC), and
ultra-reliable and low-latency communications (URLLC). The
stack differences of these scenarios are three folds: (a) eMBB
provides subscribers with stable and high peak data rates to cater
the typical services like 4 k/8k HD, AR/VR, holographic image,
etc; (b) mMTC commits to supporting the massive Internet of
Things (IoT) devices, which need no excessive data payloads;
(c) URLLC furnishes with ultra-reliability and low-latency
which meets the industrial requirements such as automatic driv-
ing, telemedicine and so on [5]. These differentiated vertical
services bring pressures for mobile operators. Hence service-
oriented scheme requires a radical rethink of 5G mobile system
and its infrastructure to turn into the more flexible and pro-
grammable fabric.

As a non-nascent concept, network slicing (NS), which ben-
efits from the advances of software defined networking (SDN)
and network functions virtualization (NFV), has been proposed
to facilitate the customized end-to-end network services to
help operators launch resource with more flexibility and cost-
efficiency to market. In other words, [6] puts forward that NS
could act as a service (NSaaS). As an end-to-end service, NS
has been proposed for core networks (CN) initially. After that,
the Third Generation Partnership Project (3GPP) considers that
radio access networks (RAN) also need specific functionalities
to support multiple slices or even partition resources for different
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NS [6]-[8]. Thus, 5G system becomes capable to provide cus-
tomized end-to-end network slices from CN to RAN. Similar
to traditional resource allocation schemes, NS allows different
tenants to share the same communications and computing re-
sources. However, NS involves more complicated factors, as it
aims to provide the dedicated fully-functional virtual network
according to diverse requirements such as ultra-low latency in
URLLC, ultra-high throughput in eMBB, and other customized
services. Each virtual network is allocated a certain amount of
resources and then re-allocates them to its subscribers based on
specific rules. In this regard, NS implies allocating resources in
a multiple-tier manner, and each tier has different constraints. In
this way, the physical and computational resources are relatively
more flexible and independent with slight interference than sin-
gle network resources. To achieve the vision of NS and provide
a smoother network experience for subscribers, the mainstream
research contents mainly focus on intra-slice spectrum reuse,
efficient inter-slice handover mechanism [9], dynamic inter-slice
resource management, etc.

A proper real-time inter-slice resource management strategy
can promote network performance by meeting distinct service
requirements and relieve the pressure caused by volatile de-
mand variations while maintaining acceptable spectrum effi-
ciency (SE). But the fluctuations of service demands in RAN
is very unstable while the mobility of subscribers intensifies
these fluctuations. These factors result in the failure of classi-
cal dedicated resource management strategies which lack the
flexibility to change their strategies in real time. Recently,
some researchers propose to use reinforcement learning (RL)
to fix out this problem such as deep Q-network (DQN) [2],
generative adversarial network-powered deep distributional Q
network (GAN-DDQN) [10] and long short-term memory-based
advantage actor-critic (LSTM-A2C) [11]. However, these works
mainly consider single base station (BS) scenarios and ignore
the significance of cooperation among BSs. In fact, RAN in 5G
mobile system is conceived as a dense cellular network due to
the adoption of higher frequency bands and the incident smaller
coverage. Thus, strengthening the cooperation and obtaining
the related information from adjacent BSs is helpful to design
an efficient resource management strategy for the current BS.
Intriguingly, Graph Attention Network (GAT) [12] is such an
effective way to address the cooperation issue by processing
structured data from multiple BSs as a graph. Accordingly, this
paper primarily considers a dense network scenario with moving
subscribers in which each BS is regraded as an agent, and pro-
poses a multi-agent reinforcement learning (MARL) algorithm
which combines Graph Attention Network (GAT) with two types
of typical DRL algorithms (i.e., DQN and its variants, as well as
A2C) to provide more precise resource management strategies.
The main contributions are as follows:

® We build up a cooperation mechanism among BSs through

GAT to capture and process the pattern of fluctuant service
demands in temporal and spatial domains. We construct
the multi-BS scenario as an adjacent graph and define the
neighborhood by Euclidean distance. On this basis, we
leverage GAT to aggregate the information from adjacent
BSs that achieve dynamic collaboration among BSs in
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real-time. Moreover, we involve multiple GAT layers
which can expand receptive field under the same commu-
nication conditions.

e We propose a succinct and universal reward function to
replace those complex clipping and shaping functions. It
only has several hyper-parameters related to the optimiza-
tion objective to be adjusted and can be interpreted easily.

® We employ mainstream RL algorithms [13] to optimize
the real-time inter-slice resource management strategy
among various NS. In particular, we use a value-based
RL, DQN and its variants (i.e., double DQN and duel-
ing DQN), to forecast the actions of resource manage-
ment more precisely. Besides using the value-based RL
method, we proactively involve a combination algorithm
of policy-based and value-based method, A2C, to obtain
an optimal policy for resource management. Applying
GAT to different RL algorithms effectively demonstrates
the universality of GAT in promoting the performance of
MARL algorithms in multi-agent systems.

e We verify the performance of GAT-based MARL algo-
rithms in the simulation containing subscribers with var-
ious trajectories in temporal and spatial domains, which
is more realistic and adds to the difficulty of predictions.
Besides, We compare the GAT-based MARL algorithms to
normal algorithms and verify the superiority of our work.

The reminder of the paper is organized as follows: Section II

overview the related work. Section III presents the system model
and formulates this problem as a Markov Game (MG) which
can be fixed out in MARL algorithms. The details of GAT-based
MARL algorithms for resource management are illustrated in
Section IV. Then, we provide the numerical analysis and simu-
lation results in Section V. In the end, Section VI summarizes
the above works and gives future research directions.

II. RELATED WORK

When addressing the real-time resource management among
diverse NS, the utility of RAN resources is supposed to be
maximized for the better-performing and cost-efficient services.
Referring to [2], [6], [10], [11], the utility performance in RAN is
generally measured by (a) SE since spectrum resource is scarce
in RAN; (b) the service level agreement (SLA) satisfaction ratio
(SSR) within the slice tenants, which usually imposes stringent
requirement and reflects the QoS perceived by subscribers.

From the viewpoint of resource utilization, spectrum reuse
alleviates the problem of resource scarcity in RAN through
opportunistic spectrum access (OSA) [14]. OSA allows sec-
ondary subscribers to identify and exploit the unused spectrum
owned by primary subscribers opportunistically while limit-
ing the interference to primary subscribers below a predefined
threshold. However, OS A cannot ensure the quality of services to
secondary subscribers. In particular, we mainly focus on the real-
time inter-slice resource management among various network
slices which are exclusive of tenants to satisfy the customized
services with specific requirements such as ultra-low latency
in URLLC, ultra-high throughput in eMBB, and other cus-
tomized services. In other words, rigorous requirement should be
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satisfied for all subscribers. Thus, it is not suitable to directly
apply the spectrum reuse method to NS, and efforts has to be
taken, so as to make the transmission more better-performing
and cost-efficient.

Moreover, the actual demands of each NS are not only di-
verse but also dynamic due to the mobility of subscribers and
requirement variations. It fails the classical dedicated resource
management strategies which lack flexibility and the ability to
change their strategies in real time. Hitherto, other meaningful
solutions have been presented. [15] proposes a profit optimiza-
tion model with a value chain to analyze the profit of each
slice and optimize the strategy based on the traditional business
mode. However, it requires that tenants have a priori knowledge
about the service demands and the cost/revenue models of
every slice which seems insatiable. Subsequently, the authors
put forward an online genetic approach by encoding feasible
slicing strategies into an individual binary sequence [16] but not
considering the influence of various service requirements and
SLA in each slice. [17] considers the radio bandwidth, caching,
and backhaul components jointly, and models the resource man-
agement as a bi-convex problem which would be solved by
numerical solutions. But this optimization problem is intractable
when the parameters are scaled up for the increasing of NS or
the shareable resources. [18] mainly focuses on access control
and resource management of NS for a scenario with multiple
BSs. But, it impractically assumes that the demand rate is fixed
for every subscriber. Thus, despite the satisfactory numerical
simulation results given by the above works, it involves some
impractical assumptions and becomes difficult to directly apply
the optimization tools or heuristic algorithms backed by complex
numerical analysis in resource management, due to the lack
of flexibility and extensibility. For example, when the scenario
parameters are changed such as requesting more stringent SLA,
facing moving subscribers and adjusting the shared resources,
these methods may no longer be applicable.

Given the well-known success of AlphaGo [19], deep rein-
forcement learning (DRL) comes to the attention of the public.
DRL focuses on promoting agents to learn an optimal policy by
interacting with the environment and reinforcing the tendency
policy producing higher rewarding consequences [20]. This
characteristic makes it outstanding in many fields such as power
control [21], green communications [22], cloud radio access
networks [23] and mobile edge computing and caching [24].
Considering this powerful ability, some researchers tend to
leverage DRL to address the real-time resource management in
RAN. The previous work in [2] firstly uses DQN, a typical type of
DRL, to match the allocated resource to multiple slices based on
the fluctuant demands of subscribers. It verifies that DQN could
obtain the deep relationship between the demands of subscribers
and allocated resources in resource-constrained scenarios. Based
on this work, the effects of random noise on the calculation of SE
and SSR are further studied in [16]. They propose GAN-DDQN
to learn the action-value distribution driven by minimizing the
discrepancy between the estimated action-value distribution and
the target action-value distribution. Furthermore, [11] intends to
incorporate the LSTM into A2C to track the temporal patterns
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of demands caused by the mobility of subscribers and thus
improves the system utility.

However, the aforementioned methods mainly do not take
the significance of cooperation among BSs into consideration.
Strengthening the cooperation can capture the moving trajec-
tories of subscribers for catering to the temporal and spatial
fluctuations of service demands and boost the learning effi-
ciency, which is meaningful in the dense cellular network of
5G. Therefore, we propose a GAT-based MARL algorithm to
provide more precise resource management strategies.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. System Model

In this section, we design a multi-agent system model which
simulates a RAN scenario synthetically consisting of multiple
BSs and moving subscribers as depicted in Fig. 1. The main
purpose of this paper is to optimize the inter-slice resource
management strategy for each BS in real time according to
the various demands of subscribers when primarily considering
the downlink transmissions only. Different from the previous
works in [10], [11], a more practical scenario with multiple BSs
and several subscribers with intricate mobility patterns is taken
into consideration. Without loss of generality, this scenario is
conceived to be a dense cellular network with M BSs. The set
of BSs is represented by B. The assigned bandwidth for each BS
is W, which is shared by N NS, expressed by /', JNV| = N. The
set of subscribers is represented by U/. We use Uy, to denote the
set of subscribers which demand the services provided by n'"
NS in the m*" BS.

We conceive that the inter-slice resource management strategy
is updated in a timeslot model corresponding to the demands
of subscribers periodically. The fluctuant demands for diverse
NS in the m!" BS are d,;, = {dn1,--->dmn, - - - dmn}, the
determinant factor for the resource management strategy of
BSs. We use w,, = {Wmi, .-, Wmn, .-, WnN | tO represent
the inter-slice resource management strategy for the m!* BS.

To achieve the aforementioned objective, (i.e., optimizing the
inter-slice resource management strategy), the system utility J
is introduced as a vital evaluation criterion, composed by the
weighted sum of SE and SSR. We can formulate this optimiza-
tion as follows:

max J,, =« SE;,(dm, wm)

Wi,

+ Y Bn - SRy (dim, win)

nenN

N
s.t. E Wi = W
n=1

Wn = ¢+ A, Yn €l,...,N] (1

where A is the minimum allocated bandwidth granularity for
per slice based on the size of resource block which means
the bandwidth allocated for per slice is several times of A
while the magnification is determined by an integer c¢. a and
B={pf1,...,0n} are the hyper-parameters of the weighted
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Fig. 1. The radio access network scenario with multiple base stations and a n

sum representing the relative importance of SE and SSR which
can be set according to the practical system requirements. We
also test different combinations of o and 3 in Section V.B.
Intuitively, larger 3 implies stronger emphasis on satisfying SLA
but might degrade the SE so that we need to trade off between
SSR and SE.

Thereinto, SE could be obtained from the downlink signal-to-
noise ratio (SNR) according to the Shannon capacity. We define
that r,,, = represents the downlink data rate of subscriber
served by nt" NS in m!" BS. For simplicity, it is described as

Tt = Wmn log(l + SNRumn)’ vumn € Z/{mn (2)

where SNR,,,,, is the downlink signal-to-noise ratio between
subscriber w,,,, and m!" BS, defined as:

Y P, U,

SNR,,,, = Now 3)

where ¢, . is the average channel gain composed by the path

loss and shadowing which are decided by the channel model,

P, is the transmission power, and N is the single-side noise

Umn

spectral density. Next, SE can be calculated by:

ZneN Zumn EUpn Tt (4)
w

Due to the bandwidth limitation in Eq. (1), 320 wpn = W,

thus the scale of SE is decided by the SNR of channel mode.

Moreover, downlink data rate is a significant component of SE

which means higher data rate leads to higher SE.

Empirically, an outstanding resource management strategy
needs to ensure the QoS for subscribers, which signifies that
the successful transmission ratio of the traffic packets should
be maximized as far as possible to make the network more
smoothing. Thus, we involve the SSR,,,, of nt® NS in m!"
BS, defined as the percent of successful transmitted packets in
the total sent packets of n'” NS in m!* BS, to be one of the
criteria. To calculate this variable, we use (), , to represent
the set of packets sent from the m'® BS to u,,, which is
determined by the real-time traffic demand pattern. Moreover,
a zero-one variable x,, € {0, 1} is defined as an indicator
whether the transmission of packet ¢, conforms to the service
requirement. When the SLA for service type n'” NS in m!" BS,

Umn

SE,, =

Frequency

Resource Allocation Subscribers

umber of moving subscribers.

downlink data rate 7,,,, and latency Lins Of Upmp are totally
satisfied, =4, =1 means that the packet qy,,, € Qu,,, is
successfully received by u,,,. On the contrary, if SLA is not
satisfied, z,, = 0. Thus, SSR,,, of nt" NS in m** BS is
formulated as:

SSRmn = Zum"eum" unmn EQumn xq“""" (5)

Zum,n EUmn |Qum n |

Two summation symbols in the numerator are used to sum the
total successful transmission packets for all subscribers of n*”
NS in m** BS while the denominator are the number of whole
packets of n" NS in m!" BS.

Otherwise, the traffic demands d,,, of BSs at each scheduling
period are influenced by both the traffic model of each slice
and the dynamic distribution of subscribers in the temporal
and spatial domains. To make it clear, we display the impact
of subscribers’ mobility on the traffic demands in Fig. 2. It
can be observed that as time goes by, the demands of different
slices fluctuate distinctly due to the subscribers who move with
different speeds. Notably, these variations of hotspots arise the
frequent BS handover in the dense cellular network, which
aggravates the fluctuations of service demands in the related
slices and complicates the resource management in Eq. (1) in
real time.

For this purpose, we adopt several simplified designs of the
mobility patterns! for each subscriber on the basis of straight-
line motion with random bouncing (sLRB), a well-known mobil-
ity pattern defined in 3GPP [9], [25]. In particular, the trajectory
and speed are fixed for each subscriber, and subscribers within
the same slice have more similar mobility patterns than those
in heterogeneous slices. We also assign different subscribers
with various trajectories by dividing them into four groups and
distributing them in the corners of the scenario with random
directions and certain speeds according to the type of services.
Subsequently, subscribers go forward along with certain direc-
tions until reaching the bound and then bounce following the

Notably, the mobility patterns could follow other models, as the proposed
methods focus on learning the mobility-related fluctuations of traffic demands
in each NS.
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Fig.2. The fluctuations of demands of diverse slices in the temporal and spatial
domains caused by the mobility of subscribers. Different rows correspond to
different iterations. The red points indicate higher mobile traffic demands while
the green ones mean lower demands. (a) Iteration:290. (b) Iteration:300. (c)
Iteration:310.

rules of reflection. Considering the features of subscribers in
various slices, the moving speed of each slice is different as
lately clarified in Section V.

Therefore, besides that [11] forecasts the distribution of sub-
scribers in time sequence, we additionally leverage GAT to
reinforce the spatial cooperation among BSs in the cellular
network. GAT can incorporate the states of adjacent BSs into
current ones to predict the tendency of fluctuant demands which
is conducive to the resource management strategy [26].

B. Problem Definition

According to the above system model, we present the problem
of RAN resource management of NS in real time as an MG. MG
is one direct generalization of Markov Decision Process (MDP)
that captures the mutual effect of multiple agents [27]. Each
BS in the dense cellular network is treated as an agent. The-
oretically, MG is represented by a tuple (B,S,0, A, P, R,7),
where 5 denotes the set of BSs which is mentioned before. Other
components of this tuple are defined as follow:

a) System state space S and local observation space O.
In this paper, S denotes the system state space composed by
the processed observation data from some of the agents since
each agent can only obtain the local environmental data. To
catch the temporal and spatial correlation of service demands,
the local observation for m‘* BS at time ¢ is represented by
o!, ={d. ' d! } € O which consists of its past and current
service demands. s?, € S represent the system state for m?” BS
at time ¢ which is illustrated in detail in Section IV-C.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 10, OCTOBER 2021

b) Action space A. At time ¢, m*" BS are supposed to choose
an action a!, = w,, from its candidate action space A as a
bandwidth allocation strategy for each NS. The size of action
space is determined by A. If A is of coarse granularity (such
as 0.54 MHz), action space will be relatively small and lead to
quick convergence but the resource allocation will be not flexible
enough when handling the dynamic changes of the environment
and a consequently certain degree of resource waste will be
involved. However, for fine granularity (such as 0.18 MHz),
the action space may be too large for algorithms to converge
though it can avoid the waste problem. In this paper, we simulate
both coarse and fine granularity to verify the superiority of our
algorithm in various conditions.

c) Transition probability P. P(sLI!|s! , al,) denotes the
probability for m*" BS to transfer from the state s!, to the next
state stF! according to the action a!,, at time .

d)Reward R. After each time ¢, m'" BS will obtain a real-time
reward 7%, from the current environment by a specified reward
function. Considering the optimization goal, the reward function
is designed as:

T SR e
rto={ ©)
%, SSR,, < ¢3
o

where SSR,, is the average of SSR.,.,,. ¢1, ¢, are the constants
mapping rewards to [0,1] which is beneficial to the DRL training
and prediction processes. c3 indicates the minimum threshold of
SSR to be satisfied. Such a setting is significantly different from
reward clipping in [10] and reward shaping in [11], which albeit
brings performance improvement yet makes the reward func-
tions complicated and loses the generality. Our proposed func-
tion only considers whether the bandwidth allocation strategy
can guarantee the lowest SSR requirement. Once SSR,,, > c3,
we pursue the higher J,,,. The total accumulated return at time
tis R}, = S5 oy it

e) Discount factor .y € (0, 1] is a hyper-parameter in reward
calculation which determines the importance of future rewards.
Setting v = 0 implies the agent has a myopic attitude that only
considers current rewards, while v = 1 attaches importance to
a long-term high reward. Empirically, we set v = 0.9.

IV. THE GAT-BASED MULTI-AGENT REINFORCEMENT
LEARNING

In this section, we describe the proposed GAT-based MARL
algorithms, as illustrated in Fig. 3. We introduce the network
structure from bottom to top. The first step is the observation
representation achieved by multi-layer perceptron (MLP), which
is anon-linear function composed of a simple network including
multiple layers with several neurons. Especially, due to the
mobility of subscribers and the consequent BS handover, the
demands of the previous step from adjacent BSs are significant
features using to predict the resource management strategy in
this step for the current BS. Thus, we record the past demands
dﬁ;] as the part of observations and process them by GAT.
Notably, GAT is an effective way to process structured data
which is represented as a graph. In the cellular network, the
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distribution of BSs can be regarded as a graph so that GAT can
do the state pre-processing to track the temporal and spatial
fluctuations of demands. Finally, to verify the universality of
GAT for promoting the performance of DRL algorithms, we
choose two classic and representative types of RL algorithms
(i.e., a value-based method DQN and a combination of policy-
based and value-based method A2C). We apply these dominant
model-free RL algorithms to fulfill the action prediction for
resource management.

A. Observation Representation

For the raw data obtained from the scenario, we need to map
such n-dimensional vectors into a k-dimensional latent space
(k > n) by MLP for low-dimensional input or Convolutional
Neural Network (CNN) for visual input, since low dimensional
impartible data can be converted into high dimensional separable
data by the above process. Because the raw data of our system is
in low-dimension, of, = {d’.', d,}, we map it into the higher

dimension by MLP, represented by:
B = MLP(AL") = o(WldS, + b))
hi, = MLP(d!,) = o(W2d!, +b2) (7
where d' ' d! ¢ R" and h!' hf cRF Besides,
W! W2 c RF" and b!, b2 € RF are the weight parameters
to be trained in MLP. o represents the activation function which
is set as “ReLu” in this paper [28]. Specially, the observation

vector is divided into d’. ' and d!, which are treated in two
MLP network separately as shown in Fig. 3. This is due that

The illustration of GAT-based DRL algorithm for resource allocation in network slicing.

h!-! needs to be disposed by GAT as below while h!, is
concatenated with the outputs of GAT and than processed by
DRL.

B. State Pre-Processing by Graph Attention Network

Subscribers convert frequently among BSs which causes
traffic demands fluctuating in each BS at different scheduling
periods. Under this assumption, it is necessary to strengthen the
cooperation among BSs which belongs to the prime issue in
multi-agent reinforcement learning (MARL). If only depending
on classic single-agent RL-based methods, there is no efficient
way to cooperate with neighbors [26]. Hence, we achieve the
purpose of state pre-processing through combining the states
from adjacent BSs and computing attention coefficients between
them by GAT. Referring to [12], [26], [29], the GAT architecture
is presented in the right side of Fig. 3.

As the initial step, we execute the self-attention mechanism
ATT : R* x R¥ — R on each BS and its adjacent BSs to
calculate attention coefficients.

emj = ATT(W k!N Wih!™)
= (W.h,H" - (Whi ®)

where W ,, W € RP*F are weight matrices to perform a shared
linear transformation. This formula indicates the importance of
the past state features h;fl of j*" BS in determining the current
policy for m!" BS.

Instead of considering the effect of all other BSs for m?
BS in the multi-agent system, we leverage graph structure into

h
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the cellular network through masked attention as in the GAT
mechanism. For this, only BSs in the neighborhood will be
considered when computing attention coefficients.
exp(T - €myj)
2 jep,, &XP(T - €mj)
where 7 is the temporary factor and D,, is the set of adja-
cent BSs including itself in the current neighborhood scope of
m'" BS defined by Euclidean distance among BSs. Besides,
the “Softmax” function is used to normalize the coefficients
across different adjacent BSs in the graph to make them easily
comparable.

After that, these normalized attention coefficients are applied
to calculate a linear combination of the states from the current BS
and its neighbors to produce the output features for the current
BS.

C))

Qpj = softmax(e,,;) =

h, =0( Y amWhi™)

J€Dm

(10)

where W € R*F is the weight matrix that needs to be trained
and h),, € R¢is the output vector of single-head attention mech-
anism.

Empirically, single-head attention mechanism may cause the
instability of the training process of GAT, so that we extend it to
multi-head attentions. It can be regarded as multiple single-head
attentions executed independently in parallel while the output
vectors can be concatenated or averaged. We conduct the con-
catenate process as follow:

t—1 t—1
h,, = GAT(RY,",ht ")

|| o Z am]tht h

k=1 §E€Dm

Y

where K represents the total number of multi-head attentions.

As presented in [30], the more attention heads the structure
has, the better relation representations and the more stable train-
ing process will be achieved. Furthermore, some researchers [29]
point out that multiple convolutional layers can extract higher
order relation representations that excavate the deeper inter-
play and make closer cooperation between neighbors. Based
on these experiences, we design the final GAT architecture for
state pre-processing with two convolutional layers and eight
attention heads (K = 8) which results in the best performance.
To simplify the expression, depicted in the right part of Fig. 3,
we encapsulate the formulas of Eq. (8), (9), (11) for the GAT
layers in the following form in which k!, and h! are the outputs
of GAT layers respectively.

h,, = GAT' (k' h\"),Vj € Dy,

h), = GAT*(hy,) h}),Vj € Dy, (12)

C. Resource Management by Deep Q Network and Its Variants

As the final module in GAT-based DRL algorithms, we apply
the standard DQN and its variants to optimizing the resource
management strategy in this subsection while the details of
A2C are in next subsection. DQN is based on the expectation
of action-value distribution, devoting to obtaining an optimal
policy 7(-|s) which maps a state to a distribution over actions.
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network clone
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Fig. 4. The illustration of resource allocation by deep Q network.
According to [20], [31], we present the training process of DQN
in Fig. 4.

Mathematically, the action-value function, defined as
Eq. (13), denotes the expected reward of taking action al, in
system state s’ under the policy 7 for agent m.

st = {hfn, Jh!” Y is concatenated by the outputs of
MLP and GAT™,
Q" (sl,,al) =E.p[R,|S =s!,,A=adl)] (13)

where [E is the expectation. According to Bellman equation [20],

Q™ (st,,al,) can be represented as:
Q" (spnsap) = Erplry, +7Q7 (s m(si )] (14)
where st+1 is the next system state decided by P(- |.sm7 at ).
The optimal policy, pursuing the maximum Q7 (st al,) for
all st and a!, is defined as:
* = argmax Q" (s!,,al,) (15)
Thus, the corresponding action-value function is:
Q' (shyral) = Ex plrt, + ymax Q' (s @) (16)
ac

Finally, the loss function for optimizing the current neural
network is defined as:

Y9 =t +'ymaxQ( tlas6,)
L(0,) = (Y - Q( St @ 0u))?

where 6; and 6, are the target and current network trainable
parameters, respectively. The target network is generated by
cloning current network and updates the parameters after fixed
iterations.

However, there exists several imperfections in the standard
DQN such as overestimation and imprecision of Q value. In-
spired by [13], we make several modifications to improve the
performance of DQN. “Double” and “Dueling” are the major
techniques. Double DQN [32] fixes out the overestimation of
Q value by decoupling, which amends the loss function as
follow:

YdoubleQ

A7)

L(0,) = (YR — Q(sl,,al,;0,)) (18)

On the other hand, dueling network [33] proposes two in-
dependent estimators (i.e., the value function and the action
advantage function, both realized by MLP, which share the same
convolutional encoder layers and calculate the values respec-
tively while merging them in the end) to replace the single one of
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Fig. 5. The illustration of resource allocation by advantage actor critic.

standard DQN and speed up the convergence. This improvement
of dueling network can be presented as:
Q(8ps @i 0, 1, v) = V(87,30 1)+

1
m Z A(an’ a; 07 V)]

acA

[A(st ,al ;0,v) —

m> @ms (19)
where 6, p and v are the trainable parameters of the shared
convolutional encoder, value function V'(-) and the action ad-
vantage function A(-), respectively. To sum up, we summa-
rize the above algorithm in Algorithm 1. Thereinto, our algo-
rithm uses the memory replay buffer mechanism which makes
memory stay up-to-date by storing the latest sampled data and
discarding the old one due to the storage constraints. At the
initial phase (t = 1 to T'/5), where T" denotes the total time-
step, agents interact with environment randomly to explore the
state space without priori knowledge and store these samples
in the replay buffer F. After accumulating adequate samples
(t =T/5 to T), the neural networks begin to be trained and
updated while agents use the e-greedy mechanism as described
in Algorithm 1 to interact with the environment and generate
the sample continuously. Specially, e-greedy is a probabilistic
selection mechanism to balance the exploration and exploitation,
and determines whether the choice of agent is based on the
prediction of algorithm or randomly choosing to explore the
environment.

D. Resource Allocation by Advantage Actor Critic

Apart from DQN, we also incorporate A2C, another main-
stream DRL algorithm on the basis of value-based and policy-
based optimization, into GAT to demonstrate the significance
of the cooperation among BSs in the multi-agent system for
handling the resource management. The major steps of A2C is
shown in Fig. 5. Unlike DQN, A2C focuses on training state-
value function V™ (s!,)) = E, p[R.,|S = s!,] that estimates the
average expected return from current state sfn to obtain an
optimal policy 7(-|s) [34].

In particular, A2C is composed by two MLP networks whose
inputs are similar to DQN, s = {hf h,, h!}. One is

“Critic” network used to estimate state-value V™ (s’ ). Based
on mean square error (MSE) and Bellman function V™ (s,) =
Erp[rt, + vV ™(sL1)], the loss function of this network pa-

rameters 0, is:

10799

Algorithm 1: The GAT-based DQN algorithm.

1: Initialize the parameters
(0, < random, 0; < 6,,,v < 0.9) for the whole
network composed by MLP, GAT and DQN.

2: Initialize an replay buffer F <— @& and the total
time-step 7';

3:  Set the exploration probability. € = 0 initially and
probability p is sampled from [0,1) at each time step
for e-greedy.

4: fort=1toT/5do
5: for all agent in the system do
6: Obtain the current observation ofn;
7 Randomly choose and perform an action a’, € A,
8: At the end of the ¢-th scheduling period, get the
next observation ol! and reward r!, from
environment;
9: end for
10: Store transitions among all agents
(ol,,al,, ot rt ), en in F;
11: end for
12: fort=T/5toT do
13: for all agent in the system do
14: Obtain the current observation ofn;
15: Map to high dimensional through A’ ' and h!,
16: Fuse the information from neighbors by two GAT
layers in Eq. (12)
17: Use e-greedy to choose action and perform,

e € [0, 1) will be improved over time and
st ={h! h, h!}:

m
ot — {argmaxaeA Q™ (sh,,a;0,) p <e
m random otherwise

18: At the end of the ¢-th scheduling period, get the

next observation ofF! and reward !, from

environment;
19: end for
20: Store transitions among all agents

(Osn’ a’?rn’ O?rr—LH ) rfn)'meﬂf in ]:;

21: Sample random minibatches of transitions Store

transitions among all agents
(0d,,al, ol vl )cn from F;

22:  Obtain s/, and s/, though M LP and GAT"? and
perform a gradient descent step on Eq. (18) to update
the parameters for the whole network.

23: Every C steps clone 6, to 6,

24: end for

‘CCritic(ec) = (’I“:n + IVVW(SZLH 5 ec) - Vﬂ—(an; 96))2 (20)

The other is “Actor’” network which is responsible for predict-
ing actions based on the current state. Specially, the “Advan-
tage” in A2C refers to A(sl,,al,) =Q™(st,,al,) —V(s,,)
that implies the advantage of performing action a’ under the
state st [11]. To simplify the network structure, we apply some
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transformations that
A(sy,, ay,) = Q" (s, a;,) — V(sy,)
~ 1y V(s s, ar,) = VT (s,)
= 3(sp,) 1)

which is the Temporal-Difference (TD) error [20] of “Critic”
network. To obtain an optimal policy that executes the most
valuable action under current state, this “Advantage” is involved
in the loss function of “Actor” network parameters 6, as [11]:

EActor(ea) - - [5(3217 90) IOg ﬂ—(afn|sfn; 90«)
+AH (7 (an, |5, 0a))] (22)

where entropy regularization H(-) is used to encourage ex-
ploration in large action space and forbid the algorithm from
converging to local optimum. A is the weight parameter for
regularization.

The algorithm of GAT-A2C is similar to GAT-DQN in Algo-

rithm 1, thus only some special details are pointed out:

® [In the training process, we sample random minibatches of
transitions (o/,,a’,, 051 1) ), from F to train the
“Critic” network and obtain the TD error of state-value
functions. TD error is used to perform a gradient descent
step on Eq. (20) and (22) to update the parameters of
“Critic” and “Actor” network, respectively.

e In the predicting process, agent, m'" BS, selects the ac-
tion a!, based on s, depending on “Actor” networks
m(ay,|sp,)-

e In the location, our A2C algorithm is integrated in the
agents (BSs). Each agent plays the “Critic” and “Actor”
simultaneously while different agents use the independent
networks and cooperate with others by GAT.

V. SIMULATION RESULTS AND NUMERICAL ANALYSIS

A. Simulation Environment Settings

Based on the aforementioned multi-agent scenario, we con-
sider 19 BSs arranged like beehives as displayed in Fig. 1 to
simulate a dense cellular network environment which is 160 m x
160 m in size and contains 2000 subscribers. The total bandwidth
is 10 MHz with two optional granularity (i.e., 0.54 MHz for
coarse granularity and 0.18 MHz for fine granularity which are
the multiples of resource blocks.) in this section. For simplicity,
our simulation only involves three typical services in daily life
with diverse SLA (i.e., VOLTE for voice communication, eMBB
for HD video transmission, and URLLC for industrial-grade
application) for each BS to conduct the independent inter-slice
resource management. The service demands produced by sub-
scribers are briefly summarized in Table I referring to 3GPP TR
36.814 and TS 22.261 [35], [36]. Every 1 s, we reallocate the
bandwidth to each slice to achieve real-time resource isolation
and sharing between slices, which contributes to ensuring the
QoS and improves the resource utilization. Within each second,
each slice re-allocates its bandwidth to each subscriber every
0.5 ms according to the specific rules (round-robin scheduling
in this paper) of the slice. In both coarse and fine granularity,
we set ¢; = 6,c, =2 in Eq. (6) of the hyper-parameters for

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 10, OCTOBER 2021

TABLE I
A SUMMARY OF KEY SETTINGS FOR TRAFFIC GENERATION PER SLICE

\ | VOLTE | eMBB | URLLC |
Bandwidth/A 10 MHz/0.18 MHz/0.54 MHz
Scheduling Round robin per slot (0.5 ms)
Slice Band Adjustment 1 second (2000 scheduling slots)
Channel Rayleigh fading
Base Station No 19
Subscriber No.(2000 in all) | 333 667 1000
Uniform Uniform
[Min: Uniform [Min: [Min:
Speed Varying 1m/s, 1m/s, Max: 6m/s,
Max: 3m/s] Max:
Sm/s] 10m/s]
Uniform Truncated
. Pareto .
o [Min: [Exponential Exponential
Distribution of Inter- Oms, [Mean:
. . Para: 1.2, Mean:
Arrival  Time per Max: 6ms. Max: 12.5 180ms]
Subscriber 160ms] ’ o
ms]
Truncated Variable
Pareto Constant:
L Constant: | [Exponential {0.3,
';;;g‘b““o“ of Packet 40 Byte | Para: 1.2, Mean: | 0.4, 0.5,
100 Byte, Max: | 0.6, 0.7}
250 Byte] MByte
SLA [ Rate 51kbps 100 Mbps 10 Mbps
| Latency 10 ms 10 ms 3 ms

reward definition. Moreover, we simulate the URLLC service
with relatively large size packets as shown in Table I so we set
a moderate threshold of reward definition ¢; = 0.9.

B. Simulation Results

To show the significance of state pre-processing in strength-
ening the cooperation among BSs by GAT, we incorporate two
aforementioned DRL algorithms (DQN with its variants, as well
as A2C) to GAT and conduct the simulations under the above
environment settings. DRL-based schemes (DQN and A2C)
and hard slicing methods are involved as baselines to make the
performance improvement more obvious. Hard slicing allocates
the total bandwidth for each slice uniformly in which one of them
can obtain % of the bandwidth (there are three types of services
in total thus N = 3). Additionally, the baselines of DRL-based
resource management schemes in this paper are similar to the
proposed algorithms except for having no GAT structure. Due to
the setting of channel mode in our simulation, the value of SE is
on the scale of hundreds while the value of SSR is within [0,1].
Considering the magnitude of SE and SSR, the hyper-parameters
of weighted sum in the optimization function Eq. (1) are set to
a=00land 8 =1,1,1].

Fig. 6 depicts the performance comparison of system utility
between different algorithms under the two optional granularity.
The two different granularity simulations aim to demonstrate
and verify the convergence of algorithms under different sizes
of action space. The left part of Fig. 6 depicts the variations of
system utility with respect to the iterations under the coarse
granularity, A = 0.54 MHz, which provides smaller action
space. Obviously, these DRL-based algorithms achieve satisfac-
tory performance improvements in system utility after several
training steps compared with hard slicing. Although all DRL-
based algorithms converge finally, these Q-learning algorithms
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A performance comparison of the system utility under two optional granularity between different algorithms. The shadow of each color implies the true

average value of all BSs in each iteration while the curve with the corresponding color is composed by the median values for every 50 iterations. Because the true
value sequences contain some values of random exploration which is meaningless, these median curves can ignore the influences caused by these values so as to

be more visualized than the true value sequences.

(DQN and GAT-DQN) converge faster than Actor-Critic algo-
rithms (A2C and GAT-A2C) (Q-learning algorithms are stable
after 4000'" iteration while it takes Actor-Critic algorithms
near 6000%" iteration to converge). Meanwhile, Q-learning al-
gorithms perform better utility slightly in small action-space
(A = 0.54) than Actor-Critic algorithms while they are less well
in larger action-space (A = 0.18) especially in terms of stability
after convergence. Notably, the GAT mechanism promotes the
agents to find a superior policy resulting in an improvement
for GAT-DQN and GAT-A2C algorithms compared with DQN
and A2C. The left part of Fig. 6 indicates that the result of
GAT-DQN is around 6.8, which is 4 percent higher than DQN
while the result of GAT-A2C increases almost 5 percent. The
same conclusion can be drawn from the right part, for the fine
granularity, A = 0.18 MHz, which results in larger action space.
GAT-DQN and GAT-A2C have the similar performance which
almost reaches the utility in 6.8 and increases 7 percent than
DQN and A2C while GAT-A2C yields a more stable converging
curve. In this regard, our algorithms address the shortage of
vanilla DRL-based algorithms which easily result in a subopti-
mal solution regardless of the size of action space.

In addition, we provide several detail indicators (SE and SSR
for each slice) that are the compositions of system utility as
shown in Fig. 7 for the A = 0.54 MHz case and Fig. 8 for the
A = 0.18 MHz case. It can be observed that with respect to
SSR, all DRL-based algorithms bring significant improvement
to satisfy the SLA for URLLC subscribers (between 0.8 and 0.9)
while not decreasing the SLA of other subscribers (almost 1.0).
On the other hand, all DRL-based algorithms also increase the
SE compared with hard slicing. Inboth A = 0.54 MHz and A =
0.18 MHz cases, with the help of GAT, the actions predicted by
GAT-DQN and GAT-A2C can give a higher SE on the condition
of ensuring the same SSR. Although GAT-DQN algorithm in
A = 0.18 MHz case and GAT-A2C algorithmin A = 0.18 MHz
case perform a slightly inferior in SSR for URLLC service than
others, they reach the outstanding results in SE. This is due to
the setting of reward function that once the mean SSR reaches

(a) SSR for VoLTE service (b) SSR for eMBB service
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Fig.7. Several detail indicators (i.e., SSR for each service and total SE) of the
system utility in granularity of A = 0.54 MHz.
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Fig. 9. Performance comparison among different hyper-parameters. X-axis
represents different parameter combinations and Y-axis means the improvement
of utility based on the hard slicing algorithm. Different color bars represents the
utility of different algorithms illustrated in the legend.

the specified value (0.9 in this version), it will pursue higher SE
performance.

Besides, we measure the performance of different algorithms
under diverse combinations of hyper-parameters. Considering
the scale of SE, we fix @ = 0.01 and change the 3 to adjust
the influence from different slices. In this part, we choose three
values of 3, 3 =[1,1,1],]1,2,3],[1,1,5] and the related pa-
rameter ¢; = 6,9, 10 is changed to fit the optimization function.
We present the comparison chart in Fig. 9. This chart shows the
utility improvement compared with hard slicing under 0.18 MHz
for coarse granularity. It presents that no matter how the param-
eters are set, RL can always improve performance with little
manual adjustment while GAT is icing on the cake.

Remark : There are several conclusions that we sum up from
these simulation results: (a) GAT mechanism can improve the
utility performance through enhancing the cooperation among
individual BSs; (b) GAT-based DRL algorithms are predominant
regardless of the size of action space while this advantage is
more significant in the large action space; (c) These algorithms
powered by Q-Learning present better results of convergence
speed while Actor-Critic based algorithms perform better in
terms of stability after convergence.

VI. CONCLUSION

In this paper, we have proposed to use GAT to strengthen
the cooperation among BSs in the dense cellular network to
capture the patterns of fluctuant service demands in temporal
and spatial, and combined it with mainstream DRL algorithms
to yield an intelligent resource management strategy for NS.
For verifying the universality of GAT in promoting the perfor-
mance of DRL algorithms, we have selected two classic and
representative algorithms of DRL (i.e., DQN and its variants, as
well as A2C). Extensive simulation results have demonstrated
that incorporating GAT for state pre-processing on the top of
these DRL algorithms is effective to enhance the cooperation
and obtain the optimal policy for the multi-BS system in RAN. It
can not only satisfy the strict SLA requirements but also improve
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the SE indicator, thus providing a promising solution in slicing
resource management. Nevertheless, many subsequent issues
need to be addressed in the future, such as the verification of its
robustness facing more severe environment in reality, the demon-
stration of its capability to deal with interference and complex
mobility pattern, the improvement of neural network structure
to reduce the computational complexity such as COMA [37],
the comprehensive comparison with the existing algorithms in
resource management.
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