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Abstract: In this study, the authors consider the utilisation of multicast technology in cellular networks given different arrival
patterns for the content requests of mobile users. Traditionally, the performance evaluation of multicast in the literature usually
depends on the adoption of temporal Poisson processes for content requests, which is not accurate any more according to
many real data measurements. Therefore, to make use of the bursty nature of content requests, they propose a hybrid unicast/
multicast strategy where the base station (BS) can perform the unicast or multicast procedure according to its serving status. By
modelling the complete process into a circular Markov chain, they derive the average latency of content requests and the
average power consumption of BSs under different arrival patterns and serving configurations in theoretical and/or simulative
ways. Moreover, the multicast threshold introduced in their strategy can be dynamically adjusted to achieve a joint optimisation
between average latency and power consumption when confronted with varied demands. Numerous results show that the
proposed strategy can not only reduce the average latency of content requests but also decrease the average power
consumption of BSs, especially under the bursty request arrival patterns.

1 Introduction
According to Shannon's theory, the technical gains brought by the
physical layer gradually become saturated, which cannot match the
rapid increase of traffic demands in the current mobile internet era
[1]. In this study, we devote to make use of the temporal
characteristics of user requests in cellular networks, based on
which many pertinent technologies have been extensively studied
in recent years.

Among those technologies, multicast is considered to improve
the throughout and energy efficiency of cellular networks [2]. With
multicast, the base station (BS) or server can send the same content
to many users within its coverage area, achieving the purpose of
one transmission and multiple receptions [3]. Such a strategy not
only increases the capacity of entire access networks but also
effectively reduced the energy consumption of the transmitter [4].
However, it works at the cost of increasing user delay, because
each request needs to wait for the multicast until the number of
requests achieves a pre-defined threshold. In practice, multicast can
be combined with other promising technologies to further exploit
the characteristics of cellular networks for potential capacity
improvement.

For example, it can be combined with device to device (D2D)
short-distance transmissions [5]. Among user equipments (UE),
which request the same content, some of them have better channel
qualities and thus can serve as relays. After these relay users obtain
the requested content from the BS multicast, they spread the
content to all other requesting users through D2D transmissions.

Similarly, network coding can be combined with multicast
technology to meet UE diverse rate requirements [6]. Simulations
showed that such a hybrid strategy can achieve a throughput
improvement of 30–45%. Works in [7, 8] consider the optimal
allocation of dynamic multicast in a content-centric caching-
enabled wireless network, aiming to minimise user delay and
power consumption. Unlike caching contents on the BSs, the
authors of [9, 10] consider caching directly on UE and combine it
with the macro-BS broadcast. The results show that such a mixed
strategy can achieve significant performance gains.

In summary, multicast-related technologies use the clustering
nature of content requests in time, space and content domains to

improve the overall performance, such as spectrum efficiency and
energy consumption. However, the user request patterns adopted
by most related works cannot accurately reflect the reality. For
example, the arrival pattern of content requests is usually assumed
to be a uniform Poisson process for tractability [4], which is
inconsistent with the bursty nature claim we made in previous
works [11].

To utilise the bursty nature of content requests, in this study, we
propose a hybrid strategy combining unicast and multicast
techniques to improve the overall performance. Specifically, we try
to identify the variation of user's content access latency and BS's
average power consumption with respect to different arrival and
serving patterns. Furthermore, in order to reach a trade-off between
the delay and power consumption, we jointly optimised them in
different scenarios to find the optimal multicast threshold in our
proposed hybrid strategy.

In detail, we abstract the unicast/multicast process in cellular
networks into a queuing model [12], where users' requests for a
specific content enter a multicast queue of this content. When the
number of requests in the queue is less than a prescribed threshold,
the BS performs a conventional unicast, i.e. only one user is served
at a time. As new users continue to join, the BS may start a one-to-
many multicast process if the number of requests reaches the
threshold. Based on this abstraction, the average latency of the
mobile user and the average power consumption of the BS as two
performance metrics will be theoretically and/or simulatively
derived hereafter for different request arrival patterns.

The rest of this paper is organised as follows. Section 2 will
deal with the Poisson arrival of content requests in our strategy,
focusing on the derivation of average latency. On the other hand,
the simulative analysis is conducted for the bursty case in Section 3
including requests' latency and power consumption of BS. To
jointly optimise these two performance metrics, we proposed a
dynamic multicast threshold strategy in Section 4. After that, the
conclusion is given in Section 5.
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2 Average latency performance under Poisson
arrivals
First, we characterise the arrival and departure process of content
requests in the BS's unicast/multicast paradigm into a circular
Markov chain as shown in Fig. 1. 

This diagram depicts the transition process of a multicast queue
(with threshold T), which can be thought as a circular Markov
chain, as requests for the content keep on arriving and the BS keeps
on performing unicast or multicast. In detail, the multicast queue
with T possible states starts from state 0, and the state of the chain
represents the number of content requests waiting in the queue.
When the first request arrives, the Markov chain goes to state 1. In
general, when the multicast queue is in state i (0 < i < T), it has
two different ways to transfer, one of which to state i + 1 due to the
arrival of a new request (when i = T − 1, go directly to state 0), the
other to state i − 1 if the BS finishes one unicast before new
request arrives. Actually, the memoryless property of the Poisson
process makes the transition of each state independent. The
probability of each occurrence in different states depends on the
arrival rate λ of content requests and the unicast service rate μ of
BS, indicating the number of content requests that arrive or served
within 1 ms.

Furthermore, we calculate the average latency, which is defined
as the time difference between the content request's arrival and the
completion of this request served by the BS. Specifically, this
problem can be divided into two separate parts. First, when a
content request arrives at a BS, it will be categorised into the
service queue of this specific content. Therefore, requests arriving
at a different time will encounter the service queue in different
states whose probability is also the stable time proportion within
the Markov chain (assuming Pi, 0 ≤ i < T). Second, for a random
request, assuming that the service queue is in state i when it joins
the multicast queue, thus this user is listed in order i of the unicast
service. Since this request may be served by unicast or by multicast
(triggered when queue length reaches T), we assume that the
average waiting time is Di. Thus, for a random content request, its
average latency can be written as

D = ∑
i = 0

T − 2
PiDi + 1, (1)

where Pi is the limiting probability of the Markov chain in state i
and Di is the average waiting time of the user who arrives as the ith
unicast member. The reason why the index equals i + 1 here is that
the Markov chain status will be shifted from i to i + 1 after the new
request joins. Next, we need to calculate Pi and Di separately.

2.1 Limiting probabilities of different states

In order to simplify the theoretical derivation of the average
latency, we assume that the arrivals of content requests obey the
Poisson process. First, we derive the stable distribution of the
Markov chain in Fig. 1 based on the content request's arrival rate λ,
the BS unicast service rate μ, and the multicast threshold T (as

Markov chain with finite states should have limiting probabilities).
According to the rate principle, we can obtain the following
equilibrium equations:

P1(λ + μ) = P0λ + P2μ,
Pi(λ + μ) = Pi − 1λ + Pi + 1μ,
PT − 1(λ + μ) = PT − 2λ,
P0λ = P1μ + PT − 1λ .

(2)

For example, the left side of the first equation represents the
departure rate of state 1 and the right two parts are the arriving
rates from states 0 and 2 to state 1, respectively. The same equation
also applies to state i, when 0 < i < T − 1. In particular, if the
queue is in state T − 1, then the departure rate is PT − 1(λ + μ), and
the arrival rate is PT − 2λ. Similarly, for state 0, the departure rate is
P0λ and the arrival rate is from state 1 for unicast and from state
T − 1 for multicast.

Combine the above equilibrium equations with the definition
that limiting probabilities sum up to 1, we can get the following
non-trivial solution when λ ≠ μ:

Pi = c1
λ
μ

i
+ c2, (3)

where the values of c1 and c2 are calculated as follows:

c1 = 1
1 − ( λ

μ )T

1 − λ
μ

− T( λ
μ )T

, c2 = − c1
λ
μ

T
.

(4)

For λ = μ, we can get the following trivial solution:

Pi = 2(T − i + 1)
T(T + 1) . (5)

To verify the correctness of the derivation, we will next
calculate the corresponding theoretical and simulation values with
different parameter settings (λ, μ, T).

From Fig. 2 we can see that for λ < μ (λ = 5, μ = 10), the
limiting probabilities Pi of the Markov chain decrease in i. Since
the unicast service rate of the BS is obviously greater than the
arrival rate of the content request, most of which are served in time
through unicasts, thus the service queue rarely enters the multicast
mode. For λ > μ (λ = 15, μ = 10), the curves also follow the
decreasing pattern, while the rate of decrement is increasing, which
is opposite with the former case. In addition, when λ = μ, the limit
probabilities show a linearly decreasing trend. 

2.2 Average waiting time for random request

Since BS's serving procedure is assumed here to be a mixed
process of unicast and multicast, the average latency for a user in
the service queue is not only related to the queue length, which
affects the multicast time, but also related to its unicast order,
which determines the unicast time. Thus, we can use a tuple (m, n)
to fully describe any user in the service queue, where m represents
the unicast order and n means that the queue currently requires
another n requests to trigger the multicast, indicating that there are
T − n users waiting in line. Accordingly, we hope to derive the
recursion pattern and then the general formula of the user's average
wait time W(m, n) with parameters (m,n,T) according to the process
in Fig. 1.

In detail, each transition in the Markov chain may refer to
queuing length plus one due to the arrival of a new request or
queuing length minus one due to the unicast of the foremost
request. Combined with the (m, n) description, user's unicast order
remains (m unchanged) when a new request arrives, while the
number of new requests necessary for the queue to trigger
multicast become n − 1, then the tuple becomes (m, n − 1). When a
unicast is accomplished, the unicast order of the user becomes
m − 1 (m > 1, otherwise it will be served immediately), and the

Fig. 1  Circular Markov chain characterisation of the hybrid strategy
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number of requests necessary for multicast will be n + 1, thus the
tuple becomes (m − 1, n + 1). According to the above description,
we can obtain a two-dimensional state transition diagram as shown
in Fig. 3, from which the following recursion pattern for W(m, n) is
derived:

W(m, n) = 1
λ + μ + λ

λ + μW(m, n − 1) + μ
λ + μW(m − 1, n + 1) .

(6)

where m and n meet the constrains m + n ≤ T , m > 0, and n > 0.
Besides, the boundary values for W(m, n) satisfy

W(m, 0) = 1
μ , W(0, n) = 0. (7)

Based on the above recursion formula and boundary conditions,
we can derive the general formula of W(m, n)

W(m, n) = λ2 + 2λμ
μ(λ + μ)2 + 1

λ + μ ∑
i = 0

m − 1
∑
j = 0

n + i − 1
Ci + j

i μ
λ + μ

i λ
λ + μ

j
,

(8)

where Ci + j
i  is the combinatorial number with value (i + j)!/i! j!. In

order to calculate the average waiting time Di + 1 for the new request
in (1), we need to examine the relationship between Di and
W(m, n). According to the previous definition, Di represents the
average waiting time of users who entered the queue with the
unicast order i, while W(m, n) represents the average waiting time
for users in the m unicast order with queue length T − n.
Obviously, according to their respective definitions, we can get the
following equation:

Dm = W(m, T − m) . (9)

Combining with (8), we can get the expression of Dm

Dm = λ2 + 2λμ
μ(λ + μ)2 + 1

λ + μ ∑
i = 0

m − 1
∑
j = 0

T − m + i − 1
Ci + j

i μ
λ + μ

i λ
λ + μ

j
.(10)

After combining (3) of Pi with (10) of Di according to (1), we
can derive the average latency of a random user within the hybrid
unicast/multicast strategy under Poisson arrivals. In order to verify
the correctness of the above theoretical derivation, we also conduct
simulation under different parameter configurations.

First of all, we derive Di from (10) for several combinations of
arrival and service rates, and the theoretical value and
corresponding simulation curves are shown in Fig. 4. 

In Fig. 4, we can see that for different parameter configurations,
Di first increases and then decreases. Specifically, for λ ≤ μ, the
increasing rate of Di when i is small is significantly less than that
when i is greater; for λ > μ (λ = 15, μ = 10), the increasing rate of
Di of small i is comparable to the decreasing rate of large i. This
may be due to the fact that when λ ≤ μ, more content requests are
served by unicast, so the maximum value of Di should be obtained
within the range of i > T /2, thus Di shows a right shoulder shape.
For λ > μ, content requests are relatively less unicast served, so the
peak of the curve is left shifted.

3 Hybrid strategy analysis under bursty request
arrivals
The previous section explains how average latency varies with
relevant parameters under Poisson arrivals. However, in fact, users'
content request pattern in cellular networks is far from the
traditional Poisson assumption, i.e. the inter-arrival time between
requests does not obey the exponential distribution but may obey
the log-normal distribution as obtained from real data analysis [11].
Therefore, in this section, we will consider the impact of the
burstiness of content requests on the average latency and power
consumption.

Different from the Poisson arrivals of content requests, the
performance metric cannot be theoretically derived under bursty
arrivals, such as the limiting probabilities and average waiting time
of different states in service queue [13]. The reason is that the
Markov chain cannot be expressed as a stable transfer process.
Therefore, in the following performance analysis of non-Poisson
arrivals, we mainly compare them through numerical simulations.

Fig. 2  Limiting probabilities of the unicast/multicast Markov chain with
threshold T = 10 under different Poisson arrival rates

 

Fig. 3  Two-dimensional state transition diagram illustrating unicast/
multicast service queueing

 

Fig. 4  Average waiting time for each state in the Markov chain with
T = 10 under different parameter setups

 

1698 IET Commun., 2019, Vol. 13 Iss. 11, pp. 1696-1701
© The Institution of Engineering and Technology 2019



3.1 Average latency under bursty arrivals

In the exponential case, the mean and standard deviation of the
random variable are equal to 1/λ. Therefore, once λ is determined,
the mean and variance cannot be adjusted separately. However, in
practice, the same number of requests can have a variety of

appearances as the arrival pattern changes, which is consistent with
the dynamics of mobile content requests. From this point of view,
the exponential distribution (Poisson arrival process) does not have
the flexibility to describe the temporal pattern of content requests.
On the other hand, the log-normal distribution has more flexibility
in parameter selection since it can adjust the variance while
maintaining the mean value, which is useful to simulate the burst
characteristics of request arrivals. Next, we analyse the numerical
impact of burstiness on latency performance and energy efficiency
for the hybrid strategy by adjusting the ratio of the standard
deviation to the mean in log-normal distribution (ρ, which is used
to characterise the degree of temporal aggregation of content
requests, as defined by (11))

ρ = Var(t)
E(t) . (11)

In Fig. 5, we can see that the average latency of the log-normal
distribution with the same degree of aggregation (ρ = 1) is smaller
than that of the exponential distribution, and both of them show an
increase-then-decrease tendency with respect to λ. While among
different log-normal distributions, it shows that the greater ρ, the
smaller the average latency. A possible explanation is that the
increase in ρ indicates greater variance in the arrival time interval
for the same number of requests, which results in more burstiness,
thus the requests in the congested state is mostly served by
multicast, while the requests in the idle state are served through
unicast and the superposition of these two cases degrades the
overall average latency. 

3.2 Average power consumption of BS under bursty arrivals

In order to examine the variation of the average power
consumption of the BS with the degree of aggregation ρ under
bursty arrivals, the multicast probability of the service queue
should be analysed firstly.

In fact, the average power consumption of the BSs and the
multicast probability of the hybrid strategy are highly related. If
one request is unicast served, the amount of power it consumes
(assumed to be random variable W1) is determined by the channel
conditions and the user's distance from the BS. If this request is
being served by multicast, then the BS consumes the maximum
power (Wmax) required by T users in this multicast queue, and every
single user only consumes Wmax/T  of the power. Therefore,
combined with the multicast probability MT, the average power
consumption of the BS for one single request can be written as

W = (1 − MT)W1 + MT
Wmax

T . (12)

In Fig. 6, the log-normal distribution and exponential
distribution with the same ρ have no significant difference in the
multicast probability. Further in Fig. 7, as the arrival rate and
multicast probability increases, the BS can serve most users with
less power through more multicast and the average power
consumption also decreases as ρ increases. 

4 Joint optimisation of average latency and
power consumption
Generally, as T increases, no matter the requests are exponentially
or log-normally arrived, the average latency always increases while
the average power consumption decreases mostly as in Figs. 8 and
9. From this point of view, we can make a trade-off between these
two metrics by jointly examining the average latency of request
and the average power consumption of the BS, and perform the
optimisation of D + ϵW  on the selection of T. As shown in Fig. 10,
we show the joint metric curves with respect to T for the log-
normal distributed inter-arrival time with different arrival rates
given ϵ = 1. The three curves show a decreasing-then-increasing
trend except that the λ = 5 curve keeps rising. As a result, each
curve has the lowest point minimising the target metric.

Fig. 5  Average latency varies with the arriving rates under log-normal
distribution with different degrees of aggregation ρ

 

Fig. 6  Multicast probability varies with the multicast threshold T under
log-normal distribution with different average arrival rate λ

 

Fig. 7  Average power consumption varies with the arriving rates under
log-normal distribution with different degrees of aggregation ρ
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Specifically, curves continue to decrease as λ increases, and the
optimal T value also gradually increases since the average power
consumption decreases with T, thereby reducing the joint metric.
The reason why different curves show a similarly decreasing-then-
increasing trend is the same with the explanation of Fig. 11. 

In order to examine the impact of coefficient ϵ on the joint
optimisation results, we depict the variation of the optimal

threshold T with ϵ in (0,1) for different arrival rates in Fig. 12. It
can be seen that regardless of the specific arrival interval, the
optimal T value of the joint optimisation shows a stair-like upward
trend with increasing ϵ except for the λ = 5 case. For example, the
optimal value in the λ = 15 case of a log-normal distribution
increases gradually from T = 2 in ϵ = 0 to T = 6 when ϵ = 1. The
possible explanation is that as ϵ increases, a larger proportion in the
joint optimisation lies on the average power consumption, which
generally shows a decreasing-then-increasing trend with respect to
T. In order to minimise the joint metric, T needs to be around the
lowest point of the average power consumption curve. Therefore,
as the value of ϵ increases, the optimal threshold T will keep
increasing at first. However, once the value of T reaches the lowest
point, it remains constant since both the average latency and power
consumption will increase as T increases. 

Furthermore, besides the arrival rate, we analysed the effect of
the degree of aggregation ρ on the joint optimisation performance.
As shown in Fig. 11, we show the variation curve of the joint
metric with a multicast threshold for a different ρ value given
ϵ = 1, which is also a decreasing-then-increasing trend. The
possible explanation is that when T is small, the multicast effect is
significant and the average power consumption decreases rapidly
with T where the rate of decline exceeds the growth rate of average
latency. When T exceeds a certain value, the decreasing of
multicast probability makes the average power consumption no
longer significantly drops. On the other hand, the average latency

Fig. 8  Average latency varies with the multicast threshold T under log-
normal distribution with different average arrival rate λ

 

Fig. 9  Average power consumption varies with the multicast threshold T
under log-normal distribution with different average arrival rate λ

 

Fig. 10  Latency and power trade-off with multicast threshold T under
different arrival rates for log-normal distributed inter-arrival time

 

Fig. 11  Latency and power trade-offs with multicast threshold T under
different degrees of aggregation for log-normal distributed inter-arrival
time

 

Fig. 12  Optimal multicast thresholds for joint optimisation of latency and
power under different arrival rates for log-normal distributed inter-arrival
time
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will play a dominant role in the joint metric variation, thus the
segment increases with T. Through comparison, it is found that
different inter-arrival time corresponds to different optimal
multicast thresholds even with the same arrival rate and service
rate. For example, in Fig. 11, the optimal value of the exponential
case is T = 5, while the optimal T values of the other three log-
normal curves increase with ρ. In addition, we can obtain different
optimal multicast threshold T when choosing different ϵ values to
jointly optimise the average latency and power consumption.

5 Conclusion
In this study, we analyse the average latency of content request and
the average power consumption of the BS with Poisson or bursty
request arrivals in the proposed hybrid unicast/multicast strategy.
Firstly, under the traditional Poisson arrivals, we use the Markov
chain model to describe the service procedure mathematically and
calculate the corresponding limit probabilities, the average waiting
time of each state and the overall average latency by both
theoretical derivation and simulation verification. Secondly, for the
bursty arrival case, since there is no closed-form solution, we use a
numerical method to compare the average latency, the multicast
probability and the average power consumption for different inter-
arrival distributions. Furthermore, in order to comprehensively
balance the performance of latency and power consumption, we
have jointly optimised them in both scenarios to find the optimal
multicast thresholds minimising the weighted sum of these two
metrics. According to the results, we found that the adoption of the
hybrid strategy can not only solve the problem that the average
latency increases infinitely with the arrival rate under congestion
but also being more effective in the practical bursty arrival scenario
(less latency compared to Poisson arrivals with the same arrival
rate). For future direction, theoretical analysis is necessary to
unveil the impact of bursty arrival patterns on the overall
performance, and some approximation techniques may be helpful
since the closed-form derivation is not applicable.
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