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ABSTRACT Human mobility prediction is of great importance in a wide range of modern applications
in different fields such as personalized recommendation systems, the fifth-generation (5G) mobile com-
munication systems, and so on. Generally, the prediction goal varies from different application scenarios.
For the applications of 5G network including resource allocation and mobility management, it is essential
to predict the positions of mobile users in the near future from dozens of seconds to a few minutes so as
to make preparation in advance, which is actually a trajectory prediction problem. In this paper, with the
particular focus on multi-user multi-step trajectory prediction, we first design a basic deep learning-based
prediction framework, where the long short-term memory (LSTM) network is directly applied as the most
critical component to learn user-specific mobility pattern from the user’s historical trajectories and predict
his/her movement trends in the future. Motivated by the related findings after testifying and analyzing this
basic framework on a model-based dataset, we extend it to a region-oriented prediction scheme and propose
a multi-user multi-step trajectory prediction framework by further incorporating the sequence-to-sequence
(Seq2Seq) learning. The experimental results on a realistic dataset demonstrate that the proposed framework
has significant improvements on generalization ability and reduces error-accumulation effect for multi-step
prediction.

INDEX TERMS Trajectory prediction, multi-step prediction, long short-term memory, sequence-to-

sequence, machine learning.

I. INTRODUCTION

Increasing pervasive usage of smart-phones and location-
based services around the world has contributed to vast and
rapid growth in mobility data. The large size of mobility data
provides new opportunities for discovering the characteristics
of human mobility patterns and making mobility predictions.
Practically, human mobility prediction is of great impor-
tance in a wide range of modern applications, ranging from
personalized recommendation systems to intelligent trans-
portation, urban planning, and mobility management in the
fifth-generation (5G) mobile communication system [1], [2].
Generally, the prediction goal varies from different applica-
tion scenarios. For the case of 5G mobile communications,
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it is essential to predict the positions of mobile users in the
near future from dozens of seconds to a few minutes so as to
prepare for mobility management and resource allocation [2].
It is actually a trajectory prediction problem where the trajec-
tory refers to a time series of positions with a fixed sampling
time interval between each other.

Although researchers have proposed many mobility pre-
diction methods, such as frequent patterns mining [3], [4],
Markov-based models [5], [6] and other machine learning
methods [7], most of these methods are dedicated to discrete
location prediction, which is actually a multi-classification
problem, and not suitable for predicting trajectories with
fixed sampling time intervals. The reasons are as follows.
On one hand, for trajectories composed of discrete location
indexes, locations may keep same for several consecutive
time-steps when the sampling time interval is small, while
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locations may have a mutation between two adjacent time-
steps when the sampling time interval is large. Therefore,
they can hardly reflect user movement trends effectively.
On the other hand, for trajectories composed of continuous
location coordinates, it is hard to specify the discretiza-
tion granularity of coordinates. Generally, high discretiza-
tion granularity benefits to reflect user movement trends.
However, the prediction accuracy may decrease with increas-
ing number of candidate locations under high discretization
granularity.

In order to avoid the above problems, this paper takes
comprehensive investigation for the approaches to predict
trajectories composed of continuous coordinates. Since it is
actually a time series regression prediction problem, conven-
tional regression algorithms such as linear regression [8] and
support vector regression (SVR) [9] are candidate solutions.
Besides, autoregressive integrated moving average (ARIMA)
is another regression algorithm. It is dedicated to process-
ing prediction problems for long time series composed of
numerical data with quantity relationship, such as stock pre-
diction [10] and traffic prediction [11]. However, the mobil-
ity trajectories are usually short sequences composed of
two-dimensional coordinates reflecting geographic locations,
making ARIMA possibly not competent to the trajectory
prediction problem. Fortunately, within the framework of
deep learning, the Recurrent Neural Network (RNN) has
proved its superiority in various time series problems not only
in natural language processing field (i.e. machine transla-
tion [12], speech recognition [13]) but also some other fields
(i.e. traffic prediction [14], precipitation prediction [15]).
Therefore, as the improved versions of typical RNN, Long
Term Short Term Memory (LSTM) [16] and Gate Recurrent
Unit (GRU) [17] are promising algorithms for the trajectory
prediction problem.

Benefiting from the latest advance in deep learning, this
paper makes a detailed exploration of the trajectory prediction
problem from both the single-user perspective and multi-
user perspective. The main contributions of this paper can be
summarized as follows:

o« We propose an LSTM-based single-user prediction
framework and evaluate its performance on a model-
based dataset. Experimental results demonstrate the
capability of LSTM to predict user’s mobility based on
pre-learning of the user’s mobility patterns. We also
highlight some challenges (e.g., poor generalization
ability, annoying error-accumulation effect) of this user-
specific prediction scheme.

o To cope with these challenges, we further extend the
user-specific prediction scheme to a region-oriented pre-
diction scheme and put forward a multi-user multi-step
trajectory prediction framework based on the Seq2Seq
learning. Besides, we introduce a variable feacher ratio
to control information transferring in the training
process.

« Finally, we show empirically that the proposed multi-
user multi-step trajectory prediction framework can
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effectively mitigate the error-accumulation effect and
improve the generalization ability on a realistic dataset.
The rest of this paper is organized as follows. Section II
presents some related works. Section III formulates the tra-
jectory prediction problem, describes the dataset and intro-
duces the fundamentals of neural networks. In Section IV,
we give the experimental results of the basic single-user-
specific LSTM framework and highlight its application chal-
lenges by some preliminary results. Then, we introduce a
region-oriented multi-user prediction framework by further
incorporating Seq2Seq technique in Section V. We finally
conclude this paper in Section VL.

Il. RELATED WORK

There have been some theoretical mobility models proposed
to mimic the movements of mobile users and simulate their
mobility patterns using parametric methods synthetically,
such as Random Walk mobility model [18], Gauss-Markov
mobility model [19], Levy-Walk mobility model [20], and
so on. Although these models are relatively simple, they can
hardly describe the movement of different users in a complex
and volatile real environment, making it unreasonable to
apply them in practice.

Besides, a number of previous efforts have attempted to
model user mobility based on real-life movement trajectories.
Early methods related to mobility prediction mainly focus
on discovering frequent trajectories and then performing tra-
jectory matching to predict the location of a moving object
[3], [4]. However, these methods are computationally cost and
suffer from the data sparsity problem. Another widely used
mobility prediction methods fall into the scope of Markov-
based models [5], [6]. The authors in [5] propose a hidden
Markov model (HMM)-based trajectory prediction algorithm
to discover transition rules from one location to another.
Lv et al. [6] further combine the HMM model with user’s
living habits for an individual to achieve effective location
prediction. In addition, other conventional machine learning
techniques such as K-nearest neighbor (KNN) and decision
tree have also been applied for location recognition and pre-
diction in [7]. However, these methods need the locations to
be discrete, thus not applicable to trajectories composed of
continuous coordinates with small sampling time intervals.

Within the framework of deep learning, the work in [21]
applies LSTM to trajectory prediction for vehicles on high-
way. However, the proposed method is specifically designed
for the highway scenario and requires complex external fea-
tures, including position and velocity of surrounding vehi-
cles, which restricts its general applicability. Alahi el al.
propose a social LSTM network for pedestrian trajectory
prediction [22]. However, it can only predict human trajecto-
ries through static-images under a specific small range scene
such as hotels and intersections. Feng et al. [23] propose a
DeepMove model which combines the GRU network with the
attention mechanism to predict future discrete locations from
long-range and sparse trajectories. However, its prediction
accuracy can only reach 59.3% in cellular network scenarios
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TABLE 1. A list of the main symbols in the paper.

Meaning

‘ Notation

Tr = {p1p2...} A historical trajectory of a user.
pi = (pi-®,p;-y)

Pi = (Pi-, Pi-y)

2-dimensional coordinate at time-step <.

Predicted position at time-step %.

T The length of the given trajectory.
K The length of the predicted trajectory.
A The sampling time interval of the trajectories.

since it is difficult to capture the trend of user movements in
each cell from trajectories composed of discrete cells.

Trajectory prediction has a wide range of applications
in 5G networks, such as radio resource pre-allocation [2],
caching decision at the wireless edge [24], mobility man-
agement [25], and etc. For example, in order to mitigate the
negative impact of frequent handovers in dense networks, our
previous work in [25] proposes an intelligent dual connectiv-
ity mechanism for mobility management based on trajectory
prediction, which improves the quality of service of mobile
users in the handover process while guaranteeing the network
energy efficiency. Moreover, driven by the stringent safety
requirement of autonomous driving and advanced driver
assistance systems, it is critical to understand the intentions of
surrounding vehicles through trajectory prediction [21], [26].
Therefore, trajectory prediction is a problem worth well
careful studying.

IIl. MATHEMATICAL BACKGROUND

In this section, the trajectory prediction problem is formulated
first followed by the dataset description. Then, we introduce
the fundamental concept of LSTM and Seq2Seq. For better
understanding, Table 1 lists the main symbols in this paper.

A. PROBLEM FORMULATION

Definition 1 (Trajectory): We denote a trajectory as
Tr = {p1p2 ...} wherep; = (pi.x,p;iy)i=1,2,...)isatwo-
dimensional coordinate representing the position at time i.
The sampling time interval between each two adjacent points
is fixed and denoted as A.

Problem 1 (Trajectory Prediction): Given a trajectory
Tr = {p1p2...pr} of length T, our objective is to predict
the sequence of the next K step location points. The problem
can be represented as:

DPT+1---Pr+x = argmax P(prii...pr+klpip2-..pr),
PT+1---PT+K
)]

where p; = (p;j.x,piy), (i=1,...,T +K).

B. DATASET DESCRIPTION

In order to evaluate the performance of the mobility
prediction framework, we adopt two types of datasets (i.e.,
a model-based dataset and a realistic dataset) for the reasons
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FIGURE 1. A sample mobile trajectory of one user in the model-based
dataset, where the orange point and green point represent the start point
and end point respectively and the gray dots represent hotspots in the
area.

as follows. Given the strong randomness of user mobility,
it is necessary to testify the performance of a proposed
algorithm in a realistic environment. But considering that a
realistic dataset is often collected in a user-voluntary man-
ner, the dataset usually consists of user mobility trajecto-
ries lasting short duration and possessing irregular starting
and ending time. Hence, we generate a model-based dataset
from well-known models to assist in finding some intuitive
guidance.

1) MODEL-BASED DATASET

Based on the fundamental statistical properties of human
mobility [27], [28], a number of mobility models have
been proposed to generate human-like trajectories [20], [29].
Taking comprehensive consideration of both practicality and
complexity of these models, we refer to the Self-Similar
Least-Action Human Walk (SLAW) [20] and the SMOOTH
model [29] to generate our mobility data. Specifically,
we generate exclusive mobility pattern for each user and
capture their location for six hours (360min) at one-minute
granularity in a simulation area of 4000m x 4000m each day.
Fig. 1 depicts the simulation area and one sample trajectory
of a user.

2) REALISTIC DATASET

We utilize a large real-life GPS trajectory dataset from the
Geolife project [30] of Microsoft Research Asia. The dataset
was collected by 182 users, containing 18,670 trajectories
with various sampling rates. Each trajectory is represented by
a series of timestamp points with latitude and longitude coor-
dinates recorded by GPS-functioned phones. As an essential
work for a large and messy raw dataset, we take the following
preprocessing steps. Firstly, we select the location records in
Beijing and convert the geographic coordinates represented
by latitude and longitude into two-dimensional plane coordi-
nates by spatial coordinate projection. Secondly, to remove
some noise points caused by the poor signal of location
positioning systems, we adopt mean filtering by a sliding
window covering w temporally adjacent points. As suggested
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FIGURE 2. Trajectory distribution of the realistic dataset. Fig. 2(a) shows
the trajectory distribution in an area of 32km x 40km where we can
clearly see all 5t" Ring Roads in Beijing. Fig. 2(b) further shows the
trajectory distribution in a square sub-area (spanning from 5km to 10km
in x-axis and from 20km to 25km in y-axis) sampled from Fig. 2(a).

in [31], a sliding window of size 3 or 5 can meet the denoising
requirement for individual noise points. However, for consec-
utive noise points, a larger size of sliding window is needed.
Meanwhile, it should be noted that a large sliding window
also leads to a big error between the estimated position
and the true position. Therefore, after analyzing the realistic
dataset, we select w = 5 to trade off between denoising and
preserving valid information in trajectories. In this case, for
a measured location point p; = (p;.x, p;.y), the estimation
of its true value is calculated by p;.x = Ziz—z Ditm-X/5
and p;.y = an:—z Pi+m-y/5. Thirdly, since most of the
trajectories are sampled in high resolution, we compress the
trajectories with fixed sampling time interval A to eliminate
redundancy in raw data. Finally, we segment the trajectories
with a fixed length (i.e. 15 in this paper). The preprocessed
trajectories are shown in Fig. 2.

C. PRELIMINARY

1) LST™M

As illustrated in Fig. 3, the LSTM neural network is com-
posed of multiple copies of basic memory blocks and each
memory block contains a memory cell and three types of
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gates (input gate, output gate, and forget gate). The memory
cell is the key component of LSTM and responsible for
the information transfer at different time-steps. Meanwhile,
the three gates, each of which contains a sigmoid layer to
optionally pass information, are responsible for protecting
and controlling the cell state. As its name implies, the input
gate controls which part of the input will be utilized to update
the cell state. Similarly, the forget gate controls which part of
the old cell state will be thrown away, while the output gate
determines which part of the new cell state will be output.

For the memory block at time-step 7, we use f;, i;, and o,
to represent the forget, input and output gates respectively.
Assume that x;, and A, represent the input and output at the
current time-step, h,_1 is the output at the previous time-
step, o represents the sigmoid activation function, and ©
denotes the Hadamard product, the key equations of the
LSTM scheme are given below [16]:

Sfr = o(Wyrxy + Wiehy 1 + by)
iy = o(Wyix, + Wyihy—1 + b;)
0 = 0 (Wyoxt + Wiohi—1 + by)

A

C = tanh(chxt + thht—l + bc)
¢ =f(0c1+i06
hy = o; © tanh(c;) ()

where W and b are the corresponding weight matrices and
biases of the three gates and the memory cell with subscripts
f, i, and o for the forget, input, and output gates respectively,
while the subscript ¢ is used for the memory cell. x; and &,
represent the input and output at time-step #, o represents the
sigmoid activation function.

2) SEQUENCE TO SEQUENCE (Seq2Seq)

Seq2Seq is specifically designed for the learning and predic-
tion of sequences [32], [33]. It maps input sequences with
arbitrary length into variable-length output sequences, such
as sentences in text or speech. It has been widely applied
in the field of machine translation and question answering
systems and has achieved good results. As shown in Fig. 4,
a Seq2Seq framework consists of two different neural net-
works, an encoder network and a decoder network. They can
be either simple single-layer of RNNs or LSTMs, or multi-
layer stacks of them. The encoder is responsible for reading
the input sequence and converting it into a fixed-length vector
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FIGURE 4. The encoder-decoder architecture of the Seq2Seq
framework [32].

as an overall representation. For example, in the case of
LSTM, the overall representation is the last hidden state vec-
tor h7 and the memory cell state vector cr. Then, the decoder
uses the overall representation to initialize its own internal
state and subsequently estimate the correct output sequence
step by step during the iteration process. The output of each
step represents the predicted result at that moment. Generally,
the decoder part is designed as an auto-regressive model
where the output of the previous step will be used as the input
of the next step.

IV. LSTM-BASED SINGLE-USER PREDICTION
FRAMEWORK AND SIMULATION RESULTS

In this section, we investigate the user-specific scheme for tra-
jectory prediction problem. We put forward an LSTM-based
trajectory prediction framework and evaluate it on a model-
based dataset to assist in finding some intuitive guidance.

A. PREDICTION FRAMEWORK DESIGN

In the model-based dataset, different users typically have
distinct mobility patterns, making the mobility prediction
problem to be user-specific. Therefore, in order to make
mobility predictions for a user, the most critical step is to
establish a specific mobility model which fully represents
the user’s mobile pattern from his/her historical trajecto-
ries. Fig. 5 presents the proposed LSTM-based single-user
prediction framework. The prediction process involves three
major steps. First, the given trajectory is processed by a fully
connected (FC) input layer with 128 neurons so that each two-
dimensional coordinate is mapped to a 128-dimensional fea-
ture tensor. Then, the processed sequence is sent to the main
part of the mobility model, a deep recurrent neural network
formed by three stacked LSTM layers each with 128 neurons.
Each LSTM layer takes the output of the previous layer as
input and feeds its output to the next layer. Finally, an FC
output layer with 2 neurons maps the output of the last LSTM
layer at each time-step i to a two-dimensional coordinate p; |
as the predicted location of the next time-step, and thereby we
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FIGURE 5. Basic LSTM framework for user-specific single-step mobility
prediction.

get the prediction sequence p = {p2p3 ... pr+1}. The training
goal is to minimize the distance error between the predicted
location and the actual location. Thus, we choose the Mean
Square Error (MSE) as the loss function and adopt Backward
Propagation Through Time (BPTT) algorithm [34] to update
the network parameters. Ultimately, the user’s mobility pat-
tern is saved in the mobility model as network parameters and
the prediction of future trajectory can be completed based on
the trained mobility model. The complete training algorithm
is presented in Algorithm 1.

B. MOBILITY PREDICTION RESULTS

In this part, we evaluate the prediction performance of the
proposed framework on a user’s trajectories from the model-
based dataset. The training settings are shown in Table 2.
The length of each trajectory is 360min at one-minute gran-
ularity. In order to fully learn the user’s mobile pattern,
during the training process, we take the complete trajec-
tory except the last minute (i.e. {p1p2 ...p3s9}) as input and
push the time-series forward one minute as standard output
(i.e. {p2p3 .. . p3e0}). During the test process, after one-hour
observation, we first make single-step predictions given the
user’s real position at each time-step. Then, in order to evalu-
ate the prediction performance comprehensively, the case of
multi-step prediction where the real position becomes rapidly
unavailable is also considered. In this case, we recursively
reusing the recent prediction results as input for the following
prediction step. For comparison, we also use the conventional
linear regression algorithm to fit the user’s movements and
make predictions.

Fig. 6 presents the performance comparison of the basic
LSTM framework and the linear regression method. Since
each position is represented by two-dimensional coordinates,
we show the predicted position in x-direction in Fig.6(a) and
y-direction in Fig. 6(b) separately. It can be observed that
after one-hour observation (in the left region), the single-
step prediction (in the middle region) could produce very
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Algorithm 1 LSTM-Based Single-User Prediction

Input: Trajectories training dataset D = {Tr1, Tr2, .. .}
Output: Trained model M
1 for e = I to Epoch do

2 Initialize loss < O;
3 Initialize hidden state < 0O,
4 fori=1t T do
5 Map p; to feature tensors by the input layer;
6 Input the tensors to LSTM layers;
7 Update LSTM hidden state;
8 Map the output of the final LSTM layer to p;11;
9 Calculate loss < (Piy1 — pis1)%;
10 Update model parameters through BPTT;
11 end
12 end
4000 4000
—— actual position —— actual position
3500 LSTM prediction 3500 LSTM prediction
3000 \_,\/\,\_L\’ regression prediction 3000 regression prediction
~ \
£ 2500 ‘\ £ 2500
§ 2000 \ S 2000
ﬁ \ = ’_‘\/\F"" \L‘—
9 1500 \ £ 1500 \
\ \
1000 \ z 1000 ‘ =
500 ‘\ﬂﬁ_‘ﬁgﬂa/ 500 ‘L\V// e et
00 60 120 180 240‘ 300 360 00 60 120 180 240 300 360
Time (min) Time (min)
(a) Position of X (b) Position of Y
100 2000
LSTM prediction LSTM prediction
regression prediction 1750 regression prediction
80
1500
E 60 E1250
g § 1000
g a0 Z 750
500
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250
06{). = 90 12/0 150 1.80 210 240 0240 260 280 300 320 340 360
Time (min) Time (min)

(c) Error in Single-step Prediction (d) Error in Multi-step Prediction

FIGURE 6. Comparison of single-user mobility prediction performance on
a model-based dataset over 5 hours (after 1-hour observation) with two
representative feasible algorithms in machine learning field, LSTM and
linear regression. The first three hours are single-step predictions, and
the last two hours are multi-step predictions. (a) and (b) show the
predicted positions of x-coordinate and y-coordinate, respectively; (c) and
(d) represent the distance error in single-step prediction and multi-step
prediction, respectively.

accurate results with the presence of the latest ground truth
measurements. On the contrary, when position measurements
become unavailable (in the right region), the conventional lin-
ear regression algorithm fails to follow the actual evolution of
the user’s trajectory while the LSTM model yields predictions
with superior accuracy. As shown in Fig. 6(c), both methods
perform well and the error remains below 20m for most
of single-step prediction cases. However, for the multiple-
step prediction case as shown in Fig. 6(d), LSTM model
can make relatively more reliable predictions with error less
than 200m, while the prediction error of linear regression
continuously increases, resulting in a deviation of more than
1500m. Intuitively, one possible reason for this phenomenon
is that the prediction model only works well when the training
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data and test data follow the same distributions. When the
model operates based on its own predictions, any prediction
error, even small, will lead to diverging distributions of input
and real data. As a result, both methods fail to capture this
initial trend and ultimately the error grows considerably with
the prediction step. However, the scalability of LSTM in time
series makes it possible to learn user’s complete mobility pat-
tern in his/her movement period (i.e. 360min), thus perform
much better than linear regression in multi-step prediction.

C. FURTHER ANALYSIS

Though the aforementioned experimental results have shown
the superiority of basic LSTM framework for learning
user-specific mobility pattern, there still exist several issues
to address for practical applications.

First is the poor generalization ability of the proposed user-
specific mobility model. Usually, it is necessary to predict
the trajectories of multi-users simultaneously in practical
applications. Therefore, we need to train specific prediction
models for each user of interest, which is not a sensible
approach. On one hand, it incurs large computation overhead.
On the other hand, training such a model usually needs a lot
of historical data of the user, leading to cold start problem for
users with insufficient training data.

Second is the error-accumulation effect for multi-step pre-
diction as shown in Fig. 6. When the position measurements
are suspended, the prediction is rapidly unable to follow the
actual evolution of trajectory accurately, resulting in negative
impacts on practical applications.

V. MULTI-USER MULTI-STEP PREDICTION FRAMEWORK
AND SIMULATION RESULTS

Multi-user multi-step prediction promises to bring lots of
significant merits. Firstly, it allows for more practical near-
real-time resource pre-allocation. But it has to deal with
the annoying error-accumulation effect. Secondly, the gen-
eralization ability of the prediction model across users also
makes it feasible to quickly perform trajectory prediction for
any user. Thirdly, the computation overhead of training a
model for each user separately can be significantly reduced.
Therefore, we consider the real-world user movement sce-
nario and propose a multi-user multi-step trajectory predic-
tion framework. As shown in Fig. 2, it can be observed
that though the trajectory comes from different users, most
trajectories have similar short-term characteristics following
geographical constraints in a small area given a limited tra-
jectory duration (i.e. less than 10 minutes in this paper). This
inspires us to focus on the shared movement patterns in a
specific area (e.g., 3 to 5 macro base stations) rather than
individual movement patterns when making predictions for
multiple users. Therefore, we extend the user-specific predic-
tion scheme for individual users to a region-oriented multi-
user prediction scheme. Furthermore, in order to decrease the
error-accumulation effect for multi-step prediction, we pro-
pose a Seq2Seq framework which can decouple the trajectory
feature extraction process and the prediction process, thus
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FIGURE 7. A Seq2Seq framework for multi-user multi-step mobility prediction.

making the decoder more focus on global information of the
input sequence and ignore the local errors.

A. PREDICTION FRAMEWORK
We establish a Seq2Seq framework based on the LSTM
encoder-decoder architecture to capture the temporal associa-
tion within the trajectory like speed or direction. All trajecto-
ries in the specific area are utilized for the network to acquire
the shared short-term mobility patterns caused by geograph-
ical constraints. Specifically, the input sequence is the obser-
vation trajectory {pip>...pr} and the output sequence is
the prediction of target trajectory {pr+1 ...pr+k}. Since the
target trajectory also contains movement information and
potential geographical characteristics, we mix two different
methodologies as the final training strategy to make full use
of the mobile information contained in the training data:
(1) The first case is the same as the auto-regressive model
where the inexact output of the previous step is served as
the input of the next step. In this way, the decoder can be
more focus on global information of the input trajectory
and ignore the local prediction errors, thereby enhancing the
coordination of the entire network. (2) For the other case,
the target sequence shifted one step forward is served as the
input of the decoder to learn more movement information and
potential geographical characteristics. In order to maximize
the prediction performance, we introduce a feacher ratio to
balance the two cases.

The multi-user multi-step prediction framework consists of
the following two neural networks as shown in Fig. 7.

1) ENCODER NEURAL NETWORK

It consists of one FC input layer with 128 neurons followed by
two LSTM layers stacked each with 128 neurons. The input
sequence is the given trajectory {p1ps . .. pr}. The input layer
is responsible for transforming the 2-dimensional location p;
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into a 128-dimensional feature tensor to capture the complex
structure of the trajectory data. The output is then fed into the
LSTM stack with two layers. After T recursive updates in the
two LSTM layers, their latest cell states are determined and
passed to the decoder.

2) DECODER NEURAL NETWORK
It consists of one FC input layer with 128 neurons, two
stacked LSTM layers each with 128 neurons, and one FC
output layer with 2 neurons. The LSTM layers are initial-
ized by the encoder state vectors (hr, cr). The first input
of the decoder network is pr, the last value of the input
sequence for the encoder network. For the training process,
we use the feacher ratio to control the input of the next steps.
Specifically, we generate a random number between O and 1.
If the random number is larger than teacher ratio, the input
of the next K — 1 steps will be {pr+1pr+2...Pr+K—-1}5
the predicted value of the previous steps as shown by the
red arrow in Fig. 7. Otherwise, the target output sequence
shifted one step forward {pr4+1p7r+2 . ..pr+K—1} Will be the
input sequence for the next K — 1 steps as shown by the blue
arrow in Fig. 7. For the test process, the predicted value of the
previous step will be used as the input of the next step.
Same as the previous section, we choose MSE as the loss
function. The complete training algorithm is presented in
Algorithm 2.

B. MOBILITY PREDICTION RESULTS

In this part, we evaluate the performance of the proposed
multi-user multi-step prediction framework on a realistic
dataset. For the sake of simplicity, the trajectories are seg-
mented into time series of 15 points with fixed sampling time
interval A where the first 10 points {p1p>...p10} are used
as the input sequence and the last 5 points are used as the
target sequence. We divide the trajectory data by the ratio
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Algorithm 2 Seq2Seq-Based Multi-User Prediction

Input: Trajectories training dataset D = {Tr1, Tr2, .. .}
Output: Trained model M
1 for e = I to Epoch do

2 Initialize loss < O;
3 Initialize encoder state < 0;
4 fori=1tTdo
5 Map p; to feature tensors by Encoder-FC;
6 Input the tensors to Encoder-LSTMs;
7 Update encoder state;
8 end
9 Initialize decoder state < encoder state,
10 Generate a random number #;
1 fori=11t K do
12 if n > teacher ratio and i > 1 then
13 Map pr+i—1 to feature tensors by
Decoder-input layer;
14 else
15 Map pr+i—1 to feature tensors by
Decoder-input layer;
16 end
17 Input the tensors to Decoder-LSTMs;
18 Update decoder state;
19 Map the output of Decoder-LSTMs to pr4; by
Decoder-output layer;
20 end
21 Calculate loss < —Z{;‘(”T’*{" —P ”")2;
22 Update model parameters through BPTT;

23 end

of 80%, 10% and 10% to generate the training set, validation
set, and test set. The training settings are shown in Table 2.

To prove the superiority of the proposed LSTM-based
Seq2Seq prediction framework, we compare it with several
baseline methods that are widely used in time series predic-
tion including:

o Linear Regression [8]. Linear Regression is a
conventional machine learning algorithm to dis-
cover linear relationships among data for regression
problems.

o Support Vector Regression (SVR) [9]. SVR is another
conventional machine learning algorithm which can
cope with non-linear problem based on kernel method.

e LSTM [16]. LSTM is one of the recurrent neural net-
works with gate control mechanism and has shown its
superiority in encoding long-term dependencies.

« GRU [17]. GRU is a simplified version of LSTM with
only reset gate and update gate, which has less compu-
tational complexity.

o Seq2Seq-GRU [35]. Given the motivation to replace
LSTM by GRU, we also implement a GRU-based
Seq2Seq framework to fully investigate the performance
of Seq2Seq framework.

o Seq2Seq-Attention. Attention mechanism [36] is a
state-of-the-art method for time series analysis which
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TABLE 2. The configuration of training parameters of the single-user
framework and the LSTM-based Seq2Seq framework.

Training Settings  Single-User framework Seq2Seq-LSTM

learning rate (Ir) le-2 Se-3
the decay of Ir 0.1 0.1
batch size 64 64
L2 penalty le-5 le-5
gradient clip le-4 le-4
0.03 6000
5000
0.02
] w
2 2 4000
0.01
3000
0.00 4

T T T J 00 - T T T T 1
0 2000 4000 6000 8000 0.0 02 04 06 08 1.0
Iters Teacher ratio

FIGURE 8. The training process at sampling time interval A = 30s.

can focus on local information of long sequences in
the encoder network so as to make more accurate
predictions in the decoder. Inspired by the successful
applications of attention mechanism in natural language
processing, we incorporate it into the LSTM-based
Seq2Seq framework to investigate its effect on our tra-
jectory prediction problem.

We use two metrics for performance evaluation. The first
one is Mean Square Error (MSE) which is a frequently used
measure of differences between predicted values and target
values. For a K -step prediction based on 7 -length sequence,

SR (Brii — prai)*
X .

The second one is the geographic distance error
between the predicted positions and the real positions.
Specifically, the error of step-i can be calculated as
V@r4ix — pr4ix)? + Briy — pr+i-y)>-

We first evaluate the prediction performance at sampling
time interval A = 30s. Fig. 8 shows the loss curve in
the training process and the effect of feacher ratio on the
prediction performance. It can be observed that the loss starts
to converge at around 2000 iterations and the MSE achieves
the smallest value when feacher ratio = 0.3, indicating the
best trade off between the tolerance of prediction error and
the effective information of target sequences for the decoder.
Therefore, we set teacher ratio = 0.3 for subsequent compar-
ative experiments.

The performance comparison among different algorithms
in terms of MSE is presented in Fig. 9. It can be seen that
the LSTM-based Seq2Seq achieves the best overall perfor-
mance and all Seq2Seq frameworks exhibit apparently better
performance than conventional regression methods (i.e. Lin-
ear Regression and SVR) and the basic RNNs (i.e. LSTM
and GRU). Specifically, SVR achieves slightly better per-
formance than Linear Regression since it can deal with the

MSE = 3)
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FIGURE 9. Comparisons of prediction performance for different methods
in terms of MSE.

TABLE 3. Distance error of each prediction step for different methods at
A = 30s. (unit: m).

Algorithms Step-1  Step-2  Step-3  Step-4  Step-5
Linear Regression 10.74 30.70 58.77 93.16 133.97
SVR 10.66 29.76 54.77 86.07  123.69
LSTM 11.91 32.07 57.96 88.75 124.68
GRU 12.33 33.17 59.53 90.45 126.54
Seq2Seq-LSTM 12.43 27.30 4481 67.13 96.34
Seq2Seq-GRU 13.31 26.25 44.38 67.86 99.15

Seq2Seq-Attention 12.43 27.72 46.10 69.67 99.51

nonlinearities of the trajectory data. From basic RNN frame-
works and Seq2Seq frameworks, it can be seen that LSTM
and GRU achieve comparable performance while the LSTM
is slightly superior. Moreover, the attention mechanism
doesn’t show obvious superiority over the normal Seq2Seq
framework. One possible reason is that unlike machine trans-
lation problem where there exists mismatch in the order of
words between the input sentence and the output sentence,
the trajectory is a time series of positions with an almost left-
to-right sequential relationship, especially for the short-term
trajectories with fine granularity in our problem. In this case,
the global information such as the velocity, direction, and etc.,
is more important for trajectory prediction.

The geographic distance error of each step for different
methods is listed in Table 3, which exhibits highly con-
sistency with Fig. 9. Furthermore, in Fig. 10, we plot the
cumulative distribution function (CDF) of the distance error
from Step-1 to Step-5 and their average for SVR, LSTM,
and Seq2Seq-LSTM, which are the representative of their
own kinds, respectively. It can be seen that the Seq2Seq
framework yields superior overall performance except for a
slight weakness at the first step compared with the other two
kinds of methods.

For the sake of a comprehensive evaluation of different
types of algorithms, we also compare the prediction perfor-
mance under various values of sampling time interval A,
including 5s, 10s, 15s, 20s, 25s, and 30s. The results in Fig. 11
shows the increasing distance error for all methods as the
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FIGURE 10. Comparisons of the cumulative distribution function of
average multi-step distance error as well as each step distance error for
the three kinds of methods.

sampling time interval increases. This is consistent with our
intuition since longer sampling time interval inevitably leads
to larger distance between every two points, and the predic-
tion error increases accordingly. Fig. 11 also demonstrates
that the Seq2Seq framework yields the best performance
throughout all sampling time intervals. Fig. 11(b)-Fig. 11(f)
further present the geographic distance error from the first
prediction step to the last prediction step. The similar conclu-
sion with Fig. 10 can be drawn that except a slightly higher
distance error (i.e. 0-2m) at the first time-step, the Seq2Seq
framework outperforms the other two kinds of methods at
subsequent prediction steps, especially for Step-3 to Step-5,
by around 15m—-20m. This can be explained that the Seq2Seq
framework decouples trajectory feature extraction and pre-
diction process, making the decoder more focus on global
information of the input sequence and ignore the local errors,
thereby enhancing the coherence and integrity of the entire
network.

Finally, in order to highlight the advantage of the multi-
user prediction scheme over the user-specific prediction
scheme, we take an extensive experiment to compare their
performance on a single user. Considering the fact that it is
more likely to train a better model with more training data,
we train the user-specific model for the user with the largest
number of trajectories. Then we evaluate the prediction
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FIGURE 11. Comparisons of the average multi-step prediction
performance as well as each step prediction performance for different
methods versus sampling time interval A.

performance of different models on this user’s trajectory
dataset. As shown in Fig. 12, the multi-user prediction models
have a significant performance improvement compared with
all single-user prediction models and the Seq2Seq multi-user
framework achieves the best performance. This illustrates
that 1) it is difficult to effectively learn the user’s movement
pattern through incomplete trajectories lasting short dura-
tion collected in the real world; 2) the short-term trajectory
prediction depends more on the sequential and geographic
information contained in the trajectory rather than the user
it belongs to; 3) a large number of data can better help exploit
and reveal the relationship between the regional geographic
characteristics and trajectories. Moreover, it can be noted that,
among the single-user models, the regression model outper-
forms the neural networks since the latter suffers a lot from
underfitting caused by the lack of training data. However, this
situation is absent in the multi-user models because of enough
training data.

C. COMPLEXITY ANALYSIS AND DISCUSSION

In order to investigate the computational efficiency of differ-
ent methods, we present their training time and test time in
the case of A = 30s in Table 4. The training process of con-
ventional machine learning algorithms like Linear Regression
and SVR are performed on Intel Core i5 CPU, while the
deep learning methods are all performed on GPU RTX2080.
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FIGURE 12. Comparison of the average multi-step distance error for the
region-oriented multi-user prediction scheme and user-specific
prediction scheme versus sampling time interval A.

TABLE 4. Training time and test time for different methods at A = 30s.

Algorithms Train (s) Test (s)
Linear Regression 0.01795 0.00199
SVR 84.77774  1.13208
LSTM 127.86751  0.24473
GRU 118.15797  0.20003
Seq2Seq-LSTM 170.49522  0.27762
Seq2Seq-GRU 16431083  0.21221
Seq2Seq-Attention  207.08877  0.28294

The test process of all methods is performed on the Intel Core
i5 CPU. Obviously, the Linear Regression shows the high-
est training efficiency compared with the neural networks,
especially those incorporated with the Seq2Seq technique.
It is reasonable since a complex model with large number of
parameters usually needs more training time to find the opti-
mal solution. Although Seq2Seq framework has relatively
larger training time, its test time is much shorter at around
0.27 seconds, which is acceptable for online prediction.

Therefore, we argue that the proposed Seq2Seq multi-
user prediction framework proves its outstanding general-
ization ability for multi-user trajectory prediction as well
as the superiority to mitigate the error-accumulation effect
for multi-step prediction. However, its training efficiency is
relatively lower than other methods, which can be elimi-
nated by offline training. Among the Seq2Seq frameworks,
the Seq2Seq-LSTM exhibit a slightly better performance but
alittle bit lower efficiency than the Seq2Seq-GRU. Therefore,
the choice between Seq2Seq-LSTM or Seq2Seq-GRU can be
determined based on the practical situation.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we investigate the significance of trajectory pre-
diction and explore feasible approaches from both the single-
user perspective and multi-user perspective. For single-user
trajectory prediction, we propose a basic LSTM framework
and experimental results on a model-based mobility dataset
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illustrate the superiority of LSTM to make predictions based
on pre-learning of user-specific mobility patterns. For multi-
user multi-step prediction, we further propose a region-
oriented prediction scheme and put forward an LSTM-based
Seq2Seq framework. Experiments on a realistic dataset show
that the proposed framework outperforms the other compet-
ing approaches, which demonstrate its outstanding general-
ization ability for multi-user prediction as well as robustness
and stability for multi-step prediction.

Our current work does not consider the semantic context
in the trajectory like the point of interests [37] because of
the limitation of data. For future work, we plan to combine
our algorithm with some semantic information to improve the
prediction performance.
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