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Abstract— To understand the spatial deployment of base
stations (BSs) is the first step to analyze the performance
of cellular networks and further design efficient networking
protocols. Poisson point process (PPP), which has been widely
adopted to characterize the deployment of BSs and established
the reputation to give tractable results in the stochastic geometry
analyses, usually assumes a static BS deployment density in
homogeneous PPP (HPPP) models or delicately designed location-
dependent density functions in in-homogeneous PPP models.
However, the simultaneous existence of attractiveness and repul-
siveness among BSs practically deployed in a large-scale area
defies such an assumption, and the α-stable distribution, one
kind of heavy-tailed distributions, has recently demonstrated
superior accuracy to statistically model the varying BS density in
different areas. In this paper, we start with these new findings and
investigate the intrinsic feature (i.e., the spatial self-similarity)
embedded in the BSs. Afterwards, we refer to a generalized
PPP setup with α-stable distributed density and theoretically
derive the related coverage probability. In particular, we give
an upper bound of the derived coverage probability for high
signal-to-interference-plus-noise ratio thresholds and show the
monotonically decreasing property of this bound with respect to
the variance of BS density. Besides, we prove that our model
could reduce to the single-tier HPPP for some special cases
and demonstrate the superior accuracy of the α-stable model
to approach the real environment.

Index Terms— Stochastic geometry, coverage probability,
cellular networks, homogeneous Poisson point process (HPPP),
α-stable distributions, self-similarity.

I. INTRODUCTION

AS A key enabler in the information and communications
technology (ICT) industry, cellular networks play a deci-

sive role in delivering communication messages and enter-
tainment content [1]. In order to meet the increasing traffic
demand, cellular network operators gradually deploy differ-
ent types of necessary infrastructure including lots of base
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stations (BSs). To understand the spatial deployment of
BSs is the first step to facilitate the performance analyses
of cellular networks and design efficient networking proto-
cols. In the earliest stages, a two-dimensional hexagonal grid
model was used, implying that BSs were deployed regu-
larly, which deviates from the real scenarios. In the recent
stages, Poisson point process (PPP) [2]–[5] was assumed,
which could roughly model the randomness in the realistic
deployment of BSs in cellular networks, meanwhile leading
to tractable results. However, given the total randomness
assumption in PPP, its practical accuracy has been recently
questioned [6], [7]. Consequently, in order to reduce the
modeling gap between the PPP model (especially the homoge-
neous PPP (HPPP) model) and the realistic spatial deployment
of BSs, in-homogeneous PPP (IPPP) models, where the spatial
density is location-dependent, have been proposed to measure
the BS deployment in a large-scale area. Also, some efforts
like inhomogeneous double thinning [8] have been put to
tackle the non-stationary issue in IPPP.

On the other hand, in order to meet the larger traffic
demand in certain areas (e.g., central business districts) in
real life, BSs tend to be more densely deployed in these
regions. Interestingly, according to an observation named
“preferential attachment,” Barabási and Albert [9] argued
that many large networks should grow to be heavy-tailed.
As its names implies, a heavy-tailed distribution has non-
exponential bounded tail. Mathematically, for a heavy-tailed
random variable X , the probability Pr(X > x) satisfies
lim

x→∞ eκxPr(X > x) = ∞, for all κ > 0. Many well-known
statistical distributions including power-law distribution (also
named as generalized Pareto distribution), Weibull distribution,
log-normal distribution, and α-stable distribution [10]–[12]
belong to the heavy-tailed family. Therefore, heavy-tailed
distributions appear to be more suitable to capture the societal
feature for the practical BSs.

Based on the practical BS deployment information, we have
witnessed that the α-stable distributions demonstrate superior
accuracy to statistically model the large-scale BS deploy-
ments with the simultaneous existence of attractiveness and
repulsiveness [6], [7], [13]–[15] and also outperform other
aforementioned distributions to characterize the spatial BS
deployment density [12], [16]–[18]. But the density alone can-
not reach some intuitive conclusions. Fortunately, the α-stable
distributions, which have been widely adopted to characterize
the distribution of aggregated traffic at the BS level in cellular
networks and at the switch level in wired broadband networks,
often imply the self-similarity of traffic [11], [19]. As a popular
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property in complex networks [20], the self-similarity of traffic
in the temporal domain means that the distribution of traffic
remains invariant under different temporal scales. Similar
to the case of traffic, as the practically deployed BSs are
α-stable distributed, it is natural to ask whether the spatial self-
similarity holds in cellular networks. If yes, compared to other
point process models, a generalized PPP setup with α-stable
distributed density (or the α-stable model for short) sounds to
become applicable with significant merit, since the α-stable
model facilitates to explain the density differences in practical
BS deployments which conventional HPPP is not qualified
for, but still avoids the delicate design of location-dependent
density function for IPPP models.

A. Related Works

As discussed later in Section II, the PPP model has pro-
vided many useful performance trends. However, the concern
about total independence between nodes (e.g., BSs) has never
stopped. Hence, in order to reduce the modeling gap between
the single-tier HPPP model and the practical BS deploy-
ment, some researchers have adopted two-tier or multiple tier
HPPP models [21]–[28]. Though these models may lead to
some tractable results, but it lacks the reasonable explanation
to divide the gradually deployed and increasingly denser
heterogeneous cells [29] into different tiers. On the contrary,
the α-stable model contributes to understanding the spatial
self-similarity and bridging the gap between cellular networks
and other social behavior-based complex networks.

On the other hand, point processes with either attrac-
tive or repulsive spatial correlations have been explored as
well.

• For attractive point processes, Lee et al. [7] have shown
that Poisson cluster process is more suitable to model the
spatial distribution of BSs in urban areas. The general
clustering nature of deployed BSs in highly populated
urban areas clearly reflects the aggregation property of
ever-growing traffic demands in cellular networks [16].
Chun et al. [13] have further verified the aggregated
interference when the transmitting nodes are modeled by
Poisson cluster process and compared the corresponding
results with that in the HPPP model.

• On the contrary, Guo and Haenggi [6] and Miyoshi
and Shirai [14] have argued that BSs, in particular
macro BSs, in cellular networks tend to be deployed
systematically, such that any two BSs are not too close.
Thus, a spatial model based on a point process with the
repulsive nature seems to be more desirable [6], [14].
Furthermore, the Matérn hard core point process (MHCP)
model [15] possesses limited tractability and leaves many
open challenges to be addressed. The Ginibre point
process (GPP) model, one typical example of deter-
minantal point processes on the complex plane, has
been widely adopted and shows a promising trade-off
between accuracy and tractability [30]–[32]. In particular,
Deng et al. [30] have shown that the GPP leads to the
same trend curve of coverage probability1 as the HPPP.

1The coverage probability indicates the probability that the signal-to-
interference-plus-noise ratio (SINR) for a UE achieves a target threshold.

Hence, we can come to the following conclusion that the
spatial BS density of large-scale cellular networks simultane-
ously possesses two conflicting features, that is, the density is
very large in some clustering regions while being significantly
smaller in others. The conclusion is also consistent with our
common sense. Furthermore, the heavy-tailed distributions,
which generate small values with the high probability but
still allow comparatively larger values, fit well to model the
spatial BS density. Our previous works [12], [16]–[18] have
shown that the α-stable distribution, one kind of heavy-tailed
distributions, could be used to more accurately model the
spatial BS density in China and Italy, especially in urban
areas. α-stable distributions also owe their importance in both
theory and practice to the generalization of the central limit
theorem [10] and the accompanying self-similarity [33], [34]
of the stable family. Hence, as the spatial BS density could be
better modeled by the α-stable distributions, it is essential to
theoretically examine the spatial self-similarity and understand
its impact on coverage probability. In other words, we will take
the very first step to investigate the spatial self-similarity in the
BS deployment and perform stochastic geometry analyses of
cellular networks when the BS density is α-stable distributed.

B. Contributions

Different from [12] and [16]–[18], where we mainly validate
the universal superior accuracy of α-stable distribution to
model the practical base station (BS) deployment density
in cellular networks, this paper aims at leveraging the α-
stable model to theoretically study the coverage probability
of cellular networks in a large-scale area. Belonging to one
of the precursor works, we take advantage of a large amount
of realistic BS deployment records and provide the following
key insights:

• Firstly, on top of the α-stable model validated in [12]
and [16]–[18], this paper mathematically studies the
coverage probability in a large-scale area and gives an
upper bound for high SINR thresholds. We talk about the
monotonicity of this bound with respect to the variance
of BS density. This paper also theoretically proves that
for some special cases, our result could be reduced to
that for the HPPP model in [5].

• Secondly, during the mathematical derivation, this paper
leverages the self-similarity in the spatial deployment of
BSs, thus laying the foundation to apply the advance in
complex network theory to examine cellular networks.
Particularly, the self-similarity is verified based on the
practical BS deployment records from both cellular net-
work operators and the open database.

• Thirdly, this paper compares the coverage probability
between the models and the real BS deployment in both
Hangzhou (China) and an anonymous city (City A, Italy)
and shows the superior accuracy of the α-stable model.
Besides, this paper studies the coverage probability per-
formance under extensive simulation settings and vali-
dates that the simulation results are consistent with our
theoretical derivations.

The remainder of the paper is organized as follows.
Section II provides a brief application survey of stochastic
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TABLE I

A LIST OF THE MAIN SYMBOLS AND FUNCTIONS IN THE PAPER

geometry. In Section III, we present some necessary math-
ematical background, introduce the realistic dataset of spa-
tial BS deployment and validate the spatial self-similarity.
In Section IV, we provide the analyses of coverage probability.
Section V evaluates the computable representation obtained
by the theoretical analysis and compares it with both the
real environment and the single-tier HPPP model. Finally,
we conclude this paper in Section VI.

II. BRIEF APPLICATION SURVEY

OF STOCHASTIC GEOMETRY

Stochastic geometry tools have successfully established the
reputation to model and analyze wireless networks, as they
are able to capture the topological randomness in the network
geometry and lead to tractable analytical results [5], [13],
[15], [21], [31], [32], [35]–[43]. There is no doubt that the
PPP belongs to the most popular point process used in the
literature because of its tractability and has led to a lot of
meaningful research results for cellular networks with different
kinds of cutting-edge techniques. The baseline operations in
single-tier and/or multiple-tier downlink cases are examined
in [5], [6], [22], [27], [28], and [44]–[49] (and references
therein) while their counterparts in uplink cases are consid-
ered in references like [23] and [50]–[54]. User association
and load balancing are examined in [55]–[58]. Cognitive,
cooperative and intelligent cellular networks are taken into
account in [21], [24], and [59]–[62]. Energy efficiency, energy
harvesting, and BS sleeping for green cellular networks are
investigated in [25], [26], and [63]–[67]. Physical layer secu-
rity is examined in [68]–[72]. Besides, multiple-input multiple-
output (MIMO) antenna, in-band full-duplex (FD), and mil-
limeter wave systems are studied in [28] and [73]–[87]. Also,
the PPP-related works have been extended to mobile ad hoc
networks [88]. Along with the continuous progress in tech-
niques for physical-layer and network management in wireless
networks, the PPP model offers a useful theoretical platform

for the initial performance calibration, so as to save economic
expenditure and avoid time-consuming large-scale setup for
realistic tests. For example, FD communication, which benefits
from the advance in signal processing and self-interference
cancellation techniques, is optimistically promoted to double
the spectral efficiency for wireless networks [89]. However,
given the more complicated interference in FD networks, it is
essential to conduct a careful re-examination. Consistent with
the system-level simulation results in [89] and [90] has taken
advantage of the PPP model and demonstrated the potential
negative effect that FD communications might impose on the
uplink transmission.

III. MATHEMATICAL BACKGROUND

AND STATISTICAL MODELING

A. Mathematical Background

Beforehand, Table I summarizes the most used notations in
this paper.

1) α-Stable Distributions: An α-stable distributed random
variable does not always possess a closed-form probability
density function (PDF). Instead, x is often defined by its
characteristic function. Specifically, x is said to obey the
α-stable distribution f(x) if there are parameters 0 < α ≤ 2,
σ ≥ 0, −1 ≤ β ≤ 1, and μ ∈ R such that it has a characteristic
function with the form:

Φ(ω)= E (exp(jωx))

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp
{
−σα|ω|α

(
1−jβsgn(ω) tan

(πα

2

))
+jμω

}
,

α �= 1;

exp
{

−σ|ω|
(

1 + j
2β

π
sgn(ω) ln |ω|

)

+ jμω

}

,

α = 1.

(1)

The function E(·) represents the expectation operation with
respect to a random variable. α is called the characteristic
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Fig. 1. An illustration of the self-similarity for the spatial BS deployment.

exponent and indicates the index of stability, while β is identi-
fied as the skewness parameter. α and β together determine the
shape of the distribution. Moreover, σ and μ are called scale
and location shift parameters, respectively. Another direct
definition for a stable distribution is that a linear combination
of two independent identically distributed random variables
has the same distribution [10]. In particular, if α = 2, the α-
stable distribution reduce to the Gaussian distribution. Since
the characteristic function can be used to derive moments of a
random variable, leveraging the α-stable distribution to model
the BS density brings many statistical merits explicitly.

Our previous works [12], [17] have validated that β = 1
holds for the fitting results of actual spatial BS density in
both Hangzhou, China and City A, Italy. For simplicity of
representation, we use the operator b ∼ c to denote that b and
c have the same distribution and further have λ ∼ S(α, σ, μ)
to indicate that the spatial BS density λ follows the α-stable
distributions with β = 1. Moreover, if a random variable
x ∼ S(α, σ, 0), x has a corresponding Laplace transform
[10, Proposition 1.2.12] as

Ψ(s) = E (exp(−sx)) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
{

− σα

cos πα
2

sα

}

, α �= 1;

exp
{

σ
2
π

s ln s

}

, α = 1.

(2)

2) The Self-Similarity: The self-similarity has been mostly
applied to model time series [33]. Given zero-mean, stationary
time series Y = (Yt, t = 1, 2, 3, · · · ), Y is called as self-
similar process if its m-aggregated series Y (m) = (Y (m)

t , t =

1, 2, 3, · · · ) with each element Y
(m)
t =

tm∑

k=(t−1)m+1

Yk satisfy

Y
(m)
t ∼ mHYt for all m > 0, where H ∈ (0, 1) is

the Hurst parameter indicating the decay rate of statisti-
cal dependence of two points with increasing time interval.
In other words, the self-similarity implies that the time series
is exactly or approximately similar to a part of itself.

The concept of self-similarity is also applicable to spatial
scenarios. For example, ElSawy et al. [38] have shown the
aggregated interference from distributed nodes to a receiver
obey α-stable distributions, while Ge et al. [91] have verified

that the statistical characteristics of the wireless cellular cov-
erage boundary possess the self-similarity or fractal property.

However, no exact self-similar phenomenon exists in the
real world. Most of the self-similar phenomena observed in
the real world only approximately have the statistical char-
acteristic. Moreover, the self-similarity of random processes
is usually evaluated by the Hurst parameter, which can be
estimated using two typical methods (i.e., the rescaled adjusted
range statistic (R/S) method and the variance-time (V-T)
method [91]). Usually, the hurst parameter H and a larger
H ∈ (0.5, 1) corresponds to stronger self-similarity.

B. Verification of Self-Similarity in BSs

As validated in [12] and [17], when we divide the
region into several parts and calculate the corresponding
PDF of the spatial BS density in each part, we observe
that the PDF follows the α-stable distributions. For example,
Fig. 1(a) depicts that a region is divided into four parts. The
spatial BS density in each part λ1, λ2, λ3 and λ4 are mutually
dependent and obey the α-stable distributions with the same
values α, σ and μ. The correlation between BS density in
different parts makes it challenging to directly derive the
coverage probability. Instead, it is essential to take the sta-
tistical modeling of the correlation into consideration. In that
regards, self-similarity emerges as a promising technique to
characterize the correlation of the spatial density, as it has
manifested its importance and effectiveness by modeling the
correlation in different scales.

In order to show the self-similarity in spatial BS deploy-
ment, we take advantage of the collected BS deploy-
ment records in Hangzhou, China and City A, Italy.2

Fig. 2(a) and 2(d) illustrate the corresponding deployment situ-
ation in both cities. Similar to the common validation process
in temporal dimension [33], we verify the accuracy of self-
similarity in spatial BS deployment as follows. As depicted
in Fig. 1(b), we randomly select a point as the starting “origin
point” and thus get some concentric circles with increasingly
larger radii (e.g., from R to 2R, 3R, · · · ). Then, we could

2Interested readers could visit http://www.rongpeng.info/files/sup_file_
stable.pdf to find more results for the BS deployment in other four cities (i.e.,
Paris (France), Seoul (South Korea), Munich (Germany), Warsaw (Poland)),
based on the open database from OpenCellID (https://opencellid.org/).
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Fig. 2. The self-similarity modeling results for the spatial BS deployment in Hangzhou (China) and City A (Italy).

get a series, each value corresponding to the number of BSs
in one circle. Afterwards, we could apply the aforementioned
R/S method and V-T method in Section III-A2. Fig. 2(b)(c)
and Fig. 2(e)(f) provide the corresponding log-log plots for
both cities. From these figures, it can be observed that all
the estimated Hurst parameters are very close to 1. Therefore,
we could boldly argue that the spatially deployed BSs possess
the spatial self-similarity. Then, according to the definition of
self-similarity, the number of BSs N(aR) within a circle of
radius aR should satisfy that N(aR) ∼ aHN(R), ∀R, a >
0, 0 ≤ H < 1, where a indicates the self-similarity zooming
parameter and H denotes the Hurst parameter.

IV. THE COVERAGE PROBABILITY ANALYSES

A. The System Model and Its Stationarity

In this part, we derive the coverage probability in a downlink
cellular network within a region of interest R. Specifically,
the coverage probability is defined as the probability that the
SINR for a UE achieves a target threshold. Mathematically,
the coverage probability is formulated as

P(SINR > T ) = P

[
hr−δ

N0 + Ir
> T

]

, (3)

where δ denotes the pathloss exponent factor of the standard
propagation channel. N0 is the additive white Gaussian noise
(AWGN) factor and T is the target threshold. The fading is
assumed to follow the Rayleigh fading, that is, h ∼ exp(ζ).

For BSs deployed in the region R, the α-stable model
assumes that BSs are characterized by a generalized PPP
where for any infinitesimally small Borel set B ∈ R, the BS
deployment density within B satisfies the α-stable distribution
(i.e., λ ∼ S(α, σ, μ)) and the corresponding number of BSs
is P(N = n) = e−λ�B� (λ�B�)n

n where 	B	 is the size of the

set B. In other words, the α-stable model is a doubly stochastic
point process. According to [92], a doubly stochastic point
process is stationary if and only if the intensity is stationary.
As the BS deployment density is assumed to follow the same
distribution for any infinitesimally small Borel set B ∈ R and
thus the distribution of λ is translation-invariant, the α-stable
model is stationary.

On the other hand, we also assume that users are spatially
distributed according to a stationary point process independent
of the BS deployment. Therefore, without loss of generality,
we could further assume the UE is located at the “origin
point”. When the distance from a UE to its serving BS b0

is r, Ir denotes the cumulative interference from all other
BSs i (except BS b0) to the UE.

B. Impact of α-Stable Distributions and Self-Similarity

Before delving into the coverage probability, we first lever-
age the α-stable distributions and the self-similarity to fur-
ther shape the BS deployment. As depicted in Fig. 1(c),
we assume that there exists a specific R (i.e., R > r) to
divide the whole region of interest into two parts. Besides,
if the spatial BS density λ for the region within the radius R
satisfies λ ∼ S(α, σ, μ), the Laplace transform of λ could be
achieved by directly applying (2) and is given in the following
lemma.

Lemma 1: The spatial BS density λ ∼ S(α, σ, μ) has a
Laplace transform

Ψ(s) = E (exp(−sλ))

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
{

− σα

cos πα
2

sα − μs

}

, α �= 1;

exp
{

2σ

π
s ln s − μs

}

, α = 1.
(4)
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Moreover, we can obtain the following lemma to charac-
terize the spatial BS density λS for the region outside the
radius R if λ ∼ S(α, σ, μ).

Lemma 2: The spatial BS density λS will follow α-stable
distributions (i.e., λS ∼ λaH−2) and the corresponding
Laplace transform could be formulated as

ΨS(s)
= E (exp(−sλS))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
{

−σαaα(H−2)

cos πα
2

sα − saH−2μ

}

, α �= 1;

exp
{

2σaH−2

π
s [ln s + (H − 2) lna] − saH−2μ

}

,

α = 1.

(5)

Proof: Following the definition of self-similarity, the num-
ber of BSs in the interfering region is coupled with the self-
similarity zooming parameter a and could be formulated as
N(aR) = λSπa2 R2 ∼ aHN(R) = λπaHR2. Therefore,

λS ∼ λaH−2. (6)

Then, the Laplace transform of λS could be derived as

ΨS(s) = E
(
exp(−saH−2(x + μ))

)

= Ψ(saH−2) · exp
{−saH−2μ

}
. (7)

By merging (2) and (7), we obtain the result.

C. The PDF of the Distance From Nearest BS to the User
Equipment

In this paper, we adopt the minimum distance as the user
association metric. Therefore, when the distance from a UE
to its nearest BS (or the serving BS) b0 is r, all distances
from the interference BSs to the target user equipment (UE)
must be larger than r. The derivation methodology of the PDF
of r could basically follow the well-established lines in [5].
However, as the BS density varies in space and obeys the
α-stable distributions, the derivations should be re-considered.
Therefore, we give the following the theorem.

Theorem 1: The PDF of the distance r from the closest BS
to the target UE in a cellular network with α-stable distributed
BS density is given in (8), shown at the top of the next page.

This theorem could be easily obtained by applying Lemma 2
to derive the probablity of no BS closer than r, as the lines
in [5].

Corollary 1: For HPPP with static density λ, the PDF
of r could reduce to pd(r) = exp(−λπr2)2πλr. Simi-
larly, for varying distribution λ, the conditional probability
P(r|λ) = exp(−λπr2)2πλr.

This corollary could be achieved by directly applying
Theorem 1 with a static density λ = μ and thus σ = 0.
It is also consistent with the conclusions in [5]. Also for the
α-stable with small σ, the difference in pd(r) between the
α-stable model and the HPPP is quite small.

D. Main Result

We now state our main result for the coverage probability
analysis. Generally, the coverage probability pc is mainly

determined by the SINR threshold T , the spatial BS density
distribution S(α, σ, μ), and the pathloss exponent δ. In some
sense, pc(T, S(α, σ, μ), δ) is tightly coupled with the cumu-
lative interference Ir for the α-stable distributed and self-
similar BS deployment. The following lemma characterizes
the relationship between pc(T, S(α, σ, μ), δ) and Ir .

Lemma 3: The coverage probability pc(T, S(α, σ, μ), δ)
could be obtained from the following formula, that is,

pc(T, S(α, σ, μ), δ)

=
∫∫

r>0,λ>0

e−ζTrδN0LIr (ζT rδ)P(r|λ)f(λ)drdλ, (9)

where LIr (s) is the Laplace transformation of random variable
Ir evaluated at s conditioned on the distance to the closest BS
from the origin. The Rayleigh fading coefficient is assumed
to satisfy h ∼ exp(ζ).

Similar to [5], Lemma 3 could be simply obtained by
calculating the probability conditioning on the distance r from
the nearest serving BS to the UE.

Next, we focus on how to calculate the Laplace transform of
the cumulative interference LIr (s), when the BS deployment
obey α-stable distributions and self-similarity. In Section IV-B,
we divide the region of interest into two concentric circles.
For the inner circle Δ with a radius R, the impact of the
spatial BS density λ is similar to the impact of r and explicitly
represented by the latter’s PDF pd(r). Meanwhile, the outer
circle ΔS with the radius spanning from R to aR has a spatial
BS density λS ∼ λaH−2 and understanding the impact of the
interference from BSs in the outer circle is one of the core
contributions of this paper. For simplicity of representation,
we let Ir =

∑
i∈Δ/b0

giR̂
−δ
i +

∑
i∈ΔS

giR̂
−δ
i to denote the

cumulative interference from all the other BSs i (except the
serving BS b0) to the UE with the distance R̂i and pathloss gi.
We could obtain the following lemma,

Lemma 4: The Laplace transform of the cumulative inter-
ference Ir for a cellular network with α-stable distrib-
uted BSs could be formulated as where Θ(s, b, c) def=
(sg)2/δ

(
Γ(− 2

δ + 1, sgb−δ) − Γ(− 2
δ + 1, sgc−δ)

)
. Γ(d, x) =∫∞

x
td−1e−tdt denotes the incomplete Gamma function,

while Γ(d) =
∫∞
0

td−1e−tdt denotes the standard Gamma

function. Besides, Λ(s, b, c) def= c2
[
1 − exp

(−sgc−δ
)] −

b2
[
1 − exp

(−sgb−δ
)]

.
We leave the proof of Lemma 4 in Appendix A and further

give the following theorem.
Theorem 2: The coverage probability in a cellular networks

with α-stable distributed BS density and the self-similarity is
given by
1) if α �= 1

pc(T, S(α, σ, μ), δ)

=
∫

r>0

2πr exp
{
− σαaα(H−2)

cos πα
2

[
Ξ(ζT rδ , R, aR)

]α

− aH−2μΞ(ζT rδ, R, aR) − μΞ(ζT rδ, r, R)

− σα

cos πα
2

(Ξ(ζT rδ , r, R) + πr2)α − μπr2 − ζT rδN0

}

·
[ σαα

cos πα
2

(Ξ(ζT rδ, r, R) + πr2)α−1 + μ
]
dr (11)
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pd(r) =

⎧
⎨

⎩

exp
{

−μπr2 − (πσ)α

cos πα
2

r2α

}(

2μπr + 2α
(πσ)α

cos πα
2

r2α−1

)

, α �= 1;

exp
{−μπr2 + 2σr2 ln(πr2)

} (
2μπr + 4σr ln(πr2) + 4σr

)
, α = 1.

(8)

LIr (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

{

− λπEg

(
Λ(s, r, R) − Θ(s, r, R)

)
− σαaα(H−2)

cos πα
2

[
πEg

(
Λ(s, R, aR)

−Θ(s, R, aR)
)]α

− aH−2μπEg

(
Λ(s, R, aR) − Θ(s, R, aR)

)
}

, α �= 1;

exp

{
[
2σaH−2

(
ln
{
πEg

(
Λ(s, R, aR) − Θ(s, R, aR)

)}
+ (H − 2) ln a

)
− πaH−2μ

]

·Eg

(
Λ(s, R, aR)− Θ(s, R, aR)

)
− λπEg

(
Λ(s, r, R) − Θ(s, r, R)

)
}

, α = 1.

(10)

2) if α = 1

pc(T, S(α, σ, μ), δ)

=
∫

r>0

2πr exp

{
[2σaH−2

π

(
ln
{
Ξ(ζT rδ, R, aR)

}

+ (H − 2) lna
)− aH−2μ

]
Ξ(ζT rδ, R, aR)

+
2σΞ(ζT rδ, r, R) + 2σπr2

π
ln(Ξ(ζT rδ , r, R) + πr2)

−μΞ(ζT rδ, r, R) − μπr2 − ζT rδN0

}

·
[
− 2σ

π

(
ln(Ξ(ζT rδ , r, R) + πr2) + 1

)
+ μ

]
dr (12)

where Ξ(s, b, c) = πEg (Λ(s, b, c) − Θ(s, b, c)).
Proof: From Lemma 3, the coverage probability could be

calculated as

pc(T, S(α, σ, μ), δ)

=
∫∫

r>0,λ>0

e−ζTrδN0LIr (ζT rδ)P(r|λ)f(λ)drdλ

(a)
=

∫

r>0

2πre−ζTrδN0LΔs(ζT rδ)Υ(r)dr (13)

where the equation (a) is the direct result of Corollary 1 and
Lemma 4 and Υ(r) could be formulated as (14), shown at the
top of the next page.

By merging (13), (14), and Lemma 4 and applying the
relationship of Laplace transformation

∫

x
e−sxxf(x)dx =

−dΦ(s)
ds , we have the result.

When we consider the whole region (i.e., the outer circle
spanning from R to ∞, or a → ∞), we get the following
corollary.

Corollary 2: When a → ∞, the coverage probability could
be reduced to

1) if α �= 1

pc(T, S(α, σ, μ), δ)

=
∫

r>0

2πr exp
{
− μΞ(ζT rδ, r, R) − σα

cos πα
2

(Ξ(ζT rδ, r, R)

+ πr2)α − μπr2 − ζT rδN0

}

·
[ σαα

cos πα
2

(Ξ(ζT rδ , r, R) + πr2)α−1 + μ
]
dr (15)

2) if α = 1

pc(T, S(α, σ, μ), δ)

=
∫

r>0

2πr exp

{

− μΞ(ζT rδ , r, R) − μπr2 − ζT rδN0

+
2σΞ(ζT rδ, r, R) + 2σπr2

π
ln(Ξ(ζT rδ , r, R) + πr2)

}

·
[
μ − 2σ

π

(
ln(Ξ(ζT rδ , r, R) + πr2) + 1

)]
dr (16)

Proof: Firstly, we have

lim
a→∞ a2R2

[
1 − exp

(
−ζT g(

r

aR
)δ
)]

= lim
k→0+

R2
[
1 − exp

(−ζT g( r
R )δkδ

)]

k2

(a)
= lim

k→0+

−ζT g(δ − 1) rδ

Rδ−2

2
exp

(
−ζT g(

r

R
)δkδ

)
kδ−2

= 0 (17)

where the equation (a) comes from the l’Hôpital’s Rule [93]
and applies the fact that the pathloss exponent δ ≥ 2.

Hence, as a → ∞, we have aH−2 → 0 for H ∈ (0, 1). So,
we have (18), shown at the top of the next page.

From Theorem 2, it can be observed that when
a → ∞, only the term aH−2Ξ(ζT rδ, R, aR) =

aH−2πEg

(

Λ(ζT rδ, R, aR) − Θ(ζT rδ, R, aR)

)

will be

affected. We have the conclusion.
When R → ∞, we can further simplify the results to get

more interesting insight.
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Υ(r) =
∫

λ>0

exp

{

−λπ

[

Eg

(

Λ(ζT rδ, r, R) − Θ(ζT rδ, r, R)

)

+ r2

]}

λf(λ)dλ (14)

aH−2Ξ(ζT rδ, R, aR) = aH−2πEg

(

− R2
[
1 − exp

(
−ζT g(

r

R
)δ
)]

− (ζT g)2/δr2Γ(−2
δ

+ 1, ζT g(
r

R
)δ)

)

+ aH−2πEg

(

a2 R2
[
1 − exp

(
−ζT g(

r

aR
)δ
)]

+ (ζT g)2/δr2Γ(−2
δ

+ 1, ζT g(
r

aR
)δ)

)

→ 0 (18)

pc(T, S(α, σ, μ), δ) =
∫

r>0

2πr

[
σασ

cos πα
2

(

πEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
])
)α−1

+ μ

]

· exp

{

− σα

cos πα
2

(

πEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
])
)α

− ζT rδN0

−μπEg

(
2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
]
)}

dr (19)

pc(T, S(α, σ, μ), δ) =
∫

r>0

2πr
[
μ − 2σ

π

(

ln
(
πEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
]))

+ 1

)
]

· exp

{

− ζT rδN02σEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
])

ln

(

πEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
])
)

− μπEg

(2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
])
}

dr (20)

Theorem 3: When R → ∞, the coverage probability could
be reduced to (19) and (20), shown at the top of this page, for
α �= 1 and α = 1, respectively.

We can have Theorem 3 by following the lines to prove
Corollary 2 and applying the relationship Γ(s, x) = (s −
1)Γ(s − 1, x) + xs−1e−x and Γ(s) = (s − 1)Γ(s − 1).

Next, we state the coverage probability when extra con-
straints are imposed, that is, the spatial density in the inner
circle is fixed (i.e., σ = 0 and λ = μ in Theorem 3). We get
the following corollary.

Corollary 3: The coverage probability in cellular networks
with fixed spatial BS density is

pc(T, S(α, 0, λ), δ)

=
∫

r>0

2πλr exp

{

− ζT rδN0

−λπEg

(
2(ζT g)2/δr2

δ

[

Γ(−2
δ
, ζT g)− Γ(−2

δ
)
])}

dr

(21)

Hence, when the spatial density is fixed and equals λ,
the self-similarity patterns no longer take effect and our result
could be reduced to the well-recognized conclusions of HPPP
obtained by Andrews et al. [5].

Also, based on Theorem 3, we can obtain the following
theorem.

Theorem 4: For α �= 1, the coverage probability in (19) has
an upper bound, that is,

pc(T, S(α, σ, μ), δ)

≤ max
r

(
2πμC(r)

)
·
∫

r>0

A(T, S(α, σ, μ), δ)dr (22)

where A(T, S(α, σ, μ), δ) = exp
{
− σα

cos πα
2

Bα
}
·
[

σαα
μ cos πα

2
·

Bα−1 +1
]
, B = πEg

(
2(ζTg)2/δr2

δ · [Γ(− 2
δ , ζT g)−Γ(− 2

δ )
])

,

and C(r) = r exp
{− ζT rδN0 − μB

}
.

Proof: The result could be derived by applying the Hölder
Inequality [94]. As Theorem 3 states

pc(T, S(α, σ, μ), δ)

=
∫

r>0

2πμA(T, S(α, σ, μ), δ)C(r)dr

(a)

≤ max
r

(
2πμC(r)

)
·
∫

r>0

A(T, S(α, σ, μ), δ)dr (23)

where (a) follows from the Hölder Inequality.
We have the following corollary to show that the upper

bound get tighter as the SINR threshold increases.
Corollary 4: As the SINR threshold T → ∞,

pc(T, S(α, σ, μ), δ)

→ max
r

(
2πμC(r)

)
·
∫

r>0

A(T, S(α, σ, μ), δ)dr (24)
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Proof: The equation in (22) holds if and only if for almost
all r, C(r) = maxr

(
C(r)

)
or ∂C(r)

∂r = 0 [94]. As T → ∞,

∂C(r)
∂r

(25)

= exp
{− ζT rδN0 − μB

}(
1 + r

{− ζT rδ−1δN0 (26)

−μπEg

[4(ζT g)
2
δ r

δ
B
]}) (a)→ 0 (27)

where, the equation (a) can be derived from the l’Hôpital’s
Rule. Then we have the corollary.

The following lemma gives a lower bound of B.
Lemma 5:

B(r) ≥ πr2 (28)

Proof: From the definition of B, we have

B = πEg

(
2(ζT g)2/δr2

δ

[
Γ(−2

δ
, ζT g) − Γ(−2

δ
)
]
)

(a)
= πEg

(

r2 exp(−ζT g) + (ζT g)2/δr2
[
Γ(−2

δ
+ 1)

−Γ(−2
δ

+ 1, ζT g)
]
)

= πEg

(

r2 exp(−ζT g) + (ζT g)2/δr2

∫ ζTg

0

t−
2
δ e−tdt

)

(b)
> πEg

(

r2 exp(−ζT g)+(ζT g)2/δr2(ζT g)−
2
δ

∫ ζTg

0

e−tdt

)

= πr2 (29)

where (a) follows Γ(s, x) = (s−1)Γ(s−1, x)+xs−1e−x and
Γ(s) = (s − 1)Γ(s − 1). (b) comes from the observation that
if f(x) > g(x) in x ∈ [c, d], then

∫ d

c
f(x)dx >

∫ d

c
g(x)dx

where c = 0, d = ζT g, f(x) = x− 2
δ e−x, and g(x) =

(ζT g)−
2
δ e−x.

Next, we can have further approximation of D
def=∫

r>0 A(T, S(α, σ, μ), δ)dr, that is
Lemma 6:

D ≈
∫

B>0

A(T, S(α, σ, μ), δ)dB (30)

Then, we can obtain the following theorem.
Theorem 5: For α ∈ (0, 1), the upper bound of coverage

probability in Theorem 4 decreases along with the increase
of σ.

Theorem 5 could be achieved by deriving ∂D
∂σ and proving

∂D
∂σ < 0 for α ∈ (0, 1). The proof details could be found
in Appendix C. Also, we can have a corollary concerning the
relationship between the upper bound of coverage probability
and α.

Corollary 5: For α ∈ (0, 1), when σ is sufficiently large,
the upper bound of coverage probability decreases with the
increase of α.

Proof: Similar to the proof of Theorem 5, after deriving
∂A(T,S(α,σ,μ),δ)

∂α , we have (31), shown at the bottom of the next
page.

Fig. 3. The coverage probability comparison under different SNR environ-
ment.

For α ∈ (0, 1) and a fixed B, when σ is sufficiently large
(i.e., σ � 1), we have ( α

μB − 1) cos πα
2 − α

μB (σB)α < 0 and
(σB)α tan πα

2 · πα
2 −cos πα

2 −sin πα
2 · πα

2 > 0. In other words,
the integral item in (31) is negative for every B.

So, the coverage probability decreases with the increase
of α.

V. NUMERICAL ANALYSES

In this part, we provide numerical evaluations through which
we compare the coverage probability of the cellular network
with α-stable distributed BS density and the HPPP model.
Our simulation parameters are configured according to Table I.
In particular, the default spatial BS density for the HPPP model
is consistent with that in [5]. As Samorodnitsky [10] states
that when α ∈ (0, 1), the mean value of S(α, σ, μ) equals μ.
Therefore, it is fair to compare the α-stable model and the
single-tier HPPP model.

Firstly, we leverage the theoretical analysis results and give
the coverage probability comparison under different AWGN
environment in Fig. 3. From the figure, the performance gap
between SNR = 0 dB and SNR = 20 dB is only 4 dB and
6 dB for the α-stable model and the HPPP, respectively, which
demonstrates that the cellular network is interference-limited
rather than noise-limited. Also, there only exists acceptable
performance gap between the theoretical analysis results and
Monte Carlo simulations (see the dashed or dotted curves),
where each curve is averaged under 15000 iterations. It further
verifies the correctness of our theoretical derivations. Fig. 3
also gives the upper bound of the coverage probability in
Theorem 4 and shows the upper bound is quite close to
the α-stable model for high SINR thresholds, consistent with
Corollary 4.

Fig. 4 gives the coverage probability comparison between
the models and the real environment. For the models, we esti-
mate the unknown parameters based on the methodology
in [12] and obtain the coverage probability based on these
estimated parameters summarized in Table II. For the real
environment, we randomly drop the users in 100000 iter-
ations and count the coverage probability after calculating
the SINR for each random drop. Notably, the “full region”
indicates the least square surrounding all BSs in Hangzhou
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α

α

α

α

α

α

Fig. 4. The coverage probability comparison between the models and the real environment for no noise cases, where “Full Region” indicates the least square
area to cover all BSs in Fig. 2(a) (for Hangzhou) and Fig. 2(b) (for City A) in the revised manuscript while “Red Solid” and “Green Dash” refer to the
selected square areas in these two subfigues.

and City A in Fig. 2. Since the “full region” contains some
areas of other administrative areas with unknown BS deploy-
ment information, the deduced coverage probability in Fig. 4
is rather low. Hence, we also choose two smaller regions
(i.e., those areas within red solid line and green dash line).
From the subfigures, compared with the single-tier HPPP
model, the α-stable model could significantly approximate the
real environment, especially for lower SINR thresholds.

Fig. 5 illustrates interesting coverage probability compari-
son under various (average) spatial BS densities. It shows that
μ = 0.25 has lead to remarkable coverage probability and
also made the networks to be interference-limited. Therefore,
further increasing the spatial density would add more to the
aggregated interference and impose negative impact on the
coverage probability. It also implies that the influence of
the spatial BS density on the coverage probability is rather
sophisticated. Fig. 6(a) and Fig. 6(b) further examine the
impact of σ and α. Consistent with the theoretical finds in
Theorem 5, a larger σ leads to worse coverage probability.
On the other hand, Fig. 3, Fig. 4, and Fig. 5 seem to imply
that for high SINR thresholds, the gap between the α-stable
model and the HPPP becomes smaller. But, Fig. 6(a) shows
that such an observation only holds for small σ values, since
for high SINR thresholds, a sufficiently large received signal

Fig. 5. The coverage probability comparison under various (average) spatial
BS densities.

from the nearest serving BS plays the determinant role and the
impact of all the other interfering BSs becomes comparatively
smaller. In this regard, Corollary 1 shows that small σ values
produce similar results for the PDF of the distance from the
nearest BS to the target UE. Hence, Fig. 6(a) depicts that
small σ values lead to small gap between α-stable model
and the HPPP but the performance differences still hold when

∂D

∂α
=
∫

B>0

∂A(T, S(α, σ, μ), δ)
∂α

dB

=
∫

B>0

exp
{
− σα

cos πα
2

Bα
}
· (σB)α

cos2 πα
2

·
(

ln(σB)
(
(

α

μB
− 1) cos

πα

2
− α

μB
(σB)α

)

− sin
πα

2
· πα

2
− 1

μB

{

(σB)α tan
πα

2
· πα

2
− cos

πα

2
− sin

πα

2
· πα

2

})

dB (31)
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TABLE II

FITTING PARAMETERS FOR FIG. 4

Fig. 6. Performance sensitivity analyses under different α and σ.

σ = 25 or σ = 250. From Fig. 6(b), as implied by Corollary 5,
when σ = 25, a larger α incurs inferior coverage probability.
However, the interesting phenomenon is that when σ = 0.25,
a larger α incurs superior coverage probability.

Next, we focus on the impact of the spatial self-similarity
on the coverage probability. Recalling the statements in
Section III-A2, the spatial self-similarity is examplified by the
relationship N(aR) ∼ aHN(R) or λS ∼ aH−2λ. Therefore,
we examine the coverage probability when a and H differs
and provide the corresponding results in Table III. From the
table, we observe increasing H or decreasing a will result in a

Fig. 7. Performance sensitivity analyses under different R and δ.

slight reduction of the coverage probability. The trivial impact
of a and H on the network performance can be explained as
that a variation of H or a will make the spatial BS density
λS of the outer circle larger from a probabilistic sense, thus
making BSs over-crowded and generating huge interference.
This phenomenon that stronger self-similarity incurs negative
impact is also consistent with its counterpart of self-similar
Ethernet traffic. As stated in [95], stronger self-similarity in
Ethernet traffic will make heavier traffic prone to arrive in a
sequel and congest the network.
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TABLE III

A SUMMARY OF THE NETWORK COVERAGE PROBABILITY UNDER DIFFERENT a AND H

We continue the performance analyses in Fig. 7(a) and
Fig. 7(b). Fig. 7(a) shows reducing R will cause a reduction of
coverage probability for low SINR thresholds but an increment
for high SINR thresholds. On the other hand, consistent with
our intuition, Fig. 7(b) depicts that a smaller pathloss exponent
will bring a lower coverage probability.

VI. CONCLUSION

In this paper, we have performed the stochastic geometry
analyses in cellular networks with α-stable distributed BS
density. By leveraging the self-similarity among BSs, which
is verified based on the practical BS deployment records
in China and Europe (Italy), we have provided a tractable
solution for the coverage probability in a large-scale area.
We have demonstrated that our analytical results could be
reduced to the works achieved by Andrews et al. [5]. We have
also given an upper bound for high SINR thresholds and
theoretically shown the monotonicity of this bound with
respect to the variance of BS density and validates that a
larger variance of BS density leads to smaller coverage prob-
ability. Besides, we have simulated the coverage probability
performance under extensive parameter settings and verified
the consistence between the theoretical and simulation results.
Our results have shown that compared to the single-tier HPPP
model, the α-stable model yields closer performance to the real
environment especially for lower SINR thresholds and adds to
the deeper understanding of the impact of BS densities on the
coverage probability, by incorporating the stability parameter
α and the scale factor σ to characterize the BS deployment
inhomogeniety. Therefore, it could contribute to analyze the
performance under more sophisticated network configurations
and make it easier to understand the actual network variations.

There still exist some open questions to be addressed.
For example, due to the lack of two-tier or multiple-tier
BS deployment information, we can not extract the relevant
fitting parameters behind two-tier or multiple-tier HPPP mod-
els. Thus, our work only compare the α-stable model with
single-tier HPPP models. Actually, the comparison with two-
tier or multiple-tier HPPP models is very interesting. Also,
it is quite important to further study how to obtain an even
more computational efficient approximation for the coverage
probability of the α-stable model. Besides, our work has
shown that instead of improving the coverage performance,
simple yet stubborn deployment of BSs incurs significant inter-
ference and degrades the coverage performance. Therefore,
frequency reuse has been applied in practical cellular commu-
nication. In this case, it is still meaningful to combine α-stable

self-similarity with more realistic network configurations, so as
to produce more valuable results.

APPENDIX

A. The Proof of Lemma 4

Proof: According to the definition of Laplace transform,
we have (32), shown at the top of the next page, where the
equation (a) in (32) comes from the identical, independent
distribution of gi and its further independence from the point
process.

From (32), it can be observed that the Laplace
transform is composed of two parts (i.e., LΔ(s) =
EΔ

[∏
i∈Δ/b0

Eg

[
exp

(
−sgR̂−δ

i

)]]
and LΔS (s) =

EΔS

[∏
i∈ΔS

Eg

[
exp

(
−sgR̂−δ

i

)]]
), which is also

consistent with our intuition. Next, we derive the
representation of these two parts separately.

• For LΔ(s), we have a fixed spatial density λ. Then,
from the probability generating functional (PGFL) for the
PPP [15], we have

E

[
∏

x∈Δ

f(x)

]

= exp
(

−λ

∫

Δ

(1 − f(x))dx

)

.

Since f(x) = Eg

[
exp

(
−sgR̂−δ

)]
, we have

∫

Δ

(1 − f(x))dx

= 2π

∫ R

r

{
1 − Eg

[
exp

(−sgv−δ
)]}

vdv

(a)
= πEg

{
Λ(s, r, R) − Θ(s, r, R)

}
(33)

We leave the derivation of the equation (a) in Appendix B.
Accordingly, we have

LΔ(s) = exp

[

−λπEg

(

Λ(s, r, R)−Θ(s, r, R)

)]

. (34)

• Similarly, for LΔS (s), as λS ∼ λaH−2, we have the
equation for LΔS (s) by using the Laplace transform
of λS in Lemma 2 and applying the result

∫

ΔS
(1 −

f(x))dx = πEg

{
Λ(s, R, aR) − Θ(s, R, aR)

}
, which

can be obtained by adopting a similar methodology
as the derivation of (33). Specifically, (35), shown at
the top of the next page, can be obtained, where the
equation (a) therein is achieved by using the Laplace
transform of λS in Lemma 2 and applying the result∫

ΔS
(1 − f(x))dx = πEg {Λ(s, R, aR) − Θ(s, R, aR)},
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LIr (s) = EIr

[
e−sIr

]
= EΔ+Δs,gi

⎡

⎣exp

⎛

⎝−s
∑

i∈(Δ+Δs)/b0

giR̂
−δ
i

⎞

⎠

⎤

⎦

(a)
= EΔ

⎡

⎣
∏

i∈Δ/b0

Eg

[
exp

(
−sgR̂−δ

i

)]
⎤

⎦ · EΔS

[
∏

i∈ΔS

Eg

[
exp

(
−sgR̂−δ

i

)]
]

(32)

LΔS (s) =
∫ ∞

λS=0

exp
(

−λS

∫

ΔS

(1 − f(x))dx

)

f(λS)dλS

(a)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

{

− σαaα(H−2)

cos πα
2

[

πEg

(

Λ(s, R, aR) − Θ(s, R, aR)

)]α

−aH−2μπEg

(

Λ(s, R, aR)− Θ(s, R, aR)

)}

, α �= 1;

exp

{[

2σaH−2

(

ln

{

πEg

(

Λ(s, R, aR) − Θ(s, R, aR)

)}

+ (H − 2) lna

)

−πaH−2μ

]

· Eg

(

Λ(s, R, aR) − Θ(s, R, aR)

)}

, α = 1.

(35)

which can be obtained by adopting a similar methodology
as the derivation of (33).

Combining (34) and (35), we obtain the result.

B. Derivations of (33)

In this part, we provide the details about the equation (a)
in the (33).
∫

Δ

(1 − f(x))dx

= 2π

∫ R

r

{
1 − Eg

[
exp

(−sgv−δ
)]}

vdv

= 2π

∫ ∞

0

∫ R

r

{
1 − exp

(−sgv−δ
)}

vdvf(g)dg

= π

∫ ∞

0

∫ R−δ

r−δ

{1 − exp (−sgy)} dy− 2
δ

︸ ︷︷ ︸
(�)

f(g)dg

= πEg

{
Λ(s, r, R) − Θ(s, r, R)

}
(36)

The last equation holds, since for the inside integral (�),
we have

(�) = −(sg)
2
δ

∫ R−δ

r−δ

(sgy)−
2
δ exp (−sgy) dy

+ y− 2
δ [1 − exp (−sgy)]

∣
∣
∣
R−δ

r−δ

= R2
[
1 − exp

(−sgR−δ
)]− r2

[
1 − exp

(−sgr−δ
)]

− (sg)
2
δ

[

Γ(−2
δ

+ 1, sgr−δ) − Γ(−2
δ

+ 1, sgR−δ)
]

(37)

C. The Proof of Theorem 5

Proof:
By deriving ∂A(T,S(α,σ,μ),δ)

∂σ , we have

∂A(T, S(α, σ, μ), δ)
∂σ

= exp
{
− σα

cosπα
2

Bα
}
·
[ σαα

μ cos πα
2

·Bα−1+1
]
·
[
− σα−1α

cos πα
2

Bα
]

+ exp
{
− σα

cos πα
2

Bα
}
·
[ α2σα−1

μ cos πα
2

· Bα−1
]

= exp
{
− σα

cos πα
2

Bα
}
·
[ ασα−1

μ cos πα
2

· Bα−1
]

·
[
α − μB − σαα

cos πα
2

· Bα
]

(38)

For α ∈ (0, 1), (39), shown at the top of the next
page, can be obtained, where (a) in (39) comes from

the fact that exp
{

− σα

cos πα
2

Bα
}
∣
∣
∣
∣
∣

∞

0

= −1. Due to

the l’Hôpital’s Rule, limB→∞ Bα exp
{

− σα

cos πα
2

Bα
}

=

limB→∞ αBα−1

exp

{
σα

cos πα
2

Bα

}
σαα

cos πα
2

Bα−1
= 0. Also, by iteratively

applying the l’Hôpital’s Rule, we can have

lim
B→∞

B exp
{
− σα

cos πα
2

Bα
}

= lim
B→∞

B1−α

exp
{

σα

cos πα
2

Bα
}

σαα
cos πα

2

= lim
B→∞

(1 − α)B1−2α

exp
{

σαα
cos πα

2
Bα

}(
σα

cos πα
2

)2
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∂D

∂σ
=

∫

B>0

∂A(T, S(α, σ, μ), δ)
∂σ

dB

=
∫

B>0

exp
{
− σα

cos πα
2

Bα
}
·
[ ασα

cos πα
2

· Bα−1
]
·
[ α

μσ
− B

σ
− σα−1α

μ cos πα
2

· Bα
]
dB

= − α

μσ
exp

{
− σα

cos πα
2

Bα
}
∣
∣
∣
∣
∣

∞

0

+
B

σ
exp

{
− σα

cos πα
2

Bα
}
∣
∣
∣
∣
∣

∞

0

− 1
σ

∫

B>0

exp
{
− σα

cos πα
2

Bα
}
dB +

σα−1α

μ cos πα
2

· Bα exp
{
− σα

cos πα
2

Bα
}
∣
∣
∣
∣
∣

∞

0

−
∫

B>0

exp
{
− σα

cos πα
2

Bα
}

d
( σα−1α

μ cos πα
2

· Bα
)

(a)
=

α

μσ
− 1

σ

∫

B>0

exp
{
− σα

cos πα
2

Bα
}
dB +

α

μσ
exp

{
− σαα

cos πα
2

Bα
}
∣
∣
∣
∣
∣

∞

0

< 0 (39)

= lim
B→∞

(1 − α) · · · (1 − (N − 2)α)B1−(N−1)α

exp
{

σα

cos πα
2

Bα
}(

σαα
cos πα

2

)N−1

(b)
= lim

B→∞
(1 − α) · · · (1 − (N − 1)α)B1−Nα

exp
{

σα

cos πα
2

Bα
}(

σαα
cos πα

2

)N

= 0 (40)

where (b) comes from that for a positive α, we can always
have a positive N so that 1− (N − 1)α > 0 but 1−Nα < 0.
So we can have the conclusion.
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