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ABSTRACT Originating from entomology, stigmergy has provided an effective framework for swarm
collaboration. Based on new discoveries on astrocytes in regulating synaptic transmission in the brain, this
paper has mapped stigmergy mechanism into the interaction mediated by the propagation of calcium waves
in astrocytes between synapses and investigated its characteristics and advantages. Particularly, we have
divided the short-range interaction between synapses that are not directly connected by neurons into three
phases and proposed a stigmergic learning model. In this model, the state change of an agent will expand its
influence to affect the states of others. The strength of the interaction is determined by the level of neural
activity as well as the distance between the agents. Inspired by these findings, we propose a model to help
solve task assignment and coordination problems. The simulation results have verified the effectiveness of
the proposed model.

INDEX TERMS Stigmergy, astrocytes, synapses, calcium waves, neural networks, artificial intelligence,
machine learning.

There is a crack in everything, that’s how the light gets
in - Leonard Cohen

I. INTRODUCTION
Stigmergy was first introduced by French entomologist
Pierre-Paul Grassè in 1950s [1] [2] when studying the behav-
ior of social insects. The word stigmergy is a combination of
the Greek words ‘‘stigma’’ (outstanding sign) and ‘‘ergon’’
(work), indicating that some activities of agents are triggered
by external signs, which themselves may be generated by
agent activities [3]. Stigmergy allowed Grassè to explain why
insects of very limited intelligence, without apparent commu-
nications, can collaboratively tackle complex tasks, such as
building a nest. Combined with computer science, stigmergy
has inspired many effective swarm intelligence algorithms,
such as Ant Colony Optimization (ACO) [4].

Originating from entomology, stigmergy has been widely
studied in the aspect of social insects [5] and applied in
different scenes [6]–[8]. But this concept has been rarely
mentioned in the study of the brain, which is assumed
to be the most complex system. As important glial cells
in the Central Nervous System (CNS), astrocytes have
been traditionally placed in a subservient position in the
past decades, which only supports the physiology of the
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associated neurons. However, recent experimental neuro-
science evidences indicate that astrocytes also interact closely
with neurons and participate in the regulation of synap-
tic neurotransmission [9]. These evidences have motivated
new perspectives for the research of stigmergy in the
brain.

There is a large number of complicated biochemical reac-
tions between synapses and astrocytes to support the imple-
mentation of various neuromodulations [10]. In the CNS,
each astrocyte might contain hundreds or thousands of branch
microdomains, each of which encloses a synapse [11]. The
synaptic activity can elevate the concentration of Ca2+

in the corresponding branch microdomain [12]. Ca2+ and
inositol-1,4,5-triphospate (IP3), as important messengers
within astrocytes, are believed to expand the influence of
synaptic activities [13]. The range of influence is relevant to
the level of synaptic activity as well as the distance between
coupled branch microdomains [12]. Besides, these branch
microdomains with the elevated concentration of Ca2+ can
provide a regulation for the wrapped synapses [14]. There-
fore, as explained in Section II, general stigmergy can be
mapped into this neural process in which astrocytes play
the role of medium carriers to provide regulations for the
involved synapses.

The propagation of Ca2+ in cytosol within astrocytes
can comprise both short-range and long-range interactions
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FIGURE 1. An intuitive diagram of the tripartite synapse.

among different synapses. We have preliminarily divided the
short-range interaction into three phases in this paper. These
phases will be concretely described in Section III so as
to formulate the stigmergic system model. In this funda-
mental model, the strength of interaction between agents
is determined by the level of stimulations as well as the
distance between them, which is consistent with the strength
of interaction between synapses via astrocytes. Inspired by
the morphological and functional changes in astrocytes dur-
ing the environmental enrichment [15], it is likely that the
cross regulations of distance between agents is critical to
obtain stigmergy learning gain. Accordingly, we have used
two different task assignment and coordination scenarios to
verify the effectiveness of the proposed model considering
the distance adjustment between agents. In the first problem,
with the existence of the cross regulation between agents,
the proposed model can finish the same task more quickly
compared with the method in [4]. In the second problem,
we have considered the cross regulation on the basis of stig-
mergy in the process of moving agents to form a specified
shape. Simulation results have indicated that the distance-
based stigmergy model can improve the quality of the formed
shape.

The remainder of this paper is organized as follows.
In Section II, new discoveries on astrocytes in regulating
synaptic transmission will be introduced and the existence of
general stigmergy in the brain will be explored. In Section III,
three important phases within the short-range interaction
between synapses will be concretely described. The interac-
tion is referred to set up the stigmergic system model and
learning algorithm. In Section IV, simulations on the perfor-
mance of the proposed stigmergy learning model are carried
out on the problem of task assignment and coordination as
well as the problem of moving agents, in order to verify its
effectiveness and advantages. Finally, we conclude this paper
with a summary.

II. STIGMERGY IN THE BRAIN
In the CNS, there are many similarities between general
stigmergy and the interaction between synapses which is
mainly mediated by the propagation of Ca2+ within astro-
cytes. As important medium carriers, astrocytes are coupled
together by the gap-junction to comprise an additional neu-
romodulatory system that acts in complement to the neuronal
ones.

A. GLIAL CELLS IN THE CNS
In the process of nerve conduction, action potentials repre-
sented by the purple dotted arrow in Fig. 1 are conducted
along the axon to the pre-synaptic terminal. Then a large
quantity of neurotransmitters will be released into synaptic
cleft through exocytosis. These molecules can bind with
various receptors on the surface of post-synaptic terminal to
change the terminal membrane potential. Besides, they can
also diffuse out from synaptic cleft and bind with receptors
of surrounding glial cells, which will typically release neuro-
modulators in return [12]. In essential, there are three types
of glial cells in the CNS: microglia, oligodendrocytes, and
astrocytes [16].

Microglia, as illustrated in Fig. 1, are macrophages in
the CNS. Their key roles are immune surveillance as well
as responding to infections or other pathological states such
as neurological diseases or injuries [17] [18]. For the synap-
tic activity, microglia can play the role of supervision and
protection.

Oligodendrocytes can contribute to the plasticity of ner-
vous system in the above-mentioned process of nerve con-
duction. An action potential normally needs to spend a certain
amount of time reaching the pre-synaptic terminal. Many
factors affect the conduction velocity, such as the thickness of
myelin sheath, the axon diameter and the spacing and width
of the Ranvier nodes [19]. Increasing the thickness of myelin
sheath can significantly improve the velocity, which helps to
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form the salutatory conduction [20]. Oligodendrocytes play
a critical role in this process because they can regulate the
production of lecithin, which is an important substance for the
compound of myelin [20], as illustrated in Fig. 1. Therefore,
oligodendrocytes can adjust the arrival times of different
nerve pulses through continuously changing the thickness of
myelin sheath on each axon branch.

Astrocytes can support the implementation of many neu-
romodulations because of the enrichment of various recep-
tors [21]. The phenomenon that synaptic terminals and cleft
are wrapped by branch microdomains of surrounding astro-
cytes gives rise to the discovery of tripartite synapse [22],
which is illustrated with details in Fig. 1. In Fig. 1, the pre-
synaptic and post-synaptic terminals are represented by the
blue parts. The branch microdomain within astrocytes is rep-
resented by the yellow part. As action potentials reach the
pre-synaptic terminal, a large quantity of glutamate (Glu) will
be released into synaptic cleft. These molecules can diffuse
and bind with metabotropic glutamate receptors (mGluRs) to
induce transient calcium elevations in branch microdomains
of surrounding astrocytes, as illustrated in Fig. 1. In response,
astrocytes will normally release neuromodulators to regu-
late synaptic transmissions. For example, as gliotransmitters,
ATP/adenosine can act on purinergic A2A (or A1) receptors on
the pre-synaptic terminal to increase (or reduce) the number
of exocytosis. Besides, due to transient calcium elevations,
astrocytes can also release Glu acting on mGluRs on the pre-
synaptic terminal to increase the synaptic efficiency [10].

B. REGULATION WITH TWO DIFFERENT TYPES
There are two main types of neuronal activity-dependent
Ca2+ responses observed in astrocytes [23]: (1) transient
calcium elevations that are restricted to the scale of several
microdomains and (2) calcium elevations propagating along
these microdomains as regenerative calcium waves, eventu-
ally reaching the cell soma or neighboring astrocytes [24].

Glu which are released from pre-synaptic terminal can
bind on mGluRs located at adjacent branch microdomains,
evoking the production of a fix amount of IP3 [14]. This
process is schematically illustrated in the upper part of Fig. 2.
As shown in Fig. 2, IP3 is considered as the secondmessenger
to trigger the release of Ca2+ from endoplasmic reticulum
(ER) [25]. ER can be considered as a reservoir with higher
concentration of Ca2+ than that in cytosol.

A basic model in [26] has been used to describe the
dynamics of Ca2+ in cytosol due to the binding of IP3 with
IP3 receptors (IP3Rs) in ER. There are three main flows
within the model which are respectively shown in the ER area
in Fig. 2. JLeak represents the leakage-flux of Ca2+ from
ER into cytosol which is largely proportional to the con-
centration gradient of Ca2+ between ER and cytosol.
JPump represents the pump-flux from cytosol into ER which
needs to consume energy to maintain a concentration gradi-
ent. JChannel represents the channel-flux from ER into cytosol
which is generated due to the binding of IP3 with IP3Rs.
The elevated concentration of Ca2+ in cytosol will further

FIGURE 2. Intracellular Ca2+ dynamics in astrocytes due to IP3.

increase the open probability of IP3Rs and ryanodine recep-
tors (RyRs) [27], comprising of the mechanism known
as Calcium-Induced Calcium-Release (CICR). Nevertheless,
excessive concentration of Ca2+ in cytosol will bring down
the open probability of IP3Rs and RyRs, and the pump-
flux JPump will become the main factor until a concentration
gradient is re-established.

Calcium waves can propagate between astrocytes to incur
calcium oscillations [28]. There are many studies trying
to describe and model the properties of the gap-junction
between various astrocytes [24], as illustrated in Fig. 2.
A large number of observations indicate that the gap-junction
between astrocytes has a smaller conductance for Ca2+, but
a larger one for IP3 [29]. Therefore, the above-mentioned
IP3 might be the main factor to promote the propagation of
calcium waves between astrocytes. Besides, the activation of
phospholipase Cδ is also required for the regeneration and
propagation of calcium waves [29], as illustrated in Fig. 2.

Typically, calcium elevations occurring in branch
microdomains are much more frequent and transient than
those in the cell soma [30]. Researchers in [31] indicated that
there should be Transient Receptor Potential Ankyrin type 1
(TRPA1) or receptor-gated Ca2+-permeable ions channels in
the astrocyte membrane, through which Ca2+ could flux into
the cell from the extracellular matrix. As mentioned above,
twomain different types of neuronal activity-dependentCa2+

responses are observed in astrocytes, and thus they may
correspond to different regulations: (1) transient calcium
elevations which provide the short-range regulation within
the scale of several synapses locally, in which Ca2+ influx
through the receptor-gated ions channels can be the main
factor and (2) calcium waves which provide the long-range
regulation among neighboring astrocytes, in which IP3 can
be the main factor.

C. ASTROCYTES AS REGULATION NETWORKS
Astrocytes occupy a fundamental position in the synaptic
activity. It is suggested that the efficiency of synaptic trans-
mission through the pre-synaptic terminal will be greatly
decreased without the calcium signal [10]. Many researchers
tried to decode the calcium signal [32] [14] which can
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TABLE 1. The main symbols and acronyms.

FIGURE 3. Different levels of calcium elevations caused by different
levels of synaptic activities.

provide a regulation for the wrapped synapse. Most recep-
tors of neurotransmitters on the membrane of post-synaptic
terminal have low affinity. But the biochemical reaction
between synapses and astrocytes is largely granted by recep-
tors with high affinity and slow desensitization [12]. There-
fore, the influence might not disappear immediately whether
it comes from synapses or astrocytes.

In general, consecutive action potentials at a certain
synapse can be regarded as a discrete-time pulse sequence.
Each of them can change the synaptic state into excita-
tory or inhibitory. The synaptic state change can further
generate calcium elevations in the corresponding branch
microdomains which will provide a feedback regulation in
return. As a result, the synapse will gradually recover to
its original state until the arrival of the next action poten-
tial. In this situation, the duration of the calcium elevation
depends on the interval of two consecutive action potentials,
and the shorter one will produce a longer duration. There-
fore, the level of synaptic activities can be measured by the
level of calcium elevations. Researchers in [12] found that
increasing the level of synaptic activities would lead Ca2+

diffusing into the adjacent microdomains, and a persistent
high level would eventually make Ca2+ full of the whole
astrocyte, which is depicted in Fig. 3. In Fig. 3, (a) represents
the response of astrocytes under low intensity stimulus. The
red solid arrow represents the diffusion direction of Ca2+

while the black dotted arrow represents the feedback effect.
Fig. 3 (b) is the intermediate result of increasing the intensity
of stimulus. Fig. 3 (c) shows the final diffusion effect caused
from a synapse which is stimulated by consecutive action
potentials.

FIGURE 4. A cross regulation provided by astrocytes for nervous system.

In the classical ACO algorithm, each ant in the colony
communicates indirectly with others through the pheromone
left in a certain area. For each ant, the distribution of the
pheromone could be regarded as a pheromone map which
can influence the selection of current actions. In the nervous
system, different levels of calcium elevations could be gener-
ated in the corresponding branch microdomains within astro-
cytes due to different synaptic activities. Furthermore, these
calcium elevations can diffuse into other microdomains com-
prising an important interaction between different synapses.
Therefore, we could say that the distribution of Ca2+ within
astrocytes could be regarded as a Ca2+ concentration map
for involved synapses. Researchers in [12] supposed that
astrocytes might act as time and space integrators, decoding
neuronal information occurring in a large number of synap-
tic activities. This integration encompasses faster and more
local changes based on the rapid activation of small com-
partments along the astrocytic microdomains up to complex
multi-astrocytic and neuronal interactions that are induced by
intense and sustained activities resulting in long-term changes
in the synaptic network properties.

Astrocytes can be involved in a large number of synaptic
events because of their own morphological characteristics.
Researchers in [33] suggested that astrocytes could play the
role of an additional neuromodulatory system which acts in
complement to the neuronal ones, but with its own time and
space domains based upon the particular intrinsic proper-
ties of Ca2+ signaling which encode and integrate incoming
inputs from neurons and other environmental sources. Astro-
cytes can also be regarded as a spatial regulation network,
in which synapses could interact with others through the
intrinsic Ca2+ properties even if there is no direct neuronal
connection between them. As described in Fig. 4, this reg-
ulation network can provide a cross regulation for nervous
system.

D. STIGMERGY IN THE BRAIN
In the hippocampal stratum radiatum, the detailed 3D recon-
struction work shows that 80% synapses are coupled with
the branch microdomains, and astrocytes almost completely
wrap synapses which are rich in docked vesicles [11].
A large number of synapses with certain functions are
coupled together through astrocytes to form a potentially
collaborative nervous system, in which calcium elevations
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FIGURE 5. A comparison between general stigmergy and the mechanism
of stigmergic interactions between synapses through astrocytes.

act as an important communication method between different
neurons. Accordingly, general stigmergy can be mapped into
the mechanism of cooperative interaction between synapses.

In the nervous system, various synapses can be regarded
as different agents, and a map of Ca2+ concentration within
astrocytes can be regarded as the medium. Action potentials
can change the synaptic state into excitatory or inhibitory,
which can further generate different levels of calcium ele-
vations in corresponding branch microdomains. This pro-
cess can be regarded as leaving traces in the medium as
in general stigmergy. Astrocytes can be regarded as signif-
icant medium carriers, which maintain the map of Ca2+

concentration. Astrocytes can also provide the regulation for
the involved synapses, whose implementation benefits from
a large number of receptors with different types between
synapses and astrocytes. This effect can be regarded as the
condition provided by the medium for agents. An illustrative
comparison between general stigmergy and themechanism of
stigmergic interactions between synapses through astrocytes
is illustrated in Fig. 5.

Similar to the pheromone left by ants in a certain area,
we assume that calcium elevations which are represented by
Ca2+ ions with different concentrations can superpose lin-
early, which might comprise a positive feedback loop poten-
tially. Besides, calcium elevations in astrocytes will normally
decay with time, which comprises a negative feedback loop
and provides stability for the nervous system with controlled
cycles. Because of a limited range of influence, only state
changes reflecting the right condition of the nervous system
will superpose and have a longer duration. Through this kind
of stigmergic process, astrocytes can integrate the neuronal
changes from different sources and provide cross-regulation
in return for various individual synapses in the nervous
system.

III. STIGMERGY LEARNING MECHANISM AND MODEL
A. THE MECHANISM OF INTERACTION BETWEEN
SYNAPSES
Though there are two different types of neuronal activity-
dependent Ca2+ responses observed in astrocytes, the stig-
mergic model established in this paper is largely based on the
short-range regulations within the scale of several synapses
which are mainly provided by the transient calcium eleva-
tions. This is partly due to that there are still many con-
troversies about the substances involved in the propagation

FIGURE 6. Three phases included in the interaction between synapses.
They are respectively numbered by I, II and III.

of calcium waves across neighboring astrocytes through the
gap-junction [25]. And this part will continue to be studied
in the future work. In this section, the process in which a
synapse influences the synaptic state of another one within
the same astrocyte through the passive diffusion of Ca2+ ions
is modeled. Specifically, this process has been divided into
three phases, which are illustrated in Fig. 6.

The first phase represents the generation of calcium ele-
vations in the corresponding branch microdomain resulting
from the arrival of action potentials, which is indicated by I
in Fig. 6. At first, the concentration of Glu in synaptic cleft
released by the pre-synaptic terminal due to the arrival of an
action potential is modeled by [34]:

[TNeur ] =
Tmax

1+ exp(−Vd−Vbase
KN

)
(1)

where [TNeur ] is the concentration of Glu in synaptic cleft,
and Tmax represents its maximum value. Vd is the voltage
of dendrite in the Pinsky-Rinzel model [35], and it can be
used to roughly describe the strength of input in three phases.
Vbase and KN are parameters used to modify the sigmoid
function curve. Glu can diffuse and some of them may act
on mGluRs of neighboring branch microdomain to increase
the intracellular concentration of Ca2+ [10]:

d[Ca2+]
dt

=
vCa ·[TNeur ]n

knCa+[TNeur ]
n−

1
τCa

([Ca2+]−[Ca2+]∗) (2)

where vCa is the parameter used to regulate the amplitude
of the change rate of Ca2+ concentration and kCa is a scalar
factor. n is the power exponent, whose sign can determine two
opposite amplification effects. For example, the increase of
[TNeur ] would improve the change rate ofCa2+ concentration
if n > 0, but would reduce that if n < 0. τCa is a decay
constant. [Ca2+]∗ represents the concentration of Ca2+ at
equilibrium in cytosol. The first item in Eq. (2) expresses the
increment of Ca2+ concentration in the branch microdomain.
The second item indicates that the exorbitant concentration
of Ca2+ also decreases with time because of the concentra-
tion gradient of Ca2+ between cytosol and the extracellular
matrix.

The second phase considers the passive diffusion of
Ca2+ ions across microdomains locally, which is indicated
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FIGURE 7. (a) The calcium concentration at different time and distance. (b) The amplitude of response at different distances. (c) The amplitude of
response with different parameters.

by II in Fig. 6. The telegraph equation which considers a
finite speed of propagation on the basis of the second Fike’s
law is used here to describe the passive diffusion process
of Ca2+ [36]:

τd
∂2c(x, t)
∂t2

+
∂c(x, t)
∂t

= D∇2c(x, t)+ b(x0, t) (3)

where τd is the relaxation factor accounting for a finite
propagation speed. c(x, t) is the concentration of Ca2+ at
location x and time t . D is the diffusion coefficient which
is determined by properties of the solution. Furthermore,
b(x0, t) representing the change rate of concentration is given
by [37]:

b(x0, t) =
dc(x0, t)

dt
(4)

where x0 is the location of the initial point. b(x0, t) can
be represented by the concentration change rate of Ca2+

in Eq. (2). Since the input concentration rate is a non-zero
value only at the initial point, researchers in [37] have utilized
an analytical solution for the telegraph equation to establish a
physical end-to-end molecular communication model where
b(x0, t) is assumed to be a Dirac delta function both in time
and space (i.e., b(x0, t) = δ(x0)δ(t)):

c(x, t) = U (t−||x||/cd ) exp(−
t

2τd
)
cosh(

√
t2−(||x||/cd )2)√

t2−(||x||/cd )2

(5)

where U (·) is the step function. ||x|| is the distance from the
initial point and t represents the interval from the beginning.
cd is the propagation speed of wavefront which expresses as
cd = ±

√
D/τd . An intuitive diagram of the calcium passive

diffusion process is illustrated in Fig. 7 (a), in which the
propagation speed is set as 1 and the concentration range is
normalized between 0 and 1. In Fig. 7 (a), the concentration
of Ca2+ decays quickly with respect to both time t and
distance x after the arrival of the wavefront.

The third phase considers the regulation process provided
by branch microdomains with elevated calcium for wrapped

synapses, which is indicated by III in Fig. 6. As there are
many different methods to decode the properties of intracel-
lular calcium into the effect provided for synapses [32] [14],
we apply the result presented in [14] in which a natural
logarithmic function was used to model the relationship
between the concentration of Ca2+ in the corresponding
branch microdomain and the amplitude of slow inward cur-
rents in the pre-synaptic terminal:

Icurrent = kI2(ln y) ln y

y = [Ca2+]− Ith (6)

with regard to Eq. (6), there is a threshold value Ith for the
concentration of Ca2+ before astrocytes providing a regula-
tion. kI is a scale factor. 2 represents the Heaviside func-
tion. Icurrent is the amplitude of slow inward currents in the
pre-synaptic terminal which can represent the amplitude of
response between synapses. The threshold value Ith sets a
diffusion range of Ca2+ in Eq. (3), as calcium elevations with
low concentration provide no regulations for neighboring
synapses.

In Fig. 7 (a), there are two factors affecting the cal-
cium concentration in the diffusion process: (1) time t and
(2) distance x. To simplify the analysis, we model the ampli-
tude of response between different synapses as a distance-
dependent function whose value is obtained by sampling
as the wavefront arrives. It is intuitively expressed as the
ridge line in Fig. 7 (a). Furthermore, we can integrate the
above three phases together to describe the amplitude of
response between synapses with different distances, as illus-
trated in Fig. 7 (b). In Fig. 7 (b), the amplitude of response
decreases with the increase of synaptic distance and it also
increases with the increase of input.

The amplitude of response in the calcium diffusion process
can exhibit different properties when the relaxation factor τd
takes different values, as illustrated in Fig. 7 (c). As a contrast,
the Gaussian function which is widely used as the neigh-
borhood function in Self-Organizing Mapping (SOM) of
neural networks has also been described. The neighborhood
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FIGURE 8. The stigmergic learning mechanism.

function used in SOM can represent the similarities between
different neurons in the process of feature mapping, which
might be analogous to the role played by the diffusion pro-
cess between different synapses. In general, the amplitude
of response in the calcium diffusion process decreases faster
at smaller distances compared with the Gaussian function.
We will take advantage of this relationship between synapses
to coordinate the behaviors of agents.

Rooted in the above three interactive phases, a stigmergic
learning mechanism is proposed and illustrated in Fig. 8,
in which the communications between different agents
(i.e. synapses) labeled by different colors are indirect.
When getting a stimulus input, an agent will leave traces
(i.e. calcium elevations) which are expressed by the red solid
arrow in the outside environmental medium to affect the state
of other agents. As illustrated in Fig. 8, the amplitude of
response for the interactive influence indicated by the blue
dotted arrow is determined by the inter-synapse distance x
between agents as well as the intensity of initial stimulus s.
The intensity of initial stimulus is consistent with the level
of synaptic activity in the nervous system while the synaptic
distance can be relevant to the actual distance between the
coupled branch microdomains within astrocytes. Especially,
the inter-synapse distance x between agents can help to set up
the cross regulation which can bring more effective collab-
orations among individuals.

The traces left by different agents in the medium can
be regarded as various messages to individuals which can
influence the next step selection. Traditionally, agents cor-
rect their actions mostly according to the received feedbacks
from surrounding environment. In the absence of information
exchange with each other, an agent must experience approx-
imately the same amount of trial-and-error process in order
to reach the same level of ‘‘intelligence’’ as his workmates.
However, with the existence of the cross regulation, an agent
may shorten the ‘‘learning’’ process through receiving useful
messages implied in the traces. As the traces may contain lots
of noise signals, the inter-synapse distance x between agents
can help to decide the importance of these messages from dif-
ferent sources. For example, a smaller distance between two
agents can implicitly indicate that the messages implied in

their traces are more useful to each other. Therefore, the inter-
synapse distance adaptation between agents in the stigmergic
learning mechanism can be leveraged and well-regulated to
produce more mutually efficient collaborations.

B. SYSTEM MODEL BASED ON THE STIGMERGY IN THE
BRAIN
In [5], researchers proposed a strategy to solve the problem
of task assignment and coordination among insects colonies
based on themechanism of stigmergywithout considering the
impact of distance between insects. In this part, we redesign
this strategy by taking advantage of the regulation of inter-
synapse distance. For ease of representation, we first discuss
how the classical stigmergy model works.

For a certain task, several available agents are assumed to
be continuously selected out in a probabilistic manner from
the group to form a batch. A batch acts as a unit to take
actions at different times. This process will continue until the
objective of this task is reached. In particular, I and J denotes
the set of agents and tasks respectively, and the agent i in I is
selected to perform task j in J at index t obeying the following
probability pi,j(t), that is,

pi,j(t) =
snj (t)

snj (t)+ αθ
n
i,j(t) · βϕ

n
i,j(t)

(7)

where sj(t) is the emergency degree of jth task. α and β are
weight factors. n is the power exponent. θi,j(t) is the state
value of ith agent for jth task. ϕi,j(t) is a heuristic factor.
Here, we have changed ‘‘+’’ in [5] into ‘‘·’’ in Eq. (7)
between θi,j(t) and ϕi,j(t) in order to bring a faster conver-
gence rate. Accordingly, the advantage of this modification
will be presented in Fig. 10 and 11. Please refer to the dif-
ference between ‘‘Classical Stigmergy v.1.0’’ and ‘‘Classical
Stigmergy v.2.0’’.

In each turn, each agent in a selected batch S will take an
action and then receives a reward for this action. After each
turn, sj(t) will be updated, which is expressed as:

Rj(t) = Rj(t − 1)+
∑
m∈S

rm,j(t) (8)

sj(t) = Rj(t)/Tj (9)

where rm,j(t) is the reward that mth agent obtains in jth task
at time t from the outside environment. Rj(t) is the sum of
all received rewards at time t . Tj is the expected objective for
task j. As the accumulation of received rewards for a certain
task, sj(t) will approach to 1 and thus pi,j(t) will approach to 1
which can provide a stimulus with higher intensity for each
agent to ensure the task accomplishment.

The state value θi,j(t) of various agents for the same task
can be different in Eq. (7). After taking an action, this
state value will be updated according to the received reward
through the following equations:

θi,j(t) = θi,j(t − 1)+1θi,j(t) (10)

1θi,j(t) = ρ1 · (
1
|S|

∑
m∈S

rm,j(t)− ri,j(t)) (11)
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where ρ1 is a scale factor. 1θi,j(t) can be positive or neg-
ative, which corresponds to a low or high reward respec-
tively. In Eq. (10) and (11), for each agent, the update of
θi,j(t) can be regarded as an independent learning process,
in which the state value is adjusted according to the ‘‘trial-
and-error’’ interaction with the environment. The classical
stigmergy learning approach to the problem of task assign-
ment and coordination without considering the impact of
distance between agents is presented in Algorithm 1.

Algorithm 1 The Classical Stigmergy Learning Approach to
the Problem of Task Assignment and Coordination
1: input : the objective Tj, the batch size;
2: initialize the task emergency degree sj as 0;
3: initialize the state value θj and the heuristic factor ϕj of

each agent;
4: while (sj < 1) do
5: calculate the selection probability pi,j(t) of each agent

according to Eq. (7);
6: select a certain number of agents in a probabilistic

manner to form a batch according to the batch size;
7: agents in the batch take actions and get corresponding

rewards;
8: update sj through Tj, Rj using Eq. (8) and (9);
9: for each agent in the batch do
10: update the state value θi,j(t) as well as ϕi,j(t) accord-

ing to Eq. (10) and (11);
11: end for
12: end while
13: output : the probability of each agent

Obviously, in Algorithm 1, the interactions among agents
do not incorporate the inter-agent distance factor. Inspired by
the findings concerning inter-synapse distance, in this paper,
we propose to utilize the mechanism of interaction between
different synapses in the brain to regulate the cooperation
between agents. Concretely, the stigmergic learning mecha-
nism discussed in Section III-A is used to improve the update
of state values in Eq. (10) and (11). The stigmergy learning
approach to the problem of task assignment and coordination
considering the cross regulation is presented in Algorithm 2.
The distance matrix χ in Algorithm 2 contains the distances
between any pair of agents in the group. Conditions and
traces in the algorithm may have different representations in
different scenarios which will be described in details in the
following simulations.

IV. NUMERICAL SIMULATION AND RESULTS
In order to verify the effectiveness and advantages of the
proposed stigmergy learning model, a number of numerical
simulations with different settings have been carried out in
this section.

A. THE DISTANCE CROSS REGULATION GAIN
In this part, we primarily assume that there is only one task
and various agents in the group may have different rewards

Algorithm 2 The Stigmergy Learning Approach to the
Problem of Task Assignment and Coordination Considering
the Cross Regulation
1: input : the objective Tj, the batch size;
2: initialize the task emergency degree sj as 0;
3: initialize the state value θj and the heuristic factor ϕj of

each agent;
4: initialize the distance matrix χ between agents;
5: while (sj < 1) do
6: each agent gets its condition which may have different

meanings in different scenarios from the medium;
7: calculate the selection probability pi,j(t) of each agent

according to Eq. (7);
8: select a certain number of agents in a probabilistic

manner to form a batch according to the batch size;
9: agents in the batch take actions and get corresponding

rewards;
10: update sj through Tj, Rj using Eq. (8) and (9);
11: for each agent in the batch do
12: update the state value θi,j(t) according to its condi-

tion;
13: update the state value θi,j(t) as well as ϕi,j(t)

according to Eq. (10) and (11);
14: update the distance matrix χ between agents

according to each piece of traces received;
15: leave the trace which may have different meanings

in different scenarios in the medium to provide condi-
tions for other agents;

16: end for
17: end while
18: output : the probability of each agent

for the task. Moreover, the aim of the simulation is to select
agents which can better finish the task so as to examine the
distance cross regulation gain. In particular, a random reward
(Agent Reward) ranging from 1 to 10 is assigned to each
agent and these assigned values remain unchanged during
the whole simulation process. Moreover, several agents are
allowed to take actions together as a batch in each turn.
Besides, there is a fixed cost (Cost) for each action which is
the same for all agents. And an ability value (Agent Ability)
is randomly assigned to each agent indicating the number of
actions to be taken. The real-time ability value can also be
utilized as a heuristic factor in Eq. (7). The state values of
all agents are set to 0.5 in the initialization, and can change
between 0 and 1. Furthermore, the distance between any pair
of different agents is set to 5 in the initialization, whose
range is between 1 and 10. The main parameters used in this
subsection is illustrated in TABLE 2.

As mentioned in section II, the synaptic state change can
elevate the concentration of Ca2+ in the branch microdomain
as an input to affect the states of other synapses. Therefore,
we use the state value θi,j(t) to represent the synaptic state
of ith agent to jth task. And the synaptic state change 1θi,j(t)
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TABLE 2. The main parameters in section IV-A.

can thus play a role of traces, as illustrated in Fig. 8. Before
providing a condition which can influence the state value of
an agent, each piece of trace needs to be processed through
the diffusion process, whose final value may be determined
by the diffusion distance between two agents. Furthermore,
in a group, the influenced state value θ ′i,j(t) of an agent will be
determined by several traces from other different members,
which can be expressed as:

θ ′i,j(t) = θi,j(t)+1θi,j(t) (12)

1θi,j(t) =
∑

k∈πi(t−1)

D(dk,i(t − 1)) ·1θk,j(t − 1) · ρ2 (13)

where ρ2 is a scale factor. πi(t−1) = {Xk |k 6= i, dk,i(t−1) <
dth}. dk,i(t − 1) is the inter-synapse distance between kth and
ith agent at time t − 1, which corresponds to the distance
in Fig. 7(c). dth is a threshold value for the inter-synapse
distance. D(·) represents the distance-dependent diffusion
function which is sampled from several curves in Fig. 7(c).
1θk,j(t − 1) represents the trace left by kth agent at time
t − 1 for ith agent, which will be discounted by their synaptic
distance dk,i(t − 1).

The distance between different agents, which is relevant
to the amplitude of response or condition, is very important
for the propagation of traces. Accordingly, we further put for-
ward the following scheme to regulate the distance between
two agents after each turn according to the change 1θi,j(t):

dk,i(t) =
{
dk,i(t − 1)− η, if φ > 0
dk,i(t − 1)+ η, otherwise

(14)

φ = 1θi,j(t) ·1θk,j(t − 1) (15)

where η is a constant which decays with time. 1θk,j(t − 1)
represents a piece of trace. To some extent, the distance
between agents can also represent the similarity of these
agents participating in the same task. Therefore, the ampli-
tude of response will be larger if the similarity between two
agents is higher. The systematic stigmergy learning gain can
be obtained through the adjustment of inter-synapse distance
between agents. The pseudo code for the stigmergy learning
approach to select agents which can better finish a specified
task is presented in Algorithm 3.

Algorithm 3 The Stigmergy Learning Approach to the
Problem of Task Assignment and Coordination Considering
the Distance Regulation
1: input : the objective Tj, the batch size;
2: set the number of iterations N;
3: initialize the distance matrix χ between agents;
4: for n = 1 : N+ 1 do
5: if (n <= N) then
6: initialize the objective Tj as the re-given objective

T′j;
7: end if
8: initialize the task emergency degree sj as 0;
9: initialize the state value θj and the heuristic factor ϕj

of each agent;
10: while (sj < 1) do
11: calculate the influenced state value θ ′i,j(t) of each

agent according to Eq. (12) and (13);
12: calculate the selection probability pi,j(t) of each

agent according to Eq. (7);
13: select a certain number of agents in a probabilistic

manner to form a batch according to the batch size;
14: agents in the batch take actions and get correspond-

ing rewards;
15: update sj through Tj, Rj using Eq. (8) and (9);
16: for each agent in the batch do
17: if (n = N+ 1) then
18: update the state value θi,j(t) as θ ′i,j(t);
19: end if
20: update the state value θi,j(t) as well as ϕi,j(t)

according to Eq. (10) and (11);
21: if (n <= N) then
22: update the distance matrix χ between agents

according to each piece of trace received using Eq. (14)
and (15);

23: end if
24: leave the synaptic state change1θi,j(t) as traces

in the medium to provide conditions for other agents;
25: end for
26: end while
27: end for
28: output : the probability of each agent

In Algorithm 3, the cross regulation between agents is
determined by the distance matrix χ . The distance matrix χ
needs to be calculated in advance through N = 500 iterations.
At each iteration, the task is re-given one objective and the
distance between agents is regulated according to the synaptic
state change as well as the traces. As the result of iterations,
the state values of all agents as well as the distance matrix χ
in the group are given in Fig. 9.

In Fig. 9, agents are arranged in a descending order accord-
ing to their state values. This order also corresponds to the
agent index in the distance matrix χ . Each point with a certain
color in the distance matrix χ represents the value of the
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FIGURE 9. (a) The state value of agents and the distance matrix χ before simulations. (b) The state value of agents and the distance
matrix χ after simulations.

FIGURE 10. The performance comparison between different methods.

distance between two specified agents. It can be observed
that compared with the initial results in Fig. 9 (a), there
are roughly two clusters in the group according to the final
distribution of distance values between agents in Fig. 9 (b)
after 500 iterations. And it is basically consistent with the dis-
tribution of their state values. As mentioned above, the state
value can implicitly indicate the size of reward an agent can
obtain in the implementation of the task. For example, a small
state value normally corresponds to a large size of reward.
Therefore, in Fig. 9 (b), agents with similar rewards are
largely added into the same cluster. This relationship between
agents can bring the stigmergy learning gain for the system,
which will be verified in the following results.

FIGURE 11. The performance comparison between different methods by
changing the number of agents to 50.

Fig. 10 provides the performance comparison between the
following methods:

• Random: select agents randomly in each turn whose
results are represented as ‘‘Random’’ in Fig. 10.

• Classical Stigmergy v.1.0: the method illustrated in
Algorithm 1 which uses the addition operation in Eq. (7)
between θi,j(t) and ϕi,j(t).

• Classical Stigmergy v.2.0: the method illustrated in
Algorithm 1 which uses the multiplication operation in
Eq. (7) between θi,j(t) and ϕi,j(t).

• Stigmergy w. Distance Diffusion: the method illus-
trated in Algorithm 3, which has utilized the distance
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matrix χ presented in Fig. 9(b) to regulate the ampli-
tude of the cross regulation between different agents.
The distance-dependent diffusion function utilized in
Eq. (13) is sampled from Fig. 7(c) with τd = 0.01.

• Stigmergy w. Distance Gaussian: the method illus-
trated in Algorithm 3, which has utilized the distance
matrix χ presented in Fig. 9(b) to regulate the ampli-
tude of the cross regulation between different agents.
The distance-dependent diffusion function utilized in
Eq. (13) is sampled from the Gaussian function.

• Optimal: select agents optimally in each turn whose
results are represented as ‘‘Optimal’’ in Fig. 10.

• MC: Monte Carlo estimation method [38] which tries
to directly estimate the actual reward of each agent.
The estimated reward of each agent can normally be
calculated by the average value of all received rewards.
Agents with larger estimated reward will be given pref-
erence during the selection in each turn. In the Monte
Carlo estimation method, estimation of the reward will
become more accurate as the number of repetitions
increases.

In Fig. 10, Rj represents the sum of all received rewards
in the group. It can be observed that all methods can finally
complete the task. ‘‘Classical Stigmergy v.2.0’’ seems to
perform better than ‘‘Classical Stigmergy v.1.0’’, which has
verified the effectiveness of the modification in Eq. (7). And
‘‘Classical Stigmergy v.2.0’’ seems to perform better than
‘‘MC’’ as the former has utilized the feedback information
more adequately through the adjustment of the state value.
There seems to be no difference between ‘‘Stigmergy w.
Distance Diffusion’’ and ‘‘Stigmergy w. Distance Gaussian’’,
but they both obtain significant system gains through the
cross regulation between agents compared with ‘‘Classical
Stigmergy v.2.0’’. Finally, to make the results more convinc-
ing, we have increased the number of agents in the group
to 50 without changing other conditions and give the results
in Fig. 11. It can be observed that the result still hold. As more
agents participate in this group, ‘‘Stigmergy w. Distance
Diffusion’’ or ‘‘Stigmergy w. Distance Gaussian’’ can obtain
even a larger system gain compared with ‘‘Classical Stig-
mergy v.2.0’’, which has verified the effectiveness of the cross
regulation between agents.

B. THE IMPACT OF THE CROSS REGULATION
The purpose in this simulation is to move a fixed number of
moving agents in a certain area to form a specified shape,
where agents will share some distance-based information so
as to verify the effectiveness of the cross regulation.

Different from the last simulation, agents in this part are
all the same. An action of each agent is designed to move a
block towards one of four directions: (1) up (2) down (3) left
(4) right. As illustrated in Fig. 12 (a), the white block repre-
sents an agent which currently has four directions to move.
The black block represents a location where an agent can
move, but if this position is already occupied by agents, this

agent will stop beside the position. There are totally two
different areas in the overall area classified by the target
shape: (1) the labeled area which represents the locations
where agents need to move (2) the unlabeled area which
represents the other locations.

Algorithm 4 The Coordination Method Of Moving Agents
To Form A Specified Shape
1: input : the objective Tj, the batch size;
2: initialize the task emergency degree sj as 0;
3: initialize the labeled area;
4: initialize the digital pheromone in the total area;
5: initialize the sensing radius and locations of agents;
6: initialize the state value θj and the heuristic factor ϕj of

each agent;
7: while (sj < 1) do
8: each agent updates the concentration of digital

pheromones in the sensing area;
9: calculate the selection probability pi,j(t) of each agent

according to Eq. (7);
10: select a certain number of agents in a probabilistic

manner to form a batch according to the batch size;
11: for each agent in the batch do
12: agent selects an attraction according to Eq. (18);
13: agent moves one step in the direction of the attrac-

tion.
14: agent gets the reward for this moving according to

TABLE III;
15: end for
16: update sj through Tj, Rj using Eq. (8) and (9);
17: for each agent in the batch do
18: update the state value θi,j(t) as well as ϕi,j(t) accord-

ing to Eq. (10) and (11);
19: update the distance between agents according to

their locations;
20: leave digital pheromones as traces in the current

location to provide conditions for other agents according
to Eq. (16);

21: end for
22: end while
23: output : locations of agents

In order to make the moving of agents more effective,
we need to determine the priority of their movements. For
example, the moving of an agent located at the unlabeled area
is normally prior to the moving of an agent located at the
labeled area. We have used the probability pi,j(t) in Eq. (7)
to determine the priority of each agent. And an agent with
larger probability normally corresponds to a higher priority.
Several agents are selected out from the group to form a batch
in each turn. These agents in the batch can choose to move a
step based on their own selections. And after each turn, each
agent in the batch will receive a predefined reward based on
its current location and the number of neighboring occupied
positions as illustrated in TABLE 3. Agents which have less
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TABLE 3. The reward values in Section IV-B.

number of neighboring occupied positions and are not in
the labeled area are designed to receive larger rewards. This
received reward can be used to update the state value θi,j(t)
of each agent in the batch according to Eq. (10) and (11).
Different from its utilization in the last simulation, Rj(t) in
Eq. (8) is not updated by the received rewards. It is directly
determined by the number of agents in the labeled area.
Therefore, Tj in Eq. (9) is determined by the number of agents
needed to fill in the labeled area.

In addition to the ability moving in a specified direc-
tion, each agent can also have the following four abilities:
(1) leaving digital pheromone in the current location
(2) sensing the concentration of digital pheromone within
a certain range (3) identifying whether the current location
is labeled or unlabeled (4) sensing the existence of neigh-
bors in the up, down, left and right directions. Similar to
the pheromone left by ants, we use the concept of digital
pheromone to represent the trace left at one particular location
by agents. After each turn, each agent in the group will leave
the digital pheromone in its current location according the
following conditions:

ph(m, n)(t) =

{
ph(m, n)(t − 1)+ 1, if (m, n) is labeled
ph(m, n)(t − 1) · 0.5, otherwise

(16)

where ph(m, n)(t) represents the concentration of digital
pheromone in the location of (m, n) at time t . Digital
pheromones can be superimposed adding the remaining con-
centration left by different agents at previous times. Besides,
the concentration of digital pheromone will decline with time
to provide a negative feedback for the system.

As each agent can sense digital pheromones with different
concentrations and locations within its sensing area, a moving
direction need to be determined in order to approach the
block with digital pheromone, as illustrated in Fig. 12 (b).
In Fig. 12 (b), the white dotted circle represents the sensing
area of an agent. And the yellow blocks represent the loca-
tions which have digital pheromones with different concen-
trations. These yellow blocks will attract agents to approach
and can also be occupied. An agent normally needs to make a
selection from several blocks with digital pheromones which
can also be regarded as attractions. During the simulation,
each agent will select its attraction in a probabilistic manner,

FIGURE 12. (a) The moving method of each agent. (b) The digital
pheromones within the sensing area of an agent.

FIGURE 13. The performance comparison in different methods.

that is:

Ci,j =
εj∑
j∈ξi εj

(17)

where Ci,j represents the probability of agent i selecting
block j. εj represents the concentration of digital pheromone
in block j. ξi represents the set of blocks with digital
pheromones within the sensing area of agent i. Considering
the cross regulation, we add a distance-dependent function to
the selection of attraction, that is:

Ci,j =
D(di,j) · εj∑
j∈ξi D(di,j) · εj

(18)

where di,j represents the distance between agent i and block j.
In the simulation, as blocks with digital pheromones are
normally occupied by other agents, di,j can thus be regarded
as the distance between two agents.

As shown in Fig. 13, the size of the total area is 28×28.
In the original picture, the white part is set as the labeled
area and the black part is set as the unlabeled area. The
labeled area contains 119 locations which need to be occupied
by 119 agents. The main parameters of the simulation are
shown in TABLE 4. In TABLE 4, Sensing Radius indicates
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FIGURE 14. (a) Simulation results with SensingRadius/4 in the labeled area. (b) Simulation results with SensingRadius/3 in the labeled area. (c)
Simulation results with SensingRadius/2 in the labeled area.

FIGURE 15. (a) Simulation results with 100 agents in the total area. (b) Simulation results with 119 agents in the total area. (c) Simulation results with
140 agents in the total area.

the sensing area of each agent in the unlabeled area. Here,
we assume that the distance between two neighboring blocks
is 1. The pseudo code for the coordination method of agents
to form a specified shape is shown in Algorithm 4.

The performance comparison in different methods are
shown in Fig. 13. t represents the number of batches. The
results in each method is averaged after 5 runs. We use
the similarity between the image formed by agents and the
original picture to represent the quality of results, which can
be expressed by the value of sj(t) in Eq. (9). The similar-
ity in the method of ‘‘Stigmergy w. Distance Diffusion’’,
‘‘Stigmergyw.DistanceGaussian’’ and ‘‘Classical Stigmergy
v.2.0’’ are 95.8%, 94.1% and 86.5% respectively. It can be
observed that ‘‘Stigmergy w. Distance Diffusion’’ or ‘‘Stig-
mergyw.DistanceGaussian’’ performs better than ‘‘Classical
Stigmergy v.2.0’’. With the same number of iterations,
‘‘Stigmergy w. Distance Diffusion’’ or ‘‘Stigmergy w. Dis-
tance Gaussian’’ can get better moving results. Besides,
compared with ‘‘Stigmergy w. Distance Gaussian’’,
‘‘Stigmergy w. Distance Diffusion’’ gets small improvements
in performance.

In Fig. 13, the sensing radius of an agent in the unlabeled
area is set 10, while the sensing radius is set 3.33 when
an agent is in the labeled area. The reason is that a small
sensing radius in the labeled area can prevent an agent

TABLE 4. The main parameters in Section IV-B.

continuously jumping between several attractions and can
avoid potential ping-pang effects. Accordingly, the simula-
tion results with different sensing radius in the labeled area
are presented in Fig. 14. In Fig. 14, the value of Sensing
Radius is 10. It can be observed that the performance of
‘‘Classical Stigmergy v.2.0’’ improves as an agent has a
smaller sensing radius in the labeled area. Compared with
‘‘Classical Stigmergy v.2.0’’, ‘‘Stigmergy w. Distance Diffu-
sion’’ or ‘‘Stigmergy w. Distance Gaussian’’ has a better per-
formance and is less sensitive to the change of sensing radius
in the labeled area. There are almost no differences between
the performance of ‘‘Stigmergy w. Distance Diffusion’’ and
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‘‘Stigmergy w. Distance Gaussian’’ when the sensing radius
in the labeled area is set 2.5 in Fig. 14(a). The reason is that an
agent will focus more on the nearest few locations regardless
of the distance-dependent function. Consistent with results
in Fig. 13, it can be observed in Fig. 14(b), ‘‘Stigmergy
w. Distance Diffusion’’ performs better than ‘‘Stigmergy w.
Distance Gaussian’’. In Fig. 14(c), ‘‘Stigmergy w. Distance
Diffusion’’ and ‘‘Stigmergy w. Distance Gaussian’’ are both
limited to a large value of sensing radius in the labeled area,
as too many blocks with digital pheromones are presented
before an agent which is easy to jump among different attrac-
tions.

We have also changed the number of agents in the total
area but left the size of the labeled area unchanged. The
simulation results are presented in Fig. 15. The sensing radius
of an agent in the labeled area is also set 3.33. In Fig. 15 (a),
the maximal value of the similarity is 84.03%, and it is 100%
in Fig. 15(b) and 15(c), which are consistent with their upper
limits. It can be observed that ‘‘Stigmergy w. Distance Dif-
fusion’’ or ‘‘Stigmergy w. Distance Gaussian’’ still performs
better than ‘‘Classical Stigmergy v.2.0’’ when the number of
agents is different.

The above results have proved that the cross regulation
plays an important role for the cooperation of agents in the
stigmergy learning mechanism. It can help focus the attention
of an agent on more important attractions and avoid irrelevant
noise. In the simulation, the cross regulation can improve the
quality of agents forming a specified shape and speed up the
convergence.

V. CONCLUSIONS
Stigmergy phenomena are widely discovered in natural
colonies and perform well through the way of collective
collaboration. Inspired by the new discoveries on astrocytes
in synaptic transmission, we have explored and mapped stig-
mergy in the regulation of synaptic activities in the brain.
In particular, the short-range interaction between agents
(synapses) has been thoroughly studied and a stigmergic
learning system model has been put forward. We have found
that the regulation of distances between agents plays an
important role in the proposed model. The well-regulated
distances between agents can bring gain for the system.
We have verified its importance in two different simulations
by exploiting different cross regulation definitions. However,
there is still a long way to fully model the interaction between
synapses. For example, for the long-range regulation, the par-
ticipation of IP3 must be taken into account, which will be our
future research work.
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