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ABSTRACT In conventional cellular networks, for base stations (BSs) that are deployed far away from
each other, it is general to assume them to be mutually independent. Nevertheless, after long-term evolution
of cellular networks in various generations, this assumption no longer holds. Instead, the BSs, which seem
to be gradually deployed by operators in a service-oriented manner, have embedded many fundamentally
distinctive features in their locations, coverage, and traffic loading. These features can be leveraged to
analyze the intrinstic pattern in BSs and even human community. In this paper, according to large-scale
measurement datasets, we build up a correlation model of BSs by utilizing one of the most important
features, i.e., spatial traffic. Coupling with the theory of complex networks, we make further analysis on
the structure and characteristics of this traffic load correlation model. Numerical results show that the degree
distribution follows scale-free property. Also, the datasets unveil the characteristics of fractality and small-
world. Furthermore, we apply collective influence algorithm to localize the influential base stations and

demonstrate that some low-degree BSs may outrank BSs with larger degree.

INDEX TERMS Base Station, wireless networks, complex networks, scale-free, collective influence.

I. INTRODUCTION

As the theory of complex networks gets increasingly
developed, it has been successfully applied to understand
the embedded property in a variety of real-world com-
plex systems from various fields, such as social, ecological,
biological and public transport networks [1]-[4]. In spite
of the significant differences in these real-world networks,
several prominent properties, including scale-free (SF)
pattern, small-world, and fractality, are proven to hold in
common and contribute a lot to better understanding complex
networks. Scale-free pattern can be depicted by a Power-
law function with respect to the degree distribution, i.e.
P(k)~k~*, where A is the degree exponent and the degree
k denotes the number of links to a node [3]. Small-world
means that although the size of network N (or the number
of nodes) is very large, the average distance d between two
randomly chosen nodes is small, being well approximated
by d~InN [4]. Fractality [5], [6], which could be generally
evaluated by the box-covering algorithm [5]. Specifically,
fractality implies that when the size of one covering box is Ly,
the minimum number of boxes N, required to tile the entire
networks should follow Np~L, b , where d, is the fractal
dimension [3].

On the other hand, cellular networks have been undergo-
ing a long history of evolution and gradually accumulated
unique spatial distribution pattern, as base stations (BSs) are
continually deployed to provision the ever-increasing mobile
traffic in hotspots accompanied by the global popularity of
smart phones and tablets. Accordingly, by taking advantage
of realistic traffic records from cellular networks, we can
leverage the theory of complex networks to answer what is
the intrinsic evolved nature in cellular networks? In particular,
what is the relationship between two BSs that are distant from
each other? In order to answer these questions, we first create
a spatial traffic correlation model of BSs by regarding BSs as
nodes and the traffic correlation between BSs as edges. Then,
we analyze the structure and properties of this spatial traffic
correlation model and derive the corresponding results in
the networks. Interestingly, we discover that there exist three
key properties, i.e., scale-free pattern, fractality, and small-
world. It should be noted that fractality contradicts the small-
world property in essence, since the former is mainly due to
the repulsion between nodes of large degree (e.g. hubs) in
disassortative networks while the latter is just the reverse [2].
Hence, in order to provide more evidence to prove our results,
we try to validate the results from another perspective, by
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calculating the Pearson coefficient and the correlation profile
of the spatial traffic correlation model. Then, we extract its
skeleton to search for the most close pairs of BSs and the
skeleton is found to be fractal as well. The definition and
description of network skeleton will be given with details in
the following sections.

Furthermore, after analyzing the structural properties, we
try to identify influential BSs in cellular networks based on
the spatial traffic correlation model. Besides the two exten-
sively used heuristic methods focusing on node degree (i.e.,
high-degree and high-degree adaptive), we also leverage the
collective influence (CI) [7], [8] algorithm to evaluate the
influence of each BS and find that CI algorithm performs
most effectively. Particularly, we extract the most influential
500 BSs sorted by CI to verify whether the high-degree BSs
are more significant in our spatial traffic correlation model.

The remainder of this paper is organized as follows.
We review related work in Section 2. In Section 3, we briefly
introduce the real measurement datasets and necessary math-
ematical background.

Section IV describes the procedures to establish the spa-
tial traffic correlation model. Based on such a model, in
Section V, we study the degree distribution and uses three
methods to identify the influential BSs. Section VI focuses on
the structural and characteristic analyses in cellular networks.
Finally, Section VII concludes this work.

Il. RELATED WORK

There has been a substantial body of works similar to our
work. In regarding to the structural analysis of complex
networks, the seminal work that provided first evidence
of fractal analysis of complex networks is by Song et al.
in [2], [5]. The authors aimed at probing the patterns, i.e.,
self-similarity under the length-scale transformation, within
the network structure by applying box-covering and cluster-
growing methods [5]. Further study concentrates on the
growth mechanisms of various complex networks, which
contributes to understanding the origins of fractality. More-
over, the importance of modular structures and the improved
robustness from the fractality property are discussed in [2].
Meanwhile, empirical results show that many real complex
networks have one or more fundamental properties [1]-[5].
To our best knowledge, there are few studies associating
complex networks with traditional cellular networks, so as to
find the intrinstic pattern in cellular networks.

On the other hand, there have also been some works about
the spatial and temporal distribution of traffic loads in cellular
networks [9]-[11]. Based on large-scale practical mobile data
traffic records, Qi et al. [9] demonstrated the self-similarity
and burstiness characteristics in mobile data traffic series.
Lee et al. [10] used traffic records collected from 5763 cells
to analyze the spatial distribution of the traffic density. Also
they introduced a new measure (i.e., coherence distance) to
analyze the spatial traffic correlations and the related findings
contribute to the more reasonable design of cellular net-
works. H. Wang et al. [11] characterized the spatio-temporal
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TABLE 1. The datasets of BSs and the traffic information.

BS information
City A \

Attributes | City B

2G cellular network | 3G cellular network

1441 microcells

Network Type

BS Type 4132 macrocells 2053 microcells

. Longitude, Longitude,
Location latitude latitude
No. of BSs 5573 2053

Traffic information

One hour Half an hour
7 days 1 day

Traffic Resolution
Duration

distribution of mobile traffic, and described the distribution
by the trimodal distribution on the basis of numerical results.
All the existing works have contributed to a better under-
standing of cellular networks from the perspective of either
practical traffic loads or mathematical theory. Different from
the existing works, we propose a new model (i.e., spatial
traffic correlation model) as a combination of both sides,
which leverages traffic loads to create a complex network.

Ill. BACKGROUND

A. DATA ACQUISITION AND PREPARATION

We acquire the real measurement data from one of the biggest
commercial mobile operator in China, which contains the
information of traffic and BSs from a second-generation (2G)
cellular network in City A and the counterpart from a third-
generation (3G) cellular network in City B. Specifically, the
traffic data is measured in the unit of bytes that each BS
transmits to the serving users. The related traffic for City A
and City B lasts 7 days and 1 day, with one-hour and half-hour
granularity, respectively. Therefore, for one BS, the traffic
series for City A and City B could be regarded as a vector
of 168 entries and 48 entries, respectively. Meanwhile, we
plot the BS deployment with the geographical landforms in
Fig. 1. Moreover, the BS related information such as BS type,
location area and geographic location is avaiable as well and
more details are summarized in Table 1.

B. FUNDAMENTAL KNOWLEDGE OF GRAPH THEORY
Generally, the analyses of many real-world complex networks
could leverage the fruits from graph theory. Without loss of
generality, in graph theory, denote an undirected network as
G(V,E), where V is the set of nodes, E is the set of edges
and e; € E represents the link between node i and node j.
The degree of node i is defined as the number of its linked
neighbours [12]. Meanwhile, any undirected network can be
described by a corresponding adjacency square matrix W
with the dimension of N, where N is the size of the network.
Each element w;; € W equals one if there exists a link
between node i and node j, and zero otherwise [13].

C. BOX-COVERING ALGORITHM

As a widely used technique for characterizing fractal net-
works and calculating their fractal dimensions, box-covering
algorithm has experienced a number of distinct versions since
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(a)

(b)

FIGURE 1. An illustration of the deployment of base stations in two typical cities with geographical landforms. (a) City A. (b) City B.

the generalized box-covering algorithm was introduced by
Song et al. [5]. The random sequential (RS) box-covering
algorithm [3] is not suitable in our work due to its low
efficiency in finding the minimum number of boxes among
all the possible tiling configurations. Therefore, we adopt
a slightly improved algorithm in [14] and detailed steps is
shown in Algorithm. 1.

Algorithm 1 Box-Covering Algorithm
input: undirected network : G = (V, E), adjacency matrix
w;
output: S;
initialization:
setS =0,L, = 1.
repeat
Cc={1,2,...,N};
Np =0;
repeat
randomly choosen a node i in C;
find the set R of nodes that have a distance larger than
L, from node i;
Np =Ny +1;
set C = R;
until (C == @)
set S =S+ {Np};
setLp =L+ 1;
until (L, == network diameter)

Additionally, the box number N, derived from this algo-
rithm may not be the minimum number of the corresponding
size Lp. In order to solve this problem, we repeat the process
1000 times and obtain 1000 values for each L, expecting
that the maximum of them can approximate the desired
value.

VOLUME 5, 2017

IV. MODELING PROCESS

A. BASICS

In this part, we build undirected graph with BSs as nodes.
Here, the traffic load of BS i can be expressed by a traffic
load vector x; = [x;(1), x;(2), ..., xi(T)], where T equals
168 and 48 for City A and City B, respectively. Afterwards,
we calculate Pearson correlation coefficient between any two
traffic vectors and assume the corresponding results as the
value. For BS i and BS j, the Pearson correlation coefficient
is defined as:

o — TZX,'Xj—inij
! \/T >Yx— (in)z\/T Yxf = (Cx)?

Apparently, the Pearson correlation coefficients vary along
with the traffic similarity between BSs. For many trivial
coefficients, the correlation between these two BSs could
be neligible. Accordingly, we set a threshold Z to evaluate
the existence of one link between two BSs by comparing
pij and Z. Namely, if p; is larger than Z, we think there
exist a link between BS i and BS j. In other words, we derive
the adjacency matrix W undirected graph from the calculated
Pearson coefficient. After obtaining the graph, we observe
that some BSs (nodes in the graph) are isolated from all the
other BSs and have a zero degree. Therefore, we intentionally
delete such nodes from the built graph.

ey

B. THRESHOLD SELECTION

In the process of modeling, choosing the appropriate thresh-
old Z is of great significance for our study. Thus, two aspects
should be taken into consideration to choose the threshold Z.
On one hand, Z should be large enough, so as to avoid
mistakenly assuming weakly correlated BSs to be linked.
On the other hand, the choosen threshold needs to ensure
the proportion of isolated BSs is relatively low for keeping a
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FIGURE 2. Degree distributions of City A and City B with threshold
being 0.54.

TABLE 2. Data reprocessing and degree Distribution analysis of
two cities.

. Network Number of Rate of Degree
City  Threshold Size N Isolated BSs  Isolated BSs Expoﬁem A
0.50 5046 527 9.46% 1.0394
0.52 4800 773 13.87% 1.0593
0.54 4494 1079 19.36% 1.1298
A 0.56 4120 1453 26.07% 1.1489
0.58 3711 1862 33.41% 1.2049
0.60 3287 2286 41.02% 1.2581
0.65 2228 3345 60.02% 1.4088
0.50 2050 3 0.15% 2.2790
0.54 2042 11 0.54% 2.5951
0.56 2031 22 1.07% 2.5955
B 0.58 2002 51 2.48% 2.6544
0.60 1974 79 3.85% 2.6191
0.65 1807 246 11.98% 2.5635
0.70 1521 532 25.91% 2.6483

substantial graph size. In our work, we would like to process
the datasets of the two cities with various threshold values Z,
ranging from 0.5 to 0.7. Afterwards, we are going to analyze
the relevant properties based on the spatial traffic correla-
tion models we just established. As we expected, no matter
how the threshold Z changes, the properties of our model
remain the same and more detailed information is shown in
Table 2 and 3. Without loss of generality, we fix the spatial
traffic correlation model and study the targeted properties in
Section V and Section VI with the threshold Z being equal
to 0.54.

V. ANALYSIS AND APPLICATION OF DEGREE
DISTRIBUTION
A. DEGREE DISTRIBUTION
As depicted in Section 2, the spatial traffic correlation model
is built in terms of the traffic loads and contributes to under-
standing the underlying relationship of BSs, which can not
be directly observed from brief information such as locations
(e.g., longitude and latitude) or BS types.

After setting up the spatial traffic correlation model, an
adjacency matrix W can be obtained while the definition of
degree refers to the number of BSs that are highly correlated
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TABLE 3. Structure and property analysis of two cities.

. fractal Network Average Clustering Pearson
City  Threshold dimension dy, Size N Distance d  Coefficient — Coefficient r
0.50 3.7944 5046 3.7944 0.5146 0.1461
0.54 3.0348 4494 4.5257 0.5144 0.1535
A 0.56 3.5422 4120 4.9610 0.5094 0.1577
0.58 2.7239 3711 5.5517 0.5009 0.1603
0.60 2.4134 3287 6.5524 0.4843 0.1761
0.65 2.3755 2228 6.8535 0.5214 0.1593
0.50 3.7120 2050 2.9981 0.4972 0.5378
0.54 3.5027 2042 3.3947 0.5177 0.5362
B 0.58 3.1010 2002 3.9098 0.5342 0.5291
0.60 3.0007 1974 42315 0.5378 0.5221
0.65 3.0286 1807 5.2704 0.5470 0.5143
0.70 3.3045 1521 6.5584 0.5439 0.5042

with a chosen BS. In other words, the degree of BS i can be
expressed by

k=Y wy )
J

Meanwhile, P(k) is defined as the probability that a ran-
domly chosen vertex (BS) has degree k [12]. Since the num-
ber of BSs in City A is 5573, an adjacency square matrix
with the dimension of 5573 can be obtained. It is verified
that the obtained degree distributions are scale-free and obvi-
ously satisfy Power-law with almost constant exponents A
for various thresholds Z that are larger than 0.5 in Table 2.
Recalling the former statements in Section 3 and uniting the
numerical results in Table 2, although our conclusion remains
the same under different thresholds Z, we advise that the
suitable value of threshold Z can be set within the range from
0.5 to 0.6 to make sure the proportion of removed BSs is
acceptable. As illustrated in Fig. 2, we provide the fitting
results of the degree distributions of City A and City B.
In general, the spatial traffic correlation model points to the
property of scale-free and help us to know which BSs have
higher degree values. The scale-free property from the traffic
load correlation model clearly demonstrates that the minority
of BSs with larger degree are highly correlated with plenty of
other BSs, while the other remaining BSs are only correlated
with a few number of BSs.

Remark 1: Based on the spatial traffic correlation model,
empirical and fitting results reveal that its degree distribution
can be well depicted by a Power-law function. Specifically,
few nodes are highly popular while most of the nodes are less
popular in the network.

B. IDENTIFYING INFLUENTIAL BSs

Influential nodes usually play a decisive role on maintaining
the network connectivity, enhancing network stability and
improving the information transmission efficiency [15]-[17].
Similarly, the influential BSs can take more important roles
in cellular networks. For example, cellular networks have
already employed macrocell BS as the signaling node, so the
macrocell BSs are more suitable to be influential nodes due
to their greater coverage capability and being more easily
to predict the tendency of BS traffic loads. As a result, it is
imperative to pick out the most important BSs so as to assign
them more functions such as signaling control. Given that it is
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FIGURE 3. Performance of Cl in correlation model compared with
heuristic methods (HD, HDA).

critical to investigate how to find out the most influential BSs,
we apply two heuristic strategies to identify the influential
BSs considering our correlation model. Moreover, based on
the theory of influence maximization in complex networks,
we further employ the CI algorithm for localizing the most
influential BSs [7], [8].

Generally, the influential nodes are defined as a set of
nodes, which is much smaller than the total network size,
however, if removed, would break down the network into
many disconnected components. At a general level, we use
the size of the giant connected component to measure the
remaining network structure when the influential nodes are
removed from the network. In this paper, we aim at finding
out the minimal set that guarantees a global connection of
the network and the size of this minimal set g.. The size
of the giant connected component can be expressed by G(q)
after removing a certain fraction g of the network size. Then,
our problem corresponds to finding the optimal set whose
removal would dismantle the network [7]:

gc = min{q € [0, 1] : G(¢g) = 0} 3

Collective influence is an effective algorithm in terms of
finding the most influential nodes, which removes nodes one-
by-one according to their CI value:

Ch=®k—1 > (k-1 “

j€dBall(i,l)

where Ball(i, 1) is the ball of radius / centered on node i, and
0Ball(i, I) is the frontier of the ball, which is the set of nodes
at distance / from node i. The CI algorithm removes the node
with the highest CI;(i) value at each step, and the process is
repeated until the giant component is destroyed [7].

Fig. 3 shows the optimal threshold g, for the traffic load
correlation model of City A and City B. In the same figure, we
compare the optimal threshold against the other two heuristic
methods: high-degree (HD), high-degree adaptive (HDA).
For both cities, CI produces a smaller threshold, which
represents a better performance of this algorithm.
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FIGURE 4. a): The location of the most influential 250 base stations of
City A is shown in the geographic space and the degree is color coded.
b): The counterpart of the remaining 250 base stations of City A.

Afterwards, according to the optimal set of nodes found
by the CI algorithm, we display the locations of the most
influential 500 base stations of City A in the map and color
codes each BS’s degree in Fig. 4 and Fig. 5. From the two
figures, we observe that among the most influential base
stations extracted by the CI algorithm, a large number of low-
degree BSs even exhibit a greater influence than some high-
degree BSs. That is to say, we should pay more attention to
those influential BSs even with low-degree, comparing with
the high-degree BSs with less influence.

Remark 2: According to numerical results, degree is not
always a better criteria in measuring the node influence.
Namely, a number of low-degree BSs appear to be more
significant than some BSs with larger degree values.
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FIGURE 5. a): The location of the most influential 250 base stations of
City B is shown in the geographic space and the degree is color coded.
b): The counterpart of the remaining 250 base stations of City B.

VI. STRUCTURAL PROPERTIES OF THE TRAFFIC LOAD

CORRELATION MODEL
A. FRACTAL PATTERNS

One important property that exists in many complex and real-
world networks is fractality [18]. In fractal geometry [19],
box-covering [5] is widely used to approximately evaluate the
fractal dimension of a fractal object. Based on this method,
fractal networks can be characterized by the following scaling
relations:

Ny(Lp)/N ~ L, ® (5)

where L;, denotes the size of boxes used to cover the network
and Np(Lp) is the minimum number of boxes among all the
possible tiling configurations with the box size equaling to L.
Accordingly, the fractal dimension can be calculated through
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FIGURE 6. Fractal patterns of City A and City B with the same
threshold K 0.54.

the following equation:
dy ~ Tim 0ENHLR) ©6)
L,—~0 —logLy
In reality, the value of d), can be obtained by fitting the
slope between log Np(Lp) and log L,. After these early-
stage preparations, we employ the box-covering method to
investigate the traffic load correlation model of BSs. In this
paper, we carry out the fractal pattern analysis with the size of
box varying from 1 to the diameter of network, namely, 17 for
City A and 7 for City B. Fig. 6 shows the results from the box-
covering algorithm applied in City A and City B, respectively.
As illustrated in Fig. 6, for City A, the relation between
log(Np) and log(Lp) can be well-fitted by a straight line,
which implies a clear fractal property of the network. More-
over, the fractal dimension dj;, approximates 3.0348 with
the R square value being 0.9460 denoting the good fitness
of the curve. Meanwhile, for City B, the fractal dimension
approaches 3.5027 with the R square value being 0.9532.

B. SKELETON FEATURES
Regardless of the entanglement, a network always possesses
a “skeleton” to simply represent the network structure and
understand the topological organization [20]. The skeleton
is a particular spanning tree consisting of edges with the
highest betweenness centralities [14]. Plenty of researches
have elaborated the importance of skeleton in understanding
the topological organization of a complex network.

Basically, skeleton is thought to be a maximum spanning
tree. Thus, the skeleton of our correlated BSs network is
a spanning tree connected by the most close links, whose
topology can be regarded as the core of the correlated BSs
network. Inspired by the classical Prim and Kruskal algo-
rithms for building the minimum spanning tree, we propose a
modified algorithm to find out the skeleton of the traffic load
correlation model (i.e. Algorithm 2).

Following Algorithm 2, we extract the skeletons for the
spatial traffic correlation models and study their degree
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Algorithm 2 Modified Algorithm Used to Extract Skeleton
input: G = (V, E), adjacency matrix W;
betweenness centralities matrix EC;
output:P, Q;
initialization:
set P = {vi}, 0 = 0.
repeat
find the maximum value EC(p, v),p € P,v € V;
set P =P+ {v};
set Q= Q0+ {pv};

until (P ==V)

distribution along with fractality. Numerical results verify
that the skeletons are also scale-free with exponent values
A equaling 2.214 and 2.152 for City A and B. Furthermore,
after tiling the skeletons with the box-covering algorithm, the
number of boxes needed to cover the networks is almost iden-
tical with the original networks. The box-covering analysis
results of the original network, the skeleton and the random
spanning tree are provided in Fig. 7. According to the curves,
the relevant results express that although the random spanning
tree possesses a different statistics of Ny, the fractal dimen-
sions of the random spanning tree and the original network
are just the same. Meanwhile, the fractality of the skeleton
matches the fractality of the original correlation model very
well. Hence, understanding the properties of the skeleton is
of great importance for analyzing the original model.

Remark 3: Detailed analyses explain the special structure
(i.e., fractal patterns) of spatial traffic correlation model.
In the meantime, its skeleton, which exhibits identical fea-
tures, is of great contribution for analyzing the original
network.

C. FURTHER EXPLORATION ON SMALL-WORLD

The small-world property usually coexists with scale-free
networks [21]. Specifically, small-world property refers to the
average distance d scales logarithmically with the network
size N as d~InN. Another indispensable characteristic of
small-world networks is their high clustering coefficient [12].
Structural analysis of the traffic load correlation model tells
us that the size is 4494 for City A while its average distance d
equals to 4.5257. The relationship between d and N conforms
to the above equation. City B with size 2042 and d equaling
to 3.3947 also meets this mathematical expression. Moreover,
the clustering coefficients can also be obtained, being equal
to 0.5144 and 0.5177, respectively, which represents a highly
clustering feature. We do ensure that the spatial traffic corre-
lation model of BSs possesses the small-world property and
more supporting evidences are given in the following as well
as in Table 3.

1) Pearson Coefficient
Degree of assortativity is one of the important features
to describe network. Degree-degree correlations can be
characterized by Pearson coefficient, which is defined
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as:
MUY, kik = MUY, Sk + k)P
r =
MUY, S02 kD) — MY, ki + k)P
™)

ejj

where M denotes the total number of edges, k; and k;
are the degrees of the two vertices at the ends of edge
ejj. The Pearson coefficient r ranges from -1 to 1,
being positive for assortative networks and negative
for disassortative ones. The Pearson coefficients of our
models are 0.1535 and 0.5362 for City A and City B,
respectively. In other words, the spatial traffic correla-
tion models are assortative [22].
2) Correlation Profile

Correlation profile is a metric of great importance to
explain the structural information and the statistical
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FIGURE 8. a): Correlation profile to compare the hub-hub correlation
emerging from the correlation model of City A. b): Correlation profile to
compare the hub-hub correlation emerging from the correlation model
of City B.

property of correlation between the nodes within a
network configuration [17]. The correlation profile is
defined as:

R(k1, ko) = P(ky, k2)/Pr(ky, k2) ®)

where P(k1, k) is the joint probability distribution rep-
resenting the probability of finding a node with & links
connected to a node with kp links. While P, (ky, kp)
is acquired by randomly swapping of the links with
the degree distribution remaining unchanged. The plot
of the ratio R(k1, k») demonstrates a correlated struc-
ture that deviates from the random uncorrelated case.
We apply this metric to depict the correlation models

and the corresponding results are shown in Fig. 8.
From Fig. 8, we observe that the models exhibit a higher
degree of correlation, namely, nodes with large degree tend
to be connected with nodes of large degree and vice versa,
which is the primary cause that contributes to the small-world
behavior. While the emergence of scale-free fractal networks
is due to the repulsion between nodes of large degree, fractal-
ity seems to be contradicted with small-world phenomenon.
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Nevertheless, empirical results suggest that there exist
networks with the simultaneous appearance of both fractal
and small-world properties, for which a mathematical gener-
ation model has been given in [2].

We have demonstrated that the spatial traffic correlation
model of BSs expresses scale-free, fractal and small-world
properties simultaneously, which will further facilitate the
performance analysis of complex cellular networks as well
as the design of efficient networking protocols. Firstly, scale-
free behavior signifies the heterogeneous network structure.
In particular, the minority of BSs are correlated with a
large number of BSs, which may play pivot roles in cellular
networks. Secondly, fractality explains the possibility that
the degree distribution might remain unchanged under scale
transformation and leads to network self-similarity. More-
over, for a topological structure with fractality, we can find
some regualrities from its special topology and irregularity,
which contibutes to more effective resource assignment based
on dynamic BSs management. Finally, the discovery of small-
world property means that, despite the large-scale feature of
the traffic load correlation model, the traffic association on
base stations is very compact.

VIl. CONCLUSIONS

In this paper, we have proposed a unique approach to establish
the spatial traffic correlation model for the base stations in
complex cellular networks, leveraging a traffic load vector
with the elements being the traffic data crossing each BS in a
certain interval. We first created the spatial traffic correlation
model according to the Pearson coefficient values between
various BSs. Afterwards, based on the correlation model,
we discovered that the spatial correlation structure is scale-
free along with the coexistence of fractality and small-world
feature, after careful verification in terms of common metrics
in the literature. Additionally, we extracted the skeleton of
the spatial correlation model in order to search for the most
compact pairs of BSs to obtain the most significant links
in our model. Moreover, we conducted some comparisons
between CI algorithm and two best heuristic methods to
pick out the set of the most influential base stations. Finally,
several suggestions on the potential main applications in real
networking scenarios were provided in Section V.
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