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The Learning and Prediction of Application-Level
Traffic Data in Cellular Networks

Rongpeng Li, Zhifeng Zhao, Jianchao Zheng, Chengli Mei, Yueming Cai, and Honggang Zhang

Abstract— Traffic learning and prediction is at the heart of the
evaluation of the performance of telecommunications networks
and attracts a lot of attention in wired broadband networks.
Now, benefiting from the big data in cellular networks, it becomes
possible to make the analyses one step further into the application
level. In this paper, we first collect a significant amount of
application-level traffic data from cellular network operators.
Afterward, with the aid of the traffic “big data,” we make a com-
prehensive study over the modeling and prediction framework
of cellular network traffic. Our results solidly demonstrate that
there universally exist some traffic statistical modeling character-
istics at a service or application granularity, including α-stable
modeled property in the temporal domain and the sparsity in
the spatial domain. But, different service types of applications
possess distinct parameter settings. Furthermore, we propose a
new traffic prediction framework to encompass and explore these
aforementioned characteristics and then develop a dictionary
learning-based alternating direction method to solve it. Finally,
we examine the effectiveness and robustness of the proposed
framework for different types of application-level traffic. Our
simulation results prove that the proposed framework could
offer a unified solution for application-level traffic learning and
prediction and significantly contribute to solve the modeling and
forecasting issues.

Index Terms— Big data, cellular networks, traffic prediction,
α-stable models, dictionary learning, alternative direction
method, sparse signal recovery.

I. INTRODUCTION

TRAFFIC learning and prediction in cellular networks,
which is a classical yet still appealing field, yields a

significant number of meaningful results. From a macroscopic
perspective, it provides the commonly believed result that
mobile Internet will witness a 1000-folded traffic growth in
the next 10 years [1], which is acting as a crucial anchor
for the design of next-generation cellular network architecture

Manuscript received April 28, 2016; revised September 14, 2016 and
January 16, 2017; accepted March 26, 2017. Date of publication March 30,
2017; date of current version June 8, 2017. This work was supported by the
Program for Zhejiang Leading Team of Science and Technology Innovation
under Grant 2013TD20, in part by the Zhejiang Provincial Technology Plan of
China under Grant 2015C01075, and in part by the the National Postdoctoral
Program for Innovative Talents of China under Grant BX201600133. The
associate editor coordinating the review of this paper and approving it for
publication was J. Tang. (Corresponding author: Zhifeng Zhao.)

R. Li, Z. Zhao, and H. Zhang are with Zhejiang University,
Hangzhou 310027, China (e-mail: lirongpeng@zju.edu.cn; zhaozf@
zju.edu.cn; honggangzhang@zju.edu.cn).

J. Zheng and Y. Cai are with PLA University of Science and
Technology, Nanjing 210007, China (e-mail: longxingren.zjc.s@163.com;
caiym@vip.sina.com).

C. Mei is with the China Telecom Technology Innovation Center, Beijing
100045, China (e-mail: meichl@ctbri.com.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2017.2689772

and embedded algorithms. On the other hand, the fine traffic
prediction on a daily, hourly or even minutely basis could
contribute to the optimization and management of cellular
networks like energy savings [2], opportunistic scheduling [3],
and network anomaly detection [4] . In other words, a precisely
predicted future traffic load knowledge, which contributes
to improving the network energy efficiency by dynamically
configuring network resources according to the practical traffic
demand [5], [6], plays an important role in designing greener
traffic-aware cellular networks.

Our previous research [7] has demonstrated the microscopic
traffic predictability in cellular networks for circuit switching’s
voice and short message service and packet switching’s data
service. However, compared to the more accurate prediction
performance for voice and text service in circuit switching
domain, the state-of-the-art research in packet switching’s
data service is still not satisfactory enough. Furthermore, the
fifth-generation (5G) cellular networks, which is under the
standardization and assumed to be the key enabler and
infrastructure provider in the information communication tech-
nology industry, aim to cater different types of services
like enhanced mobile broadband (eMBB) with bandwidth-
consuming and throughput-driving requirements, ultra-reliable
low latency service (URLLC), etc. Hence, if we can detect
the coming of the service with higher priority, we can timely
reserve and specifically configure the resources (e.g., shorter
transmission time interval) to guarantee the service provi-
sioning. In a word, a learning and prediction study over
application-level data traffic might contribute to understanding
data service’s characteristics and performing finer resource
management in the 5G era [8]. But, as listed in Table I, the
applications (i.e., instantaneous message (IM), web brows-
ing, video) in cellular networks are impacted by different
factors and also significantly differ from those in wired
networks. Hence, instead of directly applying the results
generated from wired network traffic, we need to re-examine
the related traffic characteristics in cellular networks and check
the prediction accuracy of the application-level traffic. In order
to obtain general results, we firstly collect a significant amount
of practical traffic records from China Mobile.1 By taking
advantage of the traffic “big data”, we then confirm the
preciseness of fitting α-stable models to these typical types of
traffic and demonstrate α-stable models’ universal existence
in cellular network traffic. We later show that α-stable models

1It is worthwhile to note here that we also collect another dataset from China
Telecom to further verify the effectiveness of the thoughts inside in this paper.
Due to the space limitation, we put the results related to China Telecom dataset
in a separate file available at http://www.rongpeng.info/files/sup_file_twc.pdf.
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TABLE I

THE DIFFERENCES FOR APPLICATIONS IN CELLULAR AND WIRED NETWORKS

can be used to leverage the temporally long range dependence
and guide linear algorithms to conduct the traffic prediction.
Besides, we find that spatial sparsity is also applicable for the
application-level traffic and propose that the predicted traffic
should be able to be mapped to some sparse signals. In this
regard, benefiting from the latest progress in compressive
sensing [9]–[12], we could calibrate the traffic prediction
results with the transform matrix unknown a priori. Finally,
in order to forecast the traffic with the aforementioned charac-
teristics, we formulate the prediction problem by a new frame-
work and then develop a dictionary learning based alternating
direction method (ADM) [12] to solve it.

A. Related Work

Due to its apparent significance, there have already existed
two research streams toward the fine traffic prediction issue in
wired broadband networks and cellular networks [7]. One is
based on fitting models (e.g., ON-OFF model [13], ARIMA
model [14], FARIMA model [15], mobility model [16], [17],
network traffic model [17], and α-stable model [18], [19])
to explore the traffic characteristics, such as spatial and
temporal relevancies [20] or self-similarity [21], [22], and
obtain the future traffic by appropriate prediction methods.
The other is based on modern signal processing techniques
(e.g., principal components analysis method [23], [24],
Kalman filtering method [24], [25] or compressive sensing
method [2], [12], [23], [26]) to capture the evolution of traffic.
However, it is useful to first model large-scale traffic vectors
as sparse linear combinations of basis elements. Therefore,
some dictionary learning method [27] is necessary to learn
and construct the basis sets or dictionaries.

However, the existing traffic prediction methods in this
microscopic case still lag behind the diverse requirements of
various application scenarios. Firstly, most of them still focus
on the traffic of all data services [28] and seldom shed light on
a specific type of services (e.g., video, web browsing, IM, etc).
Secondly, the existing prediction methods usually follow
the analysis results in wired broadband networks like the
α-stable models2 [29], [30] or the often accompanied self-
similarity [21] to forecast future traffic values [15], [19], [22].

2In this paper, the term “α-stable models” is interchangeable with α-stable
distributions.

TABLE II

DATASET 1 UNDER STUDY

But the corresponding results need to be validated before being
directly applied to cellular networks [7], since cellular net-
works have more stringent constraints on radio resources [31],
relatively expensive billing polices and different user behaviors
due to the mobility [32] and thus exhibit distinct traffic
characteristics.

B. Contribution

Compared to the previous works, this paper aims to answer
how to accurately model, effectively profile, and efficiently
predict mobile traffic at an application or service granularity.
Belonging to one of the pioneering works toward application-
level traffic analyses, we take advantage of a large amount of
practical records (as summarized in Table II and Table III) and
provide the following key insights:

• Firstly, this paper visits α-stable models and confirms
their accuracy to model the application-level cellular
network traffic for all three service types (i.e., IM, web
browsing, video). To our best knowledge, it is the first in
the literature to find an appropriate model for application-
level traffic in cellular networks and show the modeling
accuracy of α-stable models. Moreover, this paper shows
the application-level traffic obeys the sparse property and
demonstrates the distinct characteristics among different
service types. Therefore, the paper contributes to a gen-
eral understanding of the cellular network traffic.

• Secondly, in order to encompass and explore these
aforementioned characteristics, this paper provides a
traffic prediction framework in Fig. 1. Specifically,
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TABLE III

DATASET 2 UNDER STUDY

Fig. 1. Illustration of application-level traffic prediction framework.

the proposed framework consists of an “α-Stable Model
& Prediction” module to generate coarse prediction
results, a “Sparsity & Dictionary Learning” module to
impose a sparse constraint and refine the prediction
results, and an “Alternating Direction Method” module to
provide the algorithmic details and obtain the final results.

• Thirdly, this paper further demonstrates appealing predic-
tion performance by extensive simulation results. In other
words, this paper proves the existence and effectiveness
of a unified solution for application-level mobile traffic.
Hence, it could simplify the modeling, analyses and
prediction for application-level traffic and contribute to
the building of service-aware networks in the 5G era.

The remainder of the paper is organized as follows.
In Section II, we first present some necessary background of
required mathematical tools. In Section III, we introduce the
dataset for traffic prediction analyses and later talk about the
characteristics (i.e., α-stable models and spatial sparsity) of
the application-level dataset. In Section IV, we propose a new
traffic prediction framework and its corresponding solution.
Section V evaluates the proposed schemes and presents the
validity and effectiveness. Finally, we conclude this paper in
Section VI.

Notation: In the sequel, bold lowercase and uppercase letters
(e.g., x and X) denote a vector and a matrix, respectively. (·)T

denotes a transpose operation of a matrix or vector. ‖x‖0 is an
l0-norm, counting the number of non-zero entries in x, while
an l p-norm ‖x‖p , p ≥ 1 of a 1× n vector x = (x1, · · · , xn)

is defined by p
√∑n

i |xi |p . The operation 〈x, y〉 denotes the
summation operation of element-wise multiplication in x and
y with the same size. sgn(x) with respect to x ∈ R is defined
as sgn(x) = x/|x | when x �= 0; and sgn(x) = 0 when x = 0.

II. MATHEMATICAL BACKGROUND

A. α-Stable Models

Following the generalized central limit theorem, α-stable
models manifest themselves in the capability to approximate
the distribution of normalized sums of a relatively large
number of independent identically distributed random vari-
ables [33] and lead to the accumulative property. Besides,
α-stable models produce strong bursty results with properties
of heavy tailed distributions and long range dependence.
Therefore, they arise in a natural way to characterize the
traffic in wired broadband networks [34], [35] and have been
exploited in resource management analyses [36], [37].

α-stable models, with few exceptions, lack a closed-form
expression of the probability density function (PDF) and are
generally specified by their characteristic functions.

Definition 1: A random variable T is said to obey α-stable
models if there are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤
β ≤ 1, and μ ∈ R such that its characteristic function is of
the following form:

�(ω) = E(exp jωT )

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
{
−σα|ω|α

(
1− jβsgn(ω) tan

πα

2

)
+ jμω

}
,

α �= 1;
exp

{
−σ |ω|

(
1+ j

2β

π
sgn(ω) ln |ω|

)
+ jμω

}
,

α = 1.

(1)

Here, the function E(·) represents the expectation operation
with respect to a random variable. α is called the characteristic
exponent and indicates the index of stability, while β is identi-
fied as the skewness parameter. α and β together determine the
shape of the models. Moreover, σ and μ are called scale and
shift parameters, respectively. In particular, if α = 2, α-Stable
models reduce to Gaussian distributions.

Furthermore, for an α-stable modeled random variable T ,
there exists a linear relationship between the parameter α and
the function �(ω) = ln {−Re [ln (�(ω))]} as

�(ω) = ln {−Re [ln (�(ω))]} = α ln(ω)+ α ln(σ ), (2)

where the function Re(·) calculates the real part of the input
variable.

Usually, it’s challenging to prove whether a dataset follows
a specific distribution, especially for α-stable models without
a closed-form expression for the PDF. Therefore, when a
dataset is said to satisfy α-stable models, it usually means
the dataset is consistent with the hypothetical distribution and
the corresponding properties. In other words, the validation
needs to firstly estimate parameters of α-stable models from
the given dataset and then compare the real distribution of the
dataset with the estimated α-stable model [35]. Specifically,
the corresponding parameters in α-stable models can be deter-
mined by maximum likelihood methods, quantile methods, or
sample characteristic function methods [34], [35].
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B. Sparse Representation and Dictionary Learning

In recent years, sparsity methods or the related compres-
sive sensing (CS) methods have been significantly investi-
gated [9]–[12]. Mathematically, sparsity methods aim to tackle
this sparse signal recovery problem in the form of

min ‖s‖0,
s.t . y = Ds, (3)

or

min ‖s‖0,
s.t . ‖y − Ds‖ ≤ ι. (4)

Here, s denotes a sparse signal vector while y denotes a
measurement vector based on a transform matrix or dictionary
D. Besides, ι is a predefined integer indicating the sparsity.
By leveraging the embedded sparsity in the signals, sparsity
methods could successfully recover the sparse signal with a
high probability, depending on a small number of measure-
ments fewer than that required in Nyquist sampling theorem.
Basis pursuit (BP) [38], one of typical sparsity methods, solves
the problem in terms of maximizing a posterior (MAP) crite-
rion by relaxing the l0-norm to an l1-norm. On the other hand,
orthogonal matching pursuit (OMP) [39] greedily achieves
the final outcome in a sequential manner, by computing
inner products between the signal and dictionary columns and
possibly solving them using the least square criterion.

For sparsity methods above, there usually exists an assump-
tion that the transform matrix or dictionary D is already known
or fixed. However, in spite of their computation simplicity,
such pre-specified transform matrices like Fourier transforms
and overcomplete wavelets might not be suitable to lead to a
sparse signal [40]. Consequently, some researchers proposed to
design D based on learning [27], [40]. In other words, during
the sparse signal recovery procedure, machine learning and
statistics are leveraged to compute the vectors in D from the
measurement vector y, so as to grant more flexibility to get
a sparse representation s from y. Mathematically, dictionary
learning methods would yield a final transform matrix by
alternating between a sparse computation process based on
the dictionary estimated at the current stage and a dictionary
update process to approach the measurement vector.

III. APPLICATION-LEVEL TRAFFIC DATASET AND

ITS CHARACTERISTICS

A. Traffic Dataset Description

In this paper, our datasets are based on a significant number
of practical traffic records from China Mobile in Hangzhou,
an eastern provincial capital in China via the Gb interface
of 2G/3G cellular networks or S1 interface of 4G cellular
networks [41]. Specifically, the datasets encompass nearly
6000 cells’ location records3 with more than 7 million sub-
scribers involved. The datasets also contain the information

3Indeed, at one specific location, there might exist several cells operating
on different frequencies or modes. For simplicity of representation, in the
following analyses, we merge the information for different cells at the same
location into one.

Fig. 2. Traffic variations of applications in different service types in the
randomly selected (single) cells.

like timestamp, corresponding cell ID, and traffic-related
application-layer information, thus being possible for us to
differentiate applications. In particular, we can determine web
browsing service and video service by the applied HTTP
protocol and streaming protocol respectively, while we assume
traffic records to belong to the IM service, after fitting them
to the learning results of regular IM packet pattern (e.g., port
number, Internet protocol address, and explicit application-
layer information in the header). Moreover, the traffic volume
could be calculated after aggregating packets to each influx
base station. Notably, the paper aims to predict the traffic
volume in each BS instead of the entire cellular network.

According to the traffic resolution (e.g., the traffic collection
interval, namely 5 minutes and 30 minutes), the collected
data can be sorted into two categories. Table II summarizes
the information of per 5-minute traffic records collected on
September 9th, 2014 with Weixin/Wechat,4 HTTP Web
Browsing, and QQLive Video5 selected as the representatives
of these three service types. Here, the term “no. of active
cells” refers to the number of cells where a specific type of
service happened. Similarly, Table III lists the corresponding
details of per 30-minute traffic records from July 14th, 2014 to
July 27th, 2014 with QQ,6 HTTP Web Browsing, and QQLive
Video as the representatives, respectively.

Based on the datasets in Table II and Table III, Fig. 2
illustrates the traffic variations generated by these applications
in the randomly selected cells. Indeed, the phenomena in
Fig. 2 universally exist in other individual cells and lead to
the following insight.

Remark 1: Different services exhibit distinct traffic char-
acteristics. IM and HTTP web browsing services frequently

4Weixin/Wechat provides a Whatsapp-alike instant messaging service devel-
oped by Tencent Inc. and is one of the most popular mobile social applications
in China with more than 400 million active users.

5QQLive Video is a popular live streaming video platform in China.
6QQ is another instant messaging service developed by Tencent Inc.

with more than 800 million active users. Due to some practical reasons,
per 30-minute Weixin traffic records are unavailable. Therefore, Table III
includes QQ’s traffic records.
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TABLE IV

THE PARAMETER FITTING RESULTS IN THE α-STABLE
MODELS BASED ON DATASET 1

TABLE V

THE PARAMETER FITTING RESULTS IN THE α-STABLE

MODELS BASED ON DATASET 2

produce traffic loads; while distinct from them, video service
with more sporadic activities may generate more significant
traffic loads.

For simplicity of representation, we introduce a traffic
vector x, whose entries archive the volume of traffic in one
given cell at different moments. Furthermore, by augmenting
the traffic vectors for different cells, we refer to a traffic matrix
X to denote the traffic records in an area of interest. Then,
every row vector of traffic matrix indicates traffic loads at
one specific cell with respect to the time while every column
vector reflects volumes of traffic of several adjacent cells at
one specific moment. Specifically, for a traffic resolution 
t ,
X (i, t) in a traffic matrix X denotes traffic loads of cell i from
t to t +
t .

Remark 2: Traffic prediction can be regarded as the pro-
cedure to obtain a column vector x̂ p = X̂(:, t)T at a future
moment t , based on the already known traffic records. Each
entry x̂ (i)

p in x̂ p corresponds to the future traffic for cell i .

B. The α-Stable Modeling and Sparse Properties

In this section, we examine the results of fitting
the application-level dataset to α-stable models. Firstly,
in Table IV and Table V, we list the parameter fitting results
using quantile methods [42], when we take into consideration
the traffic records in three randomly selected cells (each for
one service type) of Table II and Table III and quantize the
volume of each traffic vector into 100 parts.

Afterwards, we use the α-stable models, produced by the
aforementioned estimated parameters, to generate some ran-
dom variable and compare the induced quantized cumula-
tive distribution function (CDF) with the real quantized one.
Table IV and Table V summarize the related fitting parame-
ters. Notably, as the parameter μ indicates the shift of the
probability density function (PDF) and equals the mean of the
variable when α ∈ (0, 1), the PDF for some negative interval
is non-zero and then it makes no sense for the cellular network
traffic when μ < 0. Consequently, in the stricter sense, when

Fig. 3. Illustration of the PDF induced by α-stable models.

Fig. 4. For different service types, α-stable model fitting results versus the
real (empirical) ones in terms of the cumulative distribution function (CDF).

we discuss the α-stable modeling, we only consider the non-
negative interval of the variable and normalize the PDF during
such an interval with practical meaning. Mathematically, for
a variable X with the PDF P(X), the normalized PDF P̄(X)
could be expressed as

P̄(X = x) =

⎧
⎪⎨
⎪⎩

P(x)∫
y≥0 P(y)dy

, x ≥ 0;
0, x < 0.

(5)

For example, Fig. 3(a) illustrates the PDF of an α-stable
modeled video service with α = 0.51, β = 1, σ = 136.52
and different μ. From Fig. 3(a), when μ varies, the PDF
shifts accordingly. For the video service with μ = −341.15,
we actually talk about the normalized PDF in Fig. 3(b). Fig. 4
presents the corresponding comparison between the simulated
results and the real ones. Notably, due to the quantization in the
real and estimated CDF, if the PDF at the first quantized value
does not equal to zero (e.g., 0.3 for Fig. 4(a) and Fig. 4(b)), the
corresponding CDF will start from a positive value. As stated
in Section II-A, if the simulated dataset has the same or
approximately same distribution as the real one, the empirical
dataset could be deemed as α-stable modeled. Therefore,
Fig. 4 indicates the traffic records in these selected areas
could be simulated by α-stable models. We also perform the
Kolmogorov-Smirnov (K-S) goodness-of-fit (GoF) test [43]
and compare the K-S GoF values and the 95%-confidence
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Fig. 5. Preciseness error CDF for all the cells after fitting �(ω) with respect
to ln(ω) to a linear function.

thresholds in Table IV and Table V. From the tables, the GoF
values are smaller than the thresholds, which further validates
the conclusion drawn from Fig. 4.

On the other hand, recalling the statements in Section II,
for an α-stable modeled random variable X , there exists a
linear relationship between the parameter α and the function
�(ω) = ln {−Re [ln (�(ω))]}. Thus, we fit the estimated
parameter α with the computing function �(ω) and provide
the preciseness error CDF for all the cells in Fig. 5. According
to Fig. 5, the normalized fitting errors for 80% cells in both
datasets are less than 0.02. Therefore, the practical application-
level traffic records follow the property of α-stable models
(in Eq. (2)) and further enhance the validation results by Fig. 4.
Moreover, different application-level traffic exhibits different
fitting accuracy. In that regard, the video traffic in Fig. 5(c)
has the minimal fitting error, while the fitting error of the web
browsing traffic in Fig. 5(b) is the largest. But, the fitting error
quickly decreases along with the increase in traffic resolution,
since a larger traffic resolution means a confluence of more
application-level traffic packets and could better demonstrate
the accumulative property of α-stable models.

Remark 3: Due to their generality, α-stable models are
suitable to characterize the application-level traffic loads in
cellular networks, even though it might not be the most
accurate one.

Indeed, the universal existence of α-stable models also
implies the self-similarity of application-level traffic [21].
Hence, in the following sections, it is sufficient to only
present and discuss the results from Dataset 1 in Table II.
On the other hand, the phenomena that application-level
traffic universally obeys α-stable models can be explained as
follows. Our previous study [44] unveiled that the message
length of one individual IM activity follows a power-law
distribution. Moreover, according to the generalized central
limit theorem [45], the sum of a number of random variables
with power-law distributions decreasing as |x |−α−1 where
0 < α < 2 (and therefore having infinite variance) will tend
to an α-stable model as the number of summands grows.

Hence, the application-level traffic within one cell follows
α-stable models, as the traffic distribution within one cell can
be regarded as the accumulation of lots of IM activities.

Additionally, data traffic in wired broadband networks [23]
and voice and text traffic in circuit switching domain of
cellular networks [2] prove to possess the spatio-temporal
sparsity characteristic. Indeed, the application-level traffic spa-
tially possesses this sparse property as well. Fig. 6 depicts the
traffic density in 10AM and 4PM in randomly selected dense
urban areas. Here, the traffic density is achieved by dividing
the cell traffic of each BS by the corresponding Voronoi cell
area [46]. When the derived traffic density in one cell is
comparatively larger than that in others, it is depicted as a
red “hot spot”. As shown in Fig. 6, there appear a limited
number of traffic hotspots and the number of “hot spots”
change in both temporal and spatial domain. This spatially
clustering property is also consistent with the findings in [20]
and proves the traffic’s spatial sparsity. It can also be observed
that that the locations of “hot spots” are also service-specific.
In other words, different services have distinct requirements on
bandwidth, thus leading to various types of user behavior. For
example, video service, which usually consumes huge traffic
budget and only is affordable for few subscribers, yield only
the smallest number of “hot spots”.

Remark 4: The application-level traffic dataset further vali-
dates that the traffic for different service types of applications
follows a spatially sparse property. Besides, compared to IM
and web browsing service, video service exhibits the strongest
sparsity.

IV. APPLICATION-LEVEL TRAFFIC

PREDICTION FRAMEWORK

Section III unveils that the application-level cellular network
traffic could be characterized by α-stable models and obey the
sparse property. In this section, we aim to fully take advantage
of these results and propose a new framework in Fig. 1 to
predict the traffic. The proposed framework consists of three
modules. Among them, the “α-Stable Model & Prediction”
module would take advantage of the already known traffic
knowledge to learn and distill the parameters in α-stable
models and provide a coarse prediction result. Meanwhile, the
“Sparsity & Dictionary Learning” module imposes constraints
to make the final prediction results satisfy the spatial sparsity.
But, these two modules inevitably add multiple parameters
unknown a priori and thus need specific mathematical oper-
ations to obtain a solution. Hence, the proposed framework
also contain an “Alternating Direction Method” module to
iteratively process the other modules and yield the final result.

A. Problem Formulation

Previous sections unearth several important characteristics
in application-level traffic in cellular networks, including
spatial sparsity and temporally α-stable modeling. All these
factors could be leveraged for forecasting the future traffic
vector x̂ p .
• Temporal modeling component. As Section III-B states,

the application-level traffic loads follow α-stable models.
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Fig. 6. Application-level cellular network traffic density in 10AM and 4PM in randomly selected dense urban areas for three service types of applications.
The area for IM, Web Browsing, and Video contains 23, 39, 35 active cells, respectively.

Therefore, benefiting from the substantial body of works
towards α-stable model based linear prediction [29], [35],
coarse prediction results can be achieved by computing
linear prediction coefficients in terms of the least mean
square error criterion, the minimum dispersion criterion,
or the covariation orthogonal criterion [18]. Due to its
simplicity and comparatively low variability, the covari-
ation orthogonal criterion [18], [19] is chosen in this
paper to demonstrate the α-stable based linear prediction
performance.
Without loss of generality, assume that there exist N cells
in the area of interest. For a cell i ∈ N with a known
n-length traffic vector x(i) = (x (i)(1), · · · ), x̂ (i)

α in
α-stable models-based predicted traffic vector x̂α =(

x̂ (1)
α , · · ·

)
is approximated by

x̃ (i)
α =

m∑

j=1

a(i)( j)x (i)(n + 1− j), (6)

with 1 < m ≤ n, where a(i) = (a(i)(1), · · · , a(i)(m))
denotes the prediction coefficients by α-stable models-
based linear prediction algorithms. For example, in order
to make the 1-step-ahead linear prediction x̃ (i)

α covari-
ation orthogonal to x (i)(t),∀t ∈ {1, · · · , n}, coefficient
a(i)(h),∀h ∈ {1, · · · , m} should be given as [35]

a(i)(h)

=
m∑

l=1

⎡
⎣

n∑

j=max(h,l)

x (i)( j − l + 1)(x (i)( j − h + 1))<α−1>

×
n∑

j=l+k

x (i)( j)
(

x (i)( j − k − l + 1)
)<α−1>

⎤
⎦ .

Here, the signed-power ν<α−1> = |ν|(α−1)sgn(ν).
For simplicity of representation, the terminology
“(n = 36, m = 10, k = 1)-linear prediction” is used to
denote a prediction method, which firstly utilizes n = 36
consecutive traffic records in one randomly selected cell,
then calculates m = 10 prediction coefficients, and finally
predicts the traffic value at the next (i.e., k = 1) moment.

• Noise component. For any prediction algorithm, there
dooms to exist some prediction error. Therefore, final
traffic prediction vector x̂ p is approximated by x̂α plus
Gaussian noise z.7 Combining the temporal modeling and
noise components, x̂ p could be achieved by

min
x̂ p,x̂α,z

‖x̂α − x̃α‖22 + λ1‖z‖22,
s.t . x̂ p = x̂α + z, (7)

x̃α =
(

x̃ (1)
α , · · · , x̃ (N)

α

)
, (8)

x̃ (i)
α =

m∑

j=1

a(i)( j)x (i)(n + 1− j),

∀i ∈ {1, · · · , N} . (9)

For simplicity of representation, we omit constraints in
Eq. (8) and Eq. (9) in the following statements.

• Spatial sparse component. In Section III-B, application-
level traffic is shown to exhibit the spatial sparsity.
Therefore, x̂ p could be further refined by minimizing the
gap between x̂ p and a sparse linear combination (i.e.,
s ∈ R K×1) of a dictionary D ∈ R N×K , namely

min
x̂ p,D,s

‖x̂ p − Ds‖22, s.t . ‖s‖0 ≤ ε. (10)

Notably, in Fig. 6, we observe sparse application-level
cellular network traffic density. In other words, there
merely exist few traffic spots with significantly large
traffic volume. On the other hand, in the area of sparse
representation, a l0-norm, which counts the number of

7There are two reasons leading to the assumption that noise is Gaussian
distributed. Firstly, Gaussian distributed noise is widely used to characterize
the fitting error between models and practical data. Secondly, we have
conducted an experiment to examine the prediction performance of a simple
(n = 36, m = 10, k = 1)-linear prediction procedure and found that the
prediction procedure could well predict the traffic trend. However, there would
exist some gap between the real traffic trace and the predicted one. But,
Fig. 7 indicates that the prediction error can be approximated by the Gaussian
distribution. The K-S test further shows the GoF statistics for the IM, web
browsing and video services are 0.0319, 0.0657 and 0.0437, respectively,
smaller than the 95%-confidence threshold (i.e., 0.3507). So, we model the
prediction error by Gaussian distribution.
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Fig. 7. Result by fitting the prediction error to a Gaussian distribution, after
an α-stable model-based (36, 10, 1)-linear prediction method.

nonzero elements in the vector, is often used to charac-
terize the sparse property. Therefore, in Eq. (10), we use a
l0-norm to add the sparse constraint to the final optimiza-
tion problem. Moreover, the exact representation of the
dictionary, which the previous sparsity analyses do not
mention, remains a problem and would be solved later.

Therefore, it is natural to consider the original dataset as a
mixture of these effects and propose a new framework to
combine these two components together to get a superior
forecasting performance.

In order to capture the temporal α-stable modeled varia-
tions while keeping the spatial sparsity, a new framework is
proposed as follows:

min
x̂ p,x̂α,z,D,s

‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂ p − Ds‖22,
s.t . x̂ p = x̂α + z, ‖s‖0 ≤ ε.

Due to the nonconvexity of l0-norm, the constraints in
Eq. (11) are not directly tractable. Thanks to the sparsity
methods discussed in Section II-B, an l1-norm relaxation is
employed to make the problem convex while still preserving
the sparsity property [47]. Therefore, Eq. (11) can be refor-
mulated as

min
x̂ p,x̂α,z,D,s

‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂ p − Ds‖22,
s.t . x̂ p = x̂α + z, ‖s‖1 ≤ ε.

where ε is a predefined constraint, similar to ε.
Remark 5: This proposed framework integrates the tem-

poral modeling and spatial correlation together. Moreover,
by adjusting λ1 and λ2 to some extreme values, it’s easy to
show that the framework in Eq. (11) is closely tied to some
typical methods in other references.
• If λ1 and λ2 are extremely small, the framework

is simplified to a simple α-stable linear prediction
method [18], [19].

• If λ2 is extremely large, the spatial sparsity factor domi-
nates in the framework [23].

B. Optimization Algorithm

In order to optimize the generalized framework, we first
reformulate Eq. (11) by taking advantage of the augmented
Lagrangian function [48] and then develop an alternating
direction method (ADM) [12] to solve it. Specifically, the
corresponding augmented Lagrangian function can be formu-
lated as

L(x̂ p, x̂α, z, D, s, m, γ , η)

� ‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂ p − Ds‖22
+〈m, x̂ p − x̂α − z〉 (11)

+ γ · ‖s‖1 (12)

+ η · ‖x̂ p − x̂α − z‖22. (13)

Besides, m and γ are the Lagrangian multipliers, while
η is a factor for the penalty term. Essentially, the aug-
mented Lagrangian function includes the original objective,
two Lagrange multiplier terms (i.e., Eq. (11) and Eq. (12)),
and one penalty term converted from the equality constraint
(i.e., Eq. (13)). Specifically, introducing Lagrange multipliers
conveniently converts an optimization problem with equality
constraints into an unconstrained one. Moreover, for any
optimal solution that minimizes the (augmented) Lagrangian
function, the partial derivatives with respect to the Lagrange
multipliers must be zero [49]. Additionally, the penalty terms
enforce the original equality constraints. Consequently, the
original equality constraints are satisfied. Besides, by including
Lagrange multiplier terms as well as the penalty terms, it’s not
necessary to iteratively increase η to ∞ to solve the original
constrained problem, thereby avoiding ill-conditioning [48].

The ADM algorithm progresses in an iterative manner.
During each iteration, we alternate among the optimiza-
tion of the augmented function by varying each one of
(x̂ p, x̂α, z, D, s, m, γ , η) while fixing the other variables.
Specifically, the ADM algorithm involves the following steps:

1) Find x̂α to minimize the augmented Lagrangian function
L(x̂ p, x̂α, z, D, s, m, γ , η) with other variables fixed.
Removing the fixed items, the objective turns into

arg min
x̂α

‖x̂α − x̃α‖22
+〈m, x̂ p − x̂α − z〉 + η · ‖x̂ p − x̂α − z‖22,

which can be further reformulated as

arg min
x̂α

1

η
· ‖x̂α − x̃α‖22 + ‖x̂α − (x̂ p − z + m

2η
)‖22.

(14)

Letting J x̂α
= x̂ p − z + m

2η and setting the gradient of
the objective function in Eq. (14) to be zero, it yields

x̂α = 1

η + 1
· (x̃α + η · J x̂α

). (15)

2) Find z to minimize the augmented Lagrangian function
L(x̂ p, x̂α, z, D, s, m, γ , η) with other variables fixed.
The corresponding mathematical formula is

arg min
z

λ1‖z‖22 + 〈m, x̂ p − x̂α − z〉
+ η · ‖x̂ p − x̂α − z‖22.
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Similarly, it can be reformulated as

arg min
x̂α

λ1

η
· ‖z‖22 + ‖z − (x̂ p − x̂α + m

2η
)‖22. (16)

Letting J z = x̂ p − x̂α + m
2η and setting the gradient of

the objective function in Eq. (16) to be zero, it yields

z = 1

λ1/η + 1
· J z. (17)

3) Find x̂ p to minimize the augmented Lagrangian function
L(x̂ p, x̂α, z, D, s, m, γ , η) with other variables fixed.
It gives

arg min
x̂ p

λ2‖x̂ p − Ds‖22 + 〈m, x̂ p − x̂α − z〉
+ η · ‖x̂ p − x̂α − z‖22.

That is

arg min
x̂ p

λ2

η
· ‖x̂ p − Ds‖22 + ‖x̂ p − (x̂α + z − m

2η
)‖22.

(18)

Define J x̂ p = x̂α + z − m
2η and set the corresponding

gradient in Eq. (18) to be zero. It becomes

x̂ p = 1

/
(
λ2

η
+ 1) · (λ2

η
Ds + J x̂ p ). (19)

4) Find D and s to minimize the augmented Lagrangian
function L(x̂ p, x̂α, z, D, s, m, γ , η) with other variables
fixed. In fact, the objective function turns into

arg min
D,s

λ2‖x̂ p − Ds‖22 + γ · ‖s‖1. (20)

Obviously, this optimization problem in Eq. (20) is
exactly the sparse signal recovery problem without the
dictionary a priori in Section II-B. Inspired by the
dictionary learning methodology (namely the means to
learn the dictionary or basis sets of large-scale data)
in [27], the corresponding solution alternatively deter-
mines D and s and thus involves two sub-procedures,
namely online learning algorithm [27] and LARS-lasso
algorithm [50]. Algorithm 1 provides the skeleton of this
solution.
In order to update the dictionary in Eq. (22), the
proposed sparse signal recovery algorithm utilizes the
concept of stochastic approximation, which is firstly
introduced and mathematically proved convergent to a
stationary point in [27].
On the other hand, based on the learned dictionary,
the concerted effort to recover a sparse signal could be
exploited. As mentioned above, the well known LARS-
lasso algorithm [50], which is a forward stagewise
regression algorithm and gradually finds the most suit-
able solution along a equiangular path among the already
known predictors, is used here to solve the problem in
Eq. (21). Meanwhile, it is worthwhile to note that other
compressive sensing algorithms [39] could also be used
here.

5) Update estimate for the Lagrangian multiplier m accord-
ing to steepest gradient descent method [51], namely

Algorithm 1 The Sparse Signal Recovery Algorithm Without
a Predetermined Dictionary

Require: the dictionary D as an input dictionary D(0) (which
could be the dictionary learned in last calling this Algo-
rithm), the number of iterations for learning a dictionary as
T , two auxiliary matrices A(0) ∈ R K×K and B(0) ∈ R K×K

with all elements therein equaling zero.
1: for t = 1 to T do
2: Sparse coding: computing s(t) using LARS-Lasso algo-

rithm [50] to obtain

s(t) = arg min
s

λ2‖x̂ p − D(t−1)s‖22 + γ · ‖s‖1. (21)

3: Update A(t) according to

A(t)← A(t) + s(t)(s(t))T .

4: Update B(t) according to

B(t)← B(t) + x̂ p(s(t))T .

5: Dictionary Update: computing D(t) online learning algo-
rithm [27] to obtain

D(t) = arg min
D

λ2‖x̂ p − Ds(t)‖22 + γ · ‖s(t)‖1
= arg min

D
Tr(DT D A(t))− 2Tr(DT B(t)).

(22)

6: end for
7: return the learned dictionary D(t) and the sparse coding

vector s(t).

m← m+ η · (x̂ p − x̂α − z). Similarly, update estimate
γ by γ ← γ + η · ‖s‖1.

6) Update η← η · ρ.

In Algorithm 2, we summarize the steps during each
iteration. Notably, without loss of generality, consider a
known traffic vector x(0, · · · , t) of a given cell at different
moments (0, · · · , t). Then, we could estimate the α-stable
related parameters according to maximum likelihood methods,
quantile methods, or sample characteristic function methods
in [34], [35]. Afterwards, we could conduct Algorithm 2
to predict the traffic volume at moment t + 1. Similarly,
we need to estimate the α-stable related parameters according
to methods in [34] and [35], in terms of the traffic vector
x(0, · · · , t+1), and perform Algorithm 2 to predict the traffic
volume at moment t + 2. It can be observed that, compared
to Algorithm 1, which is an application of the lines in [27],
Algorithm 2 consists of some additional iterative procedures
to procure the parameters unknown a priori. Besides, most
steps involved in Algorithm 2 are deterministic vector com-
putations and thus computationally efficient. Therefore, the
whole framework could effectively yield the traffic forecasting
results.

V. PERFORMANCE EVALUATION

We validate the prediction accuracy improvement of our
proposed framework in Algorithm 2 relying on the practical
traffic dataset. Specifically, we choose the traffic load records
of these three service types of applications generated in
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Algorithm 2 The Dictionary Learning-Based Alternating
Direction Method

Require: x̂ p , x̂α , z, D, s, m, γ , η according to x̂(0)
p , x̂(0)

α , z(0),
D(0), s(0), m(0), γ (0), η(0), and the number of iterations
T . Compute x̃α according to α-stable model based linear
prediction algorithms [29], [35].

1: for t = 1 to T do
2: Update x̂α according to x̂(t)

α ← 1
η(t−1)+1

·(
x̃α + η(t−1) ·

(
x̂(t−1)

p − z(t−1) + m(t−1)

2η(t−1)

))
.

3: Update z according to z(t) ← 1
λ1/η(t−1)+1

·(
x̂(t−1)

p − x̂(t)
α + m(t−1)

2η(t−1)

)
.

4: Update x̂ p according to x̂(t)
p ← 1

/
( λ2
η(t−1) + 1) ·(

λ2
η(t−1) D(t−1)s(t−1) + x̂(t)

α + z(t) − m(t−1)

2η(t−1)

)
.

5: Update D and s according to sparse signal recovery
algorithm (i.e., Algorithm 1). In particular, use two sub-
procedures namely online learning algorithm [27] and
LARS-lasso algorithm [50] to update D and s, respec-
tively.

6: Update m according to m(t)← m(t−1) + η(t−1) · (x̂(t)
p −

x̂(t)
α − z(t)).

7: Update γ by γ (t)← γ (t−1) + η(t−1) · ‖s(t)‖1.
8: Update η by η(t)← η(t−1) ·ρ, here ρ is an iteration ratio.
9: end for

10: return the predicted traffic vector x̂ p .

113 cells within a randomly selected region from Dataset 1.
Moreover, we intentionally divide the traffic dataset into two
part. One is used to learn and distill the parameters related
to traffic characteristics, and the other part is to conduct the
experiments to verify and validate the accuracy of the proposed
framework in Algorithm 2. Specifically, we compare our pre-
diction x̂ p with the ground truth x in terms of the normalized
mean absolute error (NMAE) [12], which is defined as

NMAE =
∑N

i=1 |x̂ p(i)− x(i)|∑N
i=1 |x(i)| . (23)

As described in Algorithm 2, most of the parameters could
be set easily and tuned dynamically within the framework.
Therefore, we can benefit from this advantage and only need
to examine the performance impact of few parameters, namely
λ1, λ2, γ and η, by dynamically adjusting them. By default,
we set λ1 = 10, λ2 = 1, γ = 1 and η = 10−4, and the
number of iterations in Algorithm 2 and sparse signal recovery
algorithm (i.e., Algorithm 1) to be 20 and 3, respectively.
Besides, we impose no prior constraints on D, s, and z, and
set them as zero vectors.

Fig. 8 gives the performance of our proposed framework in
terms of NMAE, by taking advantage of the (36,10,1)-linear
prediction algorithm in Section IV-A to provide the “coarse”
prediction results x̃α . In other words, we would exploit traffic
records in the last three hours to train the parameters of
α-stable models and predict traffic loads in the next 5 minutes.
In order to provide a more comprehensive comparison,

Fig. 8. Performance comparison between the proposed ADM framework with
different sparse signal recovery algorithms (i.e., LARS-Lasso and OMP), and
the α-stable model based (36,10,1)-linear prediction algorithm.

Fig. 9. Performance variations with respect to the training data length n for
the proposed ADM framework with LARS-Lasso algorithm.

Fig. 10. Performance variations with respect to the forecasting time lag k
for the proposed ADM framework with LARS-Lasso algorithm.

the simulations run in both busy moments (i.e., 9AM, 12PM,
and 4PM) and idle ones (i.e., 7AM and 9PM) of one day.
We first examine the corresponding performance improve-
ment of the proposed ADM framework with different sparse
signal recovery algorithm (i.e., LARS-Lasso algorithm [50]
and OMP algorithm [39]). It can be observed that in most
cases, different sparse signal recovery algorithm has little
impact on the prediction accuracy. Therefore, the applications
of the proposed framework could pay little attention to the
involved sparsity methods. Afterwards, we can find that the
proposed framework significantly outperforms the classical
α-stable model based (36,10,1)-linear prediction algorithm
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Fig. 11. Performance variations with respect to (a)∼(c) the number of iterations and (d) the number of prediction coefficients m in Algorithm 2 for the
proposed ADM framework with LARS-Lasso algorithm.

Fig. 12. Performance variations with respect to λ1, λ2, and η, for the proposed ADM framework with LARS-Lasso algorithm.

(the “α-stable linear” curve in Fig. 8). In particular, the NMAE
of the proposed framework can be as 12% small (e.g., predic-
tion for 12PM video traffic) as that for the classical linear
algorithm. This performance improvement can be interpreted
as the gain by exploiting the embedded sparsity in traffic and
taking account of the originally existing prediction error of
linear prediction. Furthermore, we also compare the proposed
framework with ARMA and Kalman filtering algorithms and
show that our solution can achieve competitive performance
for IM and web browsing services and yield far more stable
and superior performance for the video service. As shown
in Table IV, the α value for the video service is different
from those of the other services and less than 1, so the
video traffic with distinct characteristics makes ARMA and
Kalman filtering algorithms less effective. We can confidently
reach the conclusion that our proposed framework offers a
unified solution for the application-level traffic modeling and
prediction with appealing accuracy.

Afterwards, we further evaluate the impact of the training
length n and the forecasting time lag k on the prediction
accuracy, and give the related results in Fig. 9 and Fig. 10,
respectively. Fig. 9 shows the increase of n contributes to
improving the prediction accuracy for all types of applications
especially the video service, which is consistent with our
intuition. Besides, when n varies, the proposed framework

with LARS and OMP algorithms demonstrates more robust
prediction accuracy while the other algorithms might yield
inferior performance for some values of n. Fig. 10 presents
that with the increase of the forecasting time lag k, the
prediction accuracy demonstrates a increasing trend, which
also matches our intuition. Again, for different types of
services and different k, the proposed framework possesses
the strongest robustness.

Next, we further evaluate the performance of our proposed
ADM framework with LARS-Lasso algorithm and provide
more detailed sensitivity analyses. Fig. 11 depicts the per-
formance variations with respect to the number of iterations
in Algorithm 2 and the number of prediction coefficients m,
respectively. From Fig. 11(a)∼(c), the loss in prediction accu-
racy is rather small when the number of iterations decreases
from 20 to 4. Hence, if we initialized the prediction process
with 20 iterations, we can stop the iterative process whenever
the results between two consecutive iterations become suffi-
ciently small, so as to reduce the computational complexity.
Fig. 11(d) shows that similar to the case in Fig. 9, the
increase of m also contributes to improving the prediction
accuracy for all types of applications especially the video
service. Fig. 12(a), Fig. 12(b) and Fig. 12(c) show that the
prediction accuracy nearly stays the same irrespective of λ1.
This means that the noise component has limited contribution
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to the corresponding performance. It also implies that the
choice of λ1 could be flexible when we apply the framework
in practice. Fig. 12(d) demonstrates that the influence of λ2
is comparatively more obvious and even diverges for different
service types. Specifically, a larger λ2 has a slightly negative
impact on predicting the traffic loads for IM and web browsing
service, but it contributes to the prediction of video service.
As stated in Section III-B, video service demonstrates the
strongest sparsity. Hence, by increasing λ2, it implies to put
more emphasis on the importance of sparsity and results in
a better performance for video service. It’s worthwhile to
note here that, in Eq. (12), λ2 and γ are coupled together as
well and should have inverse performance impact. Therefore,
due to the space limitation, the performance impact of γ
is omitted here. Fig. 12(e) depicts the performance variation
with respect to η, which is similar to that with respect to λ2.
But, a larger η has a positive impact on predicting the traffic
loads for IM and web browsing service, but it degrades the
prediction performance of video service. This phenomenon
is potentially originated from the very distinct characteristics
of these three services types (e.g., different α-stable models’
parameters and different sparsity representation) and needs a
further careful investigation. However, it safely comes to the
conclusion that the proposed framework provides a superior
and robust performance than the classical linear algorithm.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper, we collected the application-level traffic data
from one operator in China. With the aid of this practical traffic
data, we confirmed several important statistical characteristics
like temporally α-stable modeled property and spatial spar-
sity. Afterwards, we proposed a traffic prediction framework,
which takes advantage of the already known traffic knowledge
to distill the parameters related to aforementioned traffic
characteristics and forecasts future traffic results bearing the
same characteristics. We also developed a dictionary learning-
based alternating direction method to solve the framework and
manifested the effectiveness and robustness of our algorithm
through extensive simulation results.

On the other hand, there still exist some issues to be
addressed. The biggest challenge for the application-level
traffic modeling prediction lies in that as new types of appli-
cations or services continually emerge and blossom, whether
the unveiled characteristics still hold? Furthermore, it is still
interesting to investigate how to leverage the additional infor-
mation (e.g., inter-service relevancy) to further optimize the
proposed framework and improve the prediction accuracy.

REFERENCES

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2012–2017, Cisco, San José, CA, USA, Feb. 2013.
[Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

[2] R. Li, Z. Zhao, X. Zhou, and H. Zhang, “Energy savings scheme in radio
access networks via compressive sensing-based traffic load prediction,”
Trans. Emerg. Telecommun. Technol., vol. 25, no. 4, pp. 468–478,
Apr. 2014.

[3] U. Paul, M. Buddhikot, and S. Das, “Opportunistic traffic scheduling in
cellular data networks,” in Proc. IEEE DySPAN, Bellevue, WA, USA,
Oct. 2012, pp. 339–348.

[4] P. Romirer-Maierhofer, M. Schiavone, and A. D’Alconzo, “Device-
specific traffic characterization for root cause analysis in cellular
networks,” in Traffic Monitoring and Analysis (Lecture Notes in
Computer Science), vol. 9053, M. Steiner, P. Barlet-Ros, and
O. Bonaventure, Eds. Cham, Switzerland: Springer, Apr. 2015,
pp. 64–78. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-319-17172-2_5

[5] Z. Niu, Y. Wu, J. Gong, and Z. Yang, “Cell zooming for cost-
efficient green cellular networks,” IEEE Commun. Mag., vol. 48, no. 11,
pp. 74–79, Nov. 2010.

[6] Z. Niu, “TANGO: Traffic-aware network planning and green operation,”
IEEE Wireless Commun., vol. 18, no. 5, pp. 25–29, Oct. 2011.

[7] R. Li, Z. Zhao, X. Zhou, J. Palicot, and H. Zhang, “The prediction
analysis of cellular radio access network traffic: From entropy theory to
networking practice,” IEEE Commun. Mag., vol. 52, no. 6, pp. 234–240,
Jun. 2014.

[8] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and
J. Widmer. (Jun. 2016). “Anticipatory networking in future gener-
ation mobile networks: A survey.” [Online]. Available: http://arxiv.
org/abs/1606.00191

[9] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Process. Mag., vol. 24, no. 4, pp. 118–121, Jul. 2007. [Online]. Avail-
able: http://omni.isr.ist.utl.pt/~aguiar/CS_notes.pdf

[10] J. Romberg and M. Wakin, “Compressed sensing: A tutorial,”
in Proc. IEEE SSP Workshop, Madison, WI, USA, Aug. 2007,
pp. 1–128. [Online]. Available: http://people.ee.duke.edu/~willett/SSP//
Tutorials/ssp07-cs-tutorial.pdf

[11] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[12] Y.-C. Chen, L. Qiu, Y. Zhang, G. Xue, and Z. Hu, “Robust network com-
pressive sensing,” in Proc. ACM Mobicom, Maui, HI, USA, Sep. 2014,
pp. 1–12.

[13] IEEE 802.16 Broadband Wireless Access Working Group, IEEE
Standard 802.16m Evaluation Methodology document, Jul. 2008.
[Online]. Available: http://ieee802.org/16

[14] B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network traffic modeling and
prediction with ARIMA/GARCH,” in Proc. HET-NETs Conf., Ilkley,
U.K., Jul. 2005, pp. 1–10.

[15] O. Cappe, E. Moulines, J. C. Pesquet, A. P. Petropulu, and X.
Yang, “Long-range dependence and heavy-tail modeling for teletraf-
fic data,” IEEE Signal Process. Mag., vol. 19, no. 3, pp. 14–27,
May 2002.

[16] F. Ashtiani, J. A. Salehi, and M. R. Aref, “Mobility modeling and
analytical solution for spatial traffic distribution in wireless multimedia
networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 10, pp. 1699–1709,
Dec. 2003.

[17] K. Tutschku and P. Tran-Gia, “Spatial traffic estimation and character-
ization for mobile communication network design,” IEEE J. Sel. Areas
Commun., vol. 16, no. 5, pp. 804–811, Jun. 1998.

[18] L. Xiang, X. Ge, C. Liu, L. Shu, and C.-X. Wang, “A new hybrid
network traffic prediction method,” in Proc. IEEE Globecom, Miami,
FL, USA, Dec. 2010, pp. 1–5.

[19] X. Ge, S. Yu, W.-S. Yoon, and Y.-D. Kim, “A new prediction method of
alpha-stable processes for self-similar traffic,” in Proc. IEEE Globecom,
Dallas, TX, USA, Nov./Dec. 2004, pp. 675–679.

[20] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Geospatial
and temporal dynamics of application usage in cellular data net-
works,” IEEE Trans. Mobile Comput., vol. 14, no. 7, pp. 1369–1381,
Jul. 2014. [Online]. Available: http://myweb.uiowa.edu/mshafiq/files/
spatialApp_TMC.pdf

[21] M. E. Crovella and A. Bestavros, “Self-similarity in world wide Web
traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, Dec. 1997.

[22] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of Ethernet traffic (extended version),” IEEE/ACM
Trans. Netw., vol. 2, no. 1, pp. 1–15, Feb. 1994.

[23] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal com-
pressive sensing and Internet traffic matrices,” in Proc. ACM SIGCOMM,
Barcelona, Spain, Aug. 2008, pp. 267–278.

[24] A. Soule et al., “Traffic matrices: Balancing measurements, inference
and modeling,” in Proc. ACM SIGMETRICS, Banff, AB, Canada,
Jun. 2005, pp. 1–13.

[25] M. C. Falvo, M. Gastaldi, A. Nardecchia, and A. Prudenzi, “Kalman
filter for short-term load forecasting: An hourly predictor of munic-
ipal load,” in Proc. IASTED ASM, Palma de Mallorca, Spain,
Aug. 2007, pp. 364–369.



LI et al.: THE LEARNING AND PREDICTION OF APPLICATION-LEVEL TRAFFIC DATA IN CELLULAR NETWORKS 3911

[26] R. Li, Z. Zhao, Y. Wei, X. Zhou, and H. Zhang, “GM-PAB: A grid-
based energy saving scheme with predicted traffic load guidance for
cellular networks,” in Proc. IEEE ICC, Ottawa, ON, Canada, Jun. 2012,
pp. 1160–1164.

[27] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for
matrix factorization and sparse coding,” J. Mach. Learn. Res., vol. 11,
pp. 19–60, Mar. 2010.

[28] U. Paul, L. Ortiz, S. R. Das, G. Fusco, and M. M. Buddhikot, “Learning
probabilistic models of cellular network traffic with applications to
resource management,” in Proc. IEEE DySPAN, McLean, VA, USA,
Apr. 2014, pp. 82–91.

[29] J. B. Hill, “Minimum dispersion and unbiasedness: ‘Best’ linear pre-
dictors for stationary ARMA α-stable processes,” Dept. Econ., Univ.
Colorado Boulder, Boulder, CO, USA, Tech. Rep. 00-06, Sep. 2000.

[30] A. Karasaridis and D. Hatzinakos, “Network heavy traffic modeling
using α-stable self-similar processes,” IEEE Trans. Commun., vol. 49,
no. 7, pp. 1203–1214, Jul. 2001.

[31] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3G networks,” in Proc.
ACM SIGCOMM, New York, NY, USA, May 2010, pp. 1–14.

[32] F. P. Tso, J. Teng, W. Jia, and D. Xuan, “Mobility: A double-edged
sword for HSPA networks: A large-scale test on hong kong mobile HSPA
networks,” in Proc. ACM MobiHoc, Sep. 2010, pp. 1–10.

[33] G. Samorodnitsky, Stable Non-Gaussian Random Processes: Stochastic
Models With Infinite Variance. New York, NY, USA: Chapman & Hall,
Jun. 1994. [Online]. Available: http://www.amazon.com/Stable-Non-
Gaussian-Random-Processes-Stochastic/dp/0412051710

[34] J. R. Gallardo, D. Makrakis, and L. Orozco-Barbosa, “Use of alpha-
stable self-similar stochastic processes for modeling traffic in broadband
networks,” Proc. SPIE, vol. 3530, pp. 281–296, Nov. 1998.

[35] G. Xiaohu, Z. Guangxi, and Z. Yaoting, “On the testing for alpha-
stable distributions of network traffic,” Comput. Commun., vol. 27, no. 5,
pp. 447–457, Mar. 2004.

[36] W. Song and W. Zhuang, “Resource reservation for self-similar data
traffic in cellular/WLAN integrated mobile Hotspots,” in Proc. IEEE
ICC, Cape Town, South Africa, May 2010, pp. 1–5.

[37] J. C.-I. Chuang and N. R. Sollenberger, “Spectrum resource allocation
for wireless packet access with application to advanced cellular Internet
service,” IEEE J. Sel. Areas Commun., vol. 16, no. 6, pp. 820–829,
Aug. 1998.

[38] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61,
Aug. 1998.

[39] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. ACSSC, Pacific Grove, CA, USA, Nov. 1993,
pp. 40–44.

[40] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representation,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322,
Nov. 2006.

[41] X. Zhou, Z. Zhao, R. Li, Y. Zhou, and H. Zhang, “The predictability
of cellular networks traffic,” in Proc. IEEE ISCIT, Gold Coast, QLD,
Australia, Oct. 2012, pp. 973–978.

[42] J. H. McCulloch, “Simple consistent estimators of stable distribution
parameters,” Commun. Statist. Simul., vol. 15, no. 4, pp. 1109–1136,
Jan. 1986.

[43] M. Vidyasagar. (Sep. 2016). Fitting Data to Distributions
(Lecture 4). [Online]. Available: http://www.utdallas.edu/~m.vidyasagar/
Fall-2014/6303/Lect-4.pdf

[44] X. Zhou, Z. Zhao, R. Li, Y. Zhou, J. Palicot, and H. Zhang, “Understand-
ing the nature of social mobile instant messaging in cellular networks,”
IEEE Commun. Lett., vol. 18, no. 3, pp. 389–392, Mar. 2014.

[45] A. N. Kolmogorov, K. L. Chung, and B. V. Gnedenko, Limit
Distributions for Sums of Independent Random Variables, Reading, MA,
USA: Addison-Wesley, 1968. [Online]. Available: https://openlibrary.
org/books/OL19738039M/Limit_distributions_for_sums_of_independent
_random_variables

[46] D. Lee, S. Zhou, X. Zhong, Z. Niu, X. Zhou, and H. Zhang, “Spatial
modeling of the traffic density in cellular networks,” IEEE Wireless
Commun., vol. 21, no. 1, pp. 80–88, Feb. 2014.

[47] R. Fang, T. Chen, and P. C. Sanelli, “Towards robust deconvolution
of low-dose perfusion CT: Sparse perfusion deconvolution using online
dictionary learning,” Med. Image Anal., vol. 17, no. 4, pp. 417–428,
May 2013.

[48] Wikipedia. (Oct. 2014). Augmented Lagrangian Method. [Online]. Avail-
able: http://en.wikipedia.org/w/index.php?title=Augmented_Lagrangian
_method

[49] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, Mar. 2004.

[50] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[51] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, U.K.: Cambridge Univ. Press, 1998. [Online]. Available:
http://webdocs.cs.ualberta.ca/~sutton/book/ebook/

Rongpeng Li received the B.E. degree (Hons.) from
Xidian University, Xian, in 2010, and the Ph.D.
degree from Zhejiang University, Hangzhou, China,
in 2015. He was a Visiting Doctoral Student with
Supélec, Rennes, France, in 2013, and an Intern
Researcher with the China Mobile Research Insti-
tute, Beijing, China, in 2014. From 2015 to 2016,
he was a Researcher with the Wireless Communi-
cation Laboratory, Huawei Technologies Co., Ltd.,
Shanghai, China. He is currently a Post-Doctoral
Researcher with the College of Computer Science

and Technologies and the College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China. His research interests
currently focus on resource allocation of cellular networks such as full duplex
networks, applications of reinforcement learning, and analysis of cellular
network data and he has authored/co-authored several papers in the related
fields. He was granted by the National Post-Doctoral Program for Innovative
Talents, which has a grant ratio of 13% in 2016. He serves as an Editor of
the China Communications.

Zhifeng Zhao received the Ph.D. degree in commu-
nication and information system from the PLA Uni-
versity of Science and Technology, Nanjing, China,
in 2002. He is currently an Associate Professor
with the Department of Information Science and
Electronic Engineering, Zhejiang University, China.
His research area includes cognitive radio, wireless
multi-hop networks such as ad hoc, mesh, WSN,
wireless multimedia network, and green communi-
cations. He was the Symposium Co-Chair of the
ChinaCom 2009 and 2010. He was the Technical

Program Committee Co-Chair of the 10th IEEE International Symposium on
Communication and Information Technology in 2010.

Jianchao Zheng received the B.S. degree in Com-
munications Engineering, and the Ph.D. degree in
communications and information systems from the
of Communications Engineering, the PLA Univer-
sity of Science and Technology, Nanjing, China, in
2010 and 2016, respectively. He is currently an assis-
tant professor in College of Communications Engi-
neering, PLA University of Science and Technology.
During 2015-2016, he was the visiting scholar at
the Broadband Communications Research (BBCR)
group, Department of Electrical and Computer Engi-

neering, the University of Waterloo, Canada. His research interests focus
on Interference mitigation techniques, learning theory, game theory, and
optimization techniques. He has published several papers in international
conferences and reputed journals in his research area.

Chengli Mei received the Ph.D. degree from Shang-
hai Jiaotong University, Shanghai, China. He is a
Principal Research Engineer and the Director of
the China Telecom Technology Innovation Center,
Beijing, China. His research interests focus on the
standardization and techniques of mobile communi-
cation networks, especially in the area of network
evolution and service deployment.



3912 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 6, JUNE 2017

Yueming Cai received the B.S. degree in physics
from Xiamen University, Xiamen, China, in 1982,
the M.S. degree in micro-electronics engineering and
the Ph.D. degree in Communications and Informa-
tion Systems from Southeast University, Nanjing,
China, in 1988 and 1996 respectively. His current
research interest includes cooperative communica-
tions, signal processing in communications, wireless
sensor networks, and physical layer security.

Honggang Zhang is currently a Full Professor
with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou,
China. He is also an Honorary Visiting Professor
with the University of York, York, U.K. He was
the International Chair Professor of Excellence for
the European University of Brittany and Supélec,
France, from 2012 to 2014. He was a co-author and
an editor of two books with the titles of Cognitive
Communications-Distributed Artificial Intelligence,
Regulatory Policy and Economics, Implementation

(John Wiley & Sons) and Green Communications: Theoretical Fundamentals,
Algorithms and Applications (CRC Press), respectively. He is currently active
in the research on green communications. He served as the Chair of the
Technical Committee on Cognitive Networks of the IEEE Communications
Society from 2011 to 2012. He was the Leading Guest Editor of the IEEE
Communications Magazine Special Issues on Green Communications. He is
an Associate Editor-in-Chief of the China Communications and the Series
Editor of the IEEE Communications Magazine for its Green Communications
and Computing Networks Series.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


