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Abstract
5G cellular networks are assumed to be the 

key enabler and infrastructure provider in the 
ICT industry, by offering a variety of services 
with diverse requirements. The standardiza-
tion of 5G cellular networks is being expedit-
ed, which also implies more of the candidate 
technologies will be adopted. Therefore, it is 
worthwhile to provide insight into the candi-
date techniques as a whole and examine the 
design philosophy behind them. In this article, 
we try to highlight one of the most fundamental 
features among the revolutionary techniques 
in the 5G era, i.e., there emerges initial intel-
ligence in nearly every important aspect of 
cellular networks, including radio resource man-
agement, mobility management, service pro-
visioning management, and so on. However, 
faced with ever-increasingly complicated con-
figuration issues and blossoming new service 
requirements, it is still insufficient for 5G cellular 
networks if it lacks complete AI functionalities. 
Hence, we further introduce fundamental con-
cepts in AI and discuss the relationship between 
AI and the candidate techniques in 5G cellular 
networks. Specifically, we highlight the oppor-
tunities and challenges to exploit AI to achieve 
intelligent 5G networks, and demonstrate the 
effectiveness of AI to manage and orchestrate 
cellular network resources. We envision that 
AI-empowered 5G cellular networks will make 
the acclaimed ICT enabler a reality.

Introduction
Currently, fourth-generation (4G) cellular net-
works are being globally deployed to provide 
all-IP (Internet Protocol) broadband connectivi-
ty. Recalling that second-generation (2G) global 
networks for mobile communications (GSM), 
debuted in 1991, just started to provide digital 
voice telephony, and third-generation (3G) cel-
lular networks, launched in 2001, initially pro-
vided mobile Internet solutions. It took less than 
30 years to successfully transform cellular net-
works from pure telephony systems to networks 
that can transport rich multimedia content [1] 
and have a profound impact on our daily life. 
Nowadays, the landscape of the information 
communication technology (ICT) industry is rap-
idly changing. First, mobile broadband access is 
expected to have a drastic increase with 1000 

times more aggregate throughput [2] and 10 
times more at the link level [3] from 2010 to 
2020. Second, an increasing number of objects 
are being digitalized to form the Internet of 
Things, posing more stringent requirements on 
latency, battery lifetime, etc. [4]. Therefore, to 
enhance service provisioning and satisfy the 
coming diversified requirements, it is necessary 
to revolutionize the cellular networks with cut-
ting-edge technologies. The standardization of 
next-generation (5G) cellular networks is being 
expedited, which also implies more of the 
candidate technologies will be adopted. This 
naturally raises questions such as which new 
technologies might 5G cellular networks pos-
sess, and which features will these technologies 
have in common?

From the very beginning, 5G cellular net-
works were assumed to be the key enabler and 
infrastructure provider in the ICT industry, by 
offering three types of services from enhanced 
mobile broadband (eMBB) with bandwidth-con-
suming and throughput-driving requirements 
to new services such as ultra-reliable low laten-
cy service (URLLC) and massive machine-type 
communications (mMTC). In that regard, though 
technologies such as densified cells and mas-
sive multiple-input multiple-output (MIMO) 
are essential to boost capacity in the 5G era, 
it is cost-ineffective to deploy such techniques. 
Instead, 5G cellular networks mainly revolution-
ize themselves by initially embracing the intelli-
gence to agilely boost both spectrum efficiency 
(SE) and energy efficiency (EE). Specifically, 5G 
cellular networks provide alternative options for 
radio resource management (RRM), mobility 
management (MM), management and orchestra-
tion (MANO), and service provisioning manage-
ment (SPM) mechanisms. Hence, it is no longer 
necessary to build dedicated networks for indi-
vidual services (e.g., the GSM-Railway commu-
nication networks). On the contrary, as depicted 
in Fig. 1, due to the development of smarter 5G 
networks, it will be feasible to provide custom-
ized end-to-end network slices (NS) [5] to simul-
taneously satisfy distinct service requirements, 
such as ultra-low latency in URLLC and ultra-high 
throughput in eMBB.

There is no doubt that 5G cellular networks 
will tailor the provisioning mechanisms for differ-
ent predefined services and pave the way for the 
application of complete intelligence. However, 
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it is still challenging and time-consuming for 5G 
cellular network operators to solve ever-increas-
ingly complicated configuration issues and satisfy 
evolving service requirements, since 5G cellular 
networks merely possess more technical options 
to deal with predefined intelligent problems, rath-
er than gain the ability to interact with the envi-
ronment (e.g., traffic load, service characteristics). 
Fortunately, such an interaction falls into the field 
of artificial intelligence (AI), which is dedicated 
to empowering machines and systems with intel-
ligence similar to that of humans. Hence, it is 
promising to apply AI to 5G cellular networks to 
deal with newly emerging issues. 

In this article, we will try to answer what key 
technical progress is in 5G cellular networks, why 
it is crucial to embrace AI in the 5G era, and how 
AI can contribute to management and orchestra-
tion in the 5G era.

The Intelligence in 
5G Cellular Networks

AI is the science and engineering of making 
machines as intelligent as humans, and has long 
been applied to optimize communication net-
works in diverse configurations [6]. According 
to the extent of intelligence, AI could be divided 
into two levels. The first and basic level of AI is 
that one machine or entity can provide multiple 
pre-defined options and respond to the environ-
ment in a different yet deterministic manner. For 
example, as discussed later, 5G will allow granted 
and grant-free transmission for eMBB and mMTC 
services, respectively. In other words, the network 
will intelligently adjust the configuration after 
detecting different pre-defined service indicators. 
The second and complete level of AI is that one 
machine or entity possesses full capability to inter-
act (e.g., sense, mine, predict, and reason) with 
the environment. More importantly, the machine 
or entity is able to learn how to make appropri-
ate responses, even when it faces strange sce-
narios or tasks. In this section, we will highlight 
how the candidate technologies grant preliminary 
intelligence (i.e., the basic level of AI) to cellular 

networks, and transform cellular networks from 
being network-centric to being user-centric and 
information-centric with significant SE and EE 
improvement.

Radio Resource Management
Current 4G cellular networks heavily rely on 
orthogonal frequency-division multiplexing 
(OFDM) as the signal bearer and the base of 
associated access schemes. Since OFDM can be 
used in both frequency-division duplex (FDD) 
and time-division duplex (TDD) formats, FDD 
and TDD 4G cellular networks share a similar 
frame structure by grouping a static number of 
subcarriers and symbols into one resource block 
(RB). Benefiting from the satisfactory subcarrier 
orthogonality in OFDM, information transmitted 
in different RBs can be separately decoded at 
the receivers with limited computational cost. 
However, it is stubborn to use OFDM to simulta-
neously satisfy service requirements from differ-
ent users with various channel conditions, user 
terminal (UE) capabilities (multiple access sup-
port, full duplex mode, feature or smart phones), 
mobility, frequency bands, and so on. Given 
that, 5G cellular networks aim to introduce new 
waveforms and provide softer air interfaces. 
Specifically, filter-bank multi-carrier (FBMC) and 
unified-filter multi-carrier (UFMC) are famous 
candidates for more flexible frame structures and 
waveforms in the 5G era. As their names imply, 
FBMC and UFMC both add filters to combat out-
of-band leakage across subcarriers and make it 
unnecessary to strictly synchronize across RBs. 
Therefore, 5G cellular networks can provide 
different air interface solutions in different RBs, 
in which different multiple access schemes, TTI 
(transmission time interval) parameters, wave-
forms, and duplex mode, pilot signals, etc., can 
be well defined [7]. For example, as seen in Fig. 
2a, larger bandwidth and symbol length can be 
applied to eMBB to yield a higher rate, while 
smaller TTI can be configured for URLLC to 
shorten response latency.

Similar to the evolution from OFDM to FBMC/
UFMC, 5G cellular networks potentially adopt 
non-orthogonal multiple access (NoMA) schemes 
such as sparse coding multiple access (SCMA). 
Such NoMA schemes overlap information from 
two transmitters in the same radio resource and 
apply successive interference cancellation (SIC) 
receivers (or even more computationally-exhaus-
tive maximum-likelihood receivers) to decode the 
received information. Apparently, NoMA could 
potentially lead to higher throughput. Moreover, 
another advantage of NoMA is that it makes pos-
sible grant-free transmission in the uplink (UL), if 
the UE identity and the preamble for grant-free 
UL transmission are mapped together. Instead of 
waiting for resource allocation commands as in 
4G cellular networks, it is feasible to decode the 
overlapped information from two UEs at the same 
resources by using SIC receivers. From Fig. 2b, in 
spite of the reliability advantage for granted trans-
mission, grant-free transmission in UL could avoid 
the cumbersome signaling procedures and save 
latency for small packets at a trivial performance 
loss. Comparatively, 5G cellular networks even-
tually have one alternative option, which is quite 
suitable for mMTC service.

FIGURE 1. 5G cellular networks: a key enabler to all mobile devices across all 
industries.
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Mobility Management
In 4G cellular networks, there exist two states 
to manage UEs’ location awareness to the core 
network (e.g., evolved packet system (EPS)). All 
EPS mobility management (EMM)-connected UEs 
should periodically report their locations, so as to 
guarantee the session continuum and informa-
tion reachability. Definitively, it is resource-con-
suming to treat all UEs the same. Instead, some 
UEs at static positions (e.g., UEs for mMTC meter-
ing services) should only need to report at the 
very beginning of network attachment. Taking 
account of practical considerations, 5G cellular 
networks introduce multiple-tier mobility manage-
ment states to make the mobility management 
mechanism more flexible. For example, for mMTC 
UEs possessing characteristics such as immobil-
ity, cost-sensitivity, and stringent requirements 
on energy-efficiency, 5G cellular networks will 
wait for the communication request from UEs 
and reactively start the data transmission (Fig. 
2c). Meanwhile, 5G cellular networks also tailor 
mobility management for some vertical industries, 
based on regional characteristics. In other words, 
once UEs enter a specific region, they could be 
granted higher-level support (e.g., dual connec-
tivity) for mobility management and thus update 
their locations in a more proactive manner.

Management and Orchestration
Recently, the industry has witnessed the increas-
ing maturity of software-defined networks (SDN) 
[8]. In particular, some well known operators such 
as AT&T, China Mobile, Telefonica, and vendors 
such as Cisco and Huawei, have co-established 
the Open Networking Lab (http://onlab.us/) to 
bring openness and innovation in SDN to the 

Internet, and initiated the project called Central 
Office Re-architected as a Datacenter (CORD). 
CORD has successfully completed the virtualiza-
tion of existing hardware devices such as CPE 
(customer premises equipment), OLT (optical line 
transmission) and BNG (broadband network gate-
way), and produced software counterparts (e.g., 
applications running on open network operating 
system (ONOS)) on top of commodity hardware. 
Moreover, CORD has provided a framework on 
which these software elements (plus any other 
cloud services an operator may want to run) can 
be plugged into, leading to a coherent end-to-end 
system. Therefore, operators of 5G cellular net-
works might borrow the concept of CORD and 
deploy selected functionalities according to their 
own demands. Meanwhile, in order to orchestrate 
services from different vendors, 5G network oper-
ators can leverage a more centralized SDN con-
troller and adopt various means such as exposing 
the same infrastructure-level interfaces or using 
common cloud operating systems (e.g., ONOS) to 
shield differences between multi-vendor hardware 
servers in a distributed deployment manner [5].

Service Provisioning Management
In addition to softer air interface enabled by 
FBMC or UFMC, it is also expected in 5G to 
intelligently program the forwarding route of one 
service by leveraging the application interfaces 
(APIs) in SDN and have a more flexible service 
provisioning stack. With the evolution of SDN 
and network function virtualization (NFV), 5G cel-
lular networks have advocated a revolutionary 
concept called network slicing (NS) [9]. Instead 
of building dedicated networks for different ser-
vices, NS allows operators to intelligently create 

FIGURE 2. Candidate technologies for intelligent cellular networks: a) flexible bandwidth and symbol length enabled by FBMC and 
UFMC; b) granted and grant-free transmission enabled by NoMA; c) flexible mobility management schemes; d) dynamic service 
provisioning stack.
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customized network pipes to provide optimized 
solutions for different services that require diverse 
functionalities, performance metrics, and isolation 
criteria. Moreover, session management in 5G 
will be able to adapt to UE attributes and service 
requirements, by adjusting configurations such as 
session categories, anchoring points, and service 
continuum capabilities. Specifically, mobile edge 
has potentially evolved to replace its forward-
ing-only functionality to an area equipped with 
storage, memories, and computational power 
capabilities [3]. Therefore, according to practical 
requirements, UEs could select anchoring and for-
warding points between the anchoring point (e.g., 
serving gateway) in core networks (CNs) and the 
mobile edge networks. For example, in Fig. 2(d), 
services with stringent requirements on mobility 
and service continuum could shift their anchoring 
points to the edge networks with closer proximity. 
Moreover, in 4G, device-to-device (D2D) commu-
nication merely supports proximity services and 
public safety communications. But network-assist-
ed direct communication between vehicles and 
UEs comes to a reality, and the vehicle-to-vehicle 
infrastructure (V2X) services are becoming a hot 
topic to better accommodate the URLLC services 
of vertical industries (e.g., automobiles).

Thanks to the huge advance in signal process-
ing capabilities evolved as Moore’s Law, 5G cellu-
lar networks can take advantage of advanced yet 
computation-consuming technologies in almost 
every aspect spanning from the physical layer to 
the network architecture. Therefore, 5G cellular 
networks are able to provide alternative options 
for different scenarios, exhibit some preliminary 
intelligence, and satisfy the minimal requirements 
to adopt complete AI.

Artificial Intelligence for 
Cellular Networks

Cellular networks have alternative options in the 
5G era for access and service provisioning mech-
anisms and thus gain the foundation to apply 
preliminary intelligence. However, 5G cellular 
networks are still lagging behind what is actual-
ly required in practice. First, the number of con-
figurable parameters in a typical 4G node has 
increased to 1500 from 500 in a 2G node and 
1000 in a 3G node [4]. If this trend continues, a 
typical 5G node is expected to have 2000 or more 
parameters. Therefore, it is critical to enhance 
intelligence in the 5G era to realize the self-orga-
nizing features (e.g., self-configuration, self-opti-
mization, and self-healing). Second, the service 
types (e.g., eMBB, URLLC, mMTC) defined in the 
5G era are static. However, new types of services 
continually evolve, and the pattern in existing ser-
vices frequently changes as well. In this case, 5G 
cellular networks still lack functionalities to auto-
matically recognize a new type of service, infer the 
appropriate provisioning mechanism, and establish 
the required network slice. Third, 5G cellular net-
works heavily depend on a centralized network 
architecture in SDN, and still lack the agility and 
robustness under the scenario of ever-increasing 
heterogeneous and complicated cellular networks. 
To self-organize parameters that become signifi-
cantly larger, auto-build the network slices for 
emerging services, and gain sufficient flexibility 

for network maintenance, it is essential for cellular 
networks to observe environment variations, learn 
uncertainties, plan response actions, and configure 
the networks properly. Coincidentally, AI main-
ly solves how to learn the variations, classify the 
issues, forecast future challenges, and find poten-
tial solutions, by interacting with the environment. 
Therefore, cellular networks could leverage the 
concept of cognitive radio [10] and interact with 
the environment using AI, so as to fully accelerate 
the evolution and enter into a brand-new intelli-
gent 5G era.

AI has evolved to multi-disciplinary techniques 
such as machine learning, optimization theory, 
game theory, control theory, and meta-heuristics 
[11]. Among them, machine learning belongs to 
one of the most important subfields in AI. Usually, 
depending on the nature of the learning objects 
and signals to a learning system, machine learning 
is typically classified into three broad categories:

Supervised Learning: A supervised learning 
agent will be fed with example inputs and their 
desired outputs, and aims to determine a general 
rule that nicely maps inputs to outputs. Super-
vised learning has been widely applied to solve 
channel estimation issues in cellular networks. For 
example, assume that there exists a wireless chan-
nel h, the receiver tries to exploit the transmit pre-
amble s and the received signal y = hs + n0 (with 
n0 denoting the noise) to estimate h. For such a 
supervised learning problem, it is common to use 
probabilistic models to characterize the transition 
probability P(y|s) from s to y and take advan-
tage of the well known Bayes learning methods 
to obtain the results. The well known Kalman fil-
tering and particle filter methods also play a very 
important role in optimizing cellular networks.

Unsupervised Learning: Compared to the 
aforementioned supervised learning, the input 
information for unsupervised learning does not 
possess priori labels. Therefore, the unsupervised 
learning agent has to depend on its own capa-
bility to find the embedded structure or pattern 
in its input. Usually, unsupervised learning aims 
to discover hidden patterns and find the suitable 
representation in the input data. In the field of AI, 
unsupervised learning is applied to estimate the 
hidden layer parameters in neural networks and 
plays an important role in deep learning meth-
ods. Meanwhile, unsupervised learning may be 
the most widely applied AI category in cellular 
networks. For example, principal component 
analysis (PCA) and singular value decomposition 
(SVD) methods have been used to manipulate the 
receiving matrix of massive MIMO to reduce the 
computational complexity. Moreover, 5G NoMA 
receivers also adopt some factor graph-based 
methods such as expectation-maximization and 
message-passing algorithms to achieve lower bit 
error rate. On the other hand, some classifiers 
such as the K-means Algorithm are also useful to 
detect network anomalies.

Reinforcement Learning: Inspired by both con-
trol theory and behaviorist psychology, the rein-
forcement learning agent could obtain its goal by 
interacting with a dynamic environment. Howev-
er, the agent does not have explicit knowledge 
of whether it has come close to its goal. Instead, 
the agent should take actions in an environment 
so as to maximize the cumulative reward in a 
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Markov decision process (MDP). Therefore, rein-
forcement learning demonstrates strong pattern 
recognition ability. Researchers in the field of cog-
nitive radio usually model the dynamic transition 
of spectrum availability as a Markov chain, and 
extensively apply reinforcement learning meth-
ods (e.g., Q-learning and the actor-critic method 
[12, 13]) to make the decision whether or not it is 
suitable for secondary transmission in one primary 
licensed spectrum, in terms of least interference 
to the primary spectrum.

Table 1 summarizes what typical AI algo-
rithms could solve. Apparently, AI can be used 
to enhance the response of cellular networks to 
stimuli by learning key network parameters. For 
example, AI makes it possible to sense in a timely 
manner the variations in network traffic, resource 
utilization, user demand, and possible threats, and 
further makes it possible to smartly coordinate 

UEs, base stations (BSs), and network entities. 
Table 2 illustrates functionalities upon which intel-
ligent cellular networks may be built.

Figure 3 illustrates a possible AI-empowered 
5G cellular network architecture, in which an 
AI controller will act as an application on top of 
ONOS or an independent network entity, and 
communicate with RAN, CN, or global SDN con-
trollers using open interfaces. Specifically, the AI 
center will read service-level agreements (e.g., 
requirements on rate, coverage, failure duration, 
redundancy, etc.), UE-level information (e.g., 
receiver category, battery limitation), network-lev-
el information (e.g., spectrum, number of serving 
subscribers, QoS (quality of service), key perfor-
mance indicators of network functions, scheduled 
maintenance period, etc.), and infrastructure-level 
information (e.g., server type, CPU, memory, stor-
age, network standard) from the SDN control-

TABLE 1. Typical AI algorithms to enhance cellular networks.

Modules Examples Algorithms Comments

Sensing Detection of network 
anomalies or events by 
multiple-entry data from 
hybrid sources

Logistic Regression (LR)  
Support Vector Machine (SVM)  
Hidden Markov Model (HMM)

Hypothesis test plays an important role in this aspect. But different 
algorithms have specific scenarios. Compared to SVM, LR is more suit-
able for sensing scenarios with a heavy number of property combinat- 
ions and stringent accuracy requirements. On the other hand, HMM is 
also applicable for sensing if we try to compute the state’s probability 
and regard a comparably larger probability as the occurrence of 
anomalies or events.

Mining Classifying services according 
to the required provisioning 
mechanisms (e.g., band-
width, error rate, latency)

Supervised learning: 
• Gradient Boosting Decision Tree (GBDT)
Unsupervised learning: 
• Spectral Clustering 
• One-class SVM 
• Replicator Neural Networks (RNN)

Supervised learning heavily relies on the labeling quality of data 
samples, while unsupervised learning depends on the accuracy or 
suitability of parameter (e.g., threshold) settings.

Prediction Forecasting the trend of UE 
mobility or the traffic volume 
of different services

Kalman Filtering (KL) 
Auto-Regressive Moving Average (ARMA)
Auto-Regressive Integrated Moving Average (ARIMA) 
Deep Learning (DL): 
• Recurrent Neural Networks (RNN) 
• Long-Short Term Memory (LSTM) 
Compress Sensing (CS)

KL/ARMA/ARIMA could well follow the variations of a one-time se-
quence, but fail to capture the characteristics behind this sequence. On 
the other hand, DL algorithms like RNN and LSTM have the capability 
to find the embedded characteristics and leverage the long-time 
dependency in the sequence. Meanwhile, CS is a dedicated tool to 
investigate the universal sparsity in mobile traffic series and resources 
(e.g., BSs).

Reasoning Configuration of a series of 
parameters to better adapt 
services.

Dynamic Programming (DP) 
• Branch-and-Bound Method 
• Primal-and-Dual Method
Reinforcement Learning (RL) 
• Actor-critic Method 
• Q-Learning Method
Transfer Learning (TL)

DP, which might belong to a generalized sense of AI, is generally 
exploited to solve the Bellman equation, based on complete knowl-
edge of the considered environment. In contrast, RL approximates the 
optimal solution of the Bellman equation without knowing the envi-
ronment a priori, by iteratively updating its policy or value function. 
Besides, a combination of RL and TL could yield superior results.  

TABLE 2. The evolution toward intelligent 5G.

4G 5G
AI modules

Intelligent 5G
Sensing Mining Prediction Reasoning

Services MBB eMBB/mMTC/URLLC Service-aware

RRM Granted
Granted or grant-free 
Flexible bandwidth 

Flexible symbol length 
ü ü û ü UE-specific on-demand

MM Unified On-demand ü û ü ü Location tracking/awareness 

MANO Simple Operator-tailored ü ü ü ü
Enhanced self-organizing and 

trouble-shooting capability

SPM Unified End-to-end NS û ü ü ü
Network slice auto-

instantiation
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lers, so as to get in touch with cellular network 
data such as traffic information, UEs, and network 
resources. Afterward, the AI center will utilize its 
embedded modules (e.g., sensing, mining, predic-
tion, and reasoning) to process the obtained infor-
mation, and feedback learning results, which may 
include traffic characteristic analysis reports (e.g., 
service provisioning suggestion), UE-specific con-
trolling information (e.g., serving priority, band-
width allocation, mobility tracking command), and 
network configuration notification (e.g., param-
eter adjustment, access method, network error 
alert), to the SDN controllers. For example, AI 
leverages the sensing module to track the loca-
tion of UEs and uses the predicting module to 
forecast the mobility trend based on the historical 
moving pattern. Afterward, it takes advantage of 
the reasoning module and proactively notifies the 
UEs to update the location record, so as to pre-
pare handover resources and save signaling cost 
of mobility management.

On the other hand, 5G cellular networks can 
maintain the normal working status under the 
condition of potential damages (e.g., hacking) to 
the AI center. Meanwhile, the AI center could 
(semi-)periodically exchange information with the 
SDN controllers in normal states, while it starts 
emergent responses to schedule the minimum 
required resources, once the conventional SDN 
controllers encounter malfunctions. Therefore, 
compared to the complete centralized architec-
ture in conventional networks, the AI center and 
the SDN controllers virtually constitute a multi-ti-
er decision-making system, thus being able to 
improve the network robustness.

Opportunities
In addition to the benefits to the RRM, MM, 
MANO, and SPM, AI could further contribute to 
solving the following issues.

Overloading of Cellular Network Data: Cel-
lular networks generate vast volumes of records 

by provisioning different services and types of 
UEs under various channels, network entity 
configurations, and energy consumption con-
ditions. In particular, AI could exploit cellular 
network data to forecast potential events and 
predict traffic volume and help to pre-allocate 
network resources. Meanwhile, AI provides a 
unified means to mine the relevancy in such 
abundant data and helps build a more concrete 
mapping from service requirement to network 
configuration. Furthermore, AI could generate 
some operating reports to describe and sum-
marize the subscriber and network experience 
statistics, which is relevant when setting billing 
and market policies.

Inter-Networking of Heterogeneous Cellular 
Networks: Currently, operators have deployed 
heterogeneous BSs in the 4G era, including pico-
cells (providing high capacity), micro-cells (pro-
viding wide coverage for eMBB) and macro-cells 
(supplying even wider coverage for signaling and 
mMTC services). AI could analyze the require-
ments of one emerging service and contribute 
to the selection of the most appropriate access 
point to accommodate such a service, in terms 
of SE, EE, or other more complicated criteria. For 
example, AI could generate UE-specific policies 
to make some UEs attach to pico BSs for larger 
throughput while letting some UEs connect to 
macro BSs to maintain fundamental information 
exchange.

Difficulties in an Operator Supporting Sub-
system: Usually, cellular networks merely rely 
on thresholds to monitor network anomalies. 
Therefore, operator engineers have to be vigilant 
enough to systematic alerts and read user guides 
to cope with unexpected network conditions. But 
AI could use cellular network data to derive com-
mon network traffic patterns. Therefore, when net-
works experience traffic with unfamiliar patterns, 
AI can start troubleshooting at the very beginning. 
Similarly, networks could take advantage of AI to 

FIGURE 3. 5G cellular networks enabled by AI.
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shield against potential safety threats, once AI per-
ceives activity and address anomalies.

Challenges in Integrating RANs and CNs: Usu-
ally, the management of RANs and CNs is iso-
lated, thus being not scale enough for network 
evolution. As mobile edge computing becomes 
more common, AI grants the controller more 
power and capability to jointly schedule wireless 
and wired resources, choose the appropriate con-
tent distribution and caching server (e.g., edge 
and core server), and provide more unified pro-
tection against possible network threats.

Challenges
In spite of the apparent opportunities, there are 
also challenges to apply AI to cellular networks. 
First, in the 5G era, network data is a double-edged 
sword. It definitively provides precious oppor-
tunities for AI to analyze trends and recognize 
patterns. However, it is also difficult to derive a 
simple model or pattern that perfectly matches 
the data. Therefore, the derived results, which 
possibly consist of lots of parameters, are very dif-
ficult to read and lose value for practical applica-
tion. Second, in order to save and process cellular 
network data in a timely manner, a significant 
amount of storage and computational resources 
are needed, and there might be threats to infor-
mation security. Also, it usually is necessary to col-
lect data in a centralized manner before applying 
most AI algorithms. These factors inevitably add 
to the computational capability of network enti-
ties and BSs and put a huge burden on the practi-
cal cost of products.

Use Case: Traffic-Aware 
Greener Cellular Networks

In this section, we demonstrate how to take 
advantage of AI to enhance the MANO, so as 
to build greener cellular networks [12]. It is well 
known that over 80 percent of power consump-
tion takes place in RANs, especially the BS, since 
the present BS deployment is on the basis of peak 
traffic loads and generally stays active irrespec-

tive of the huge variations in traffic load. There-
fore, benefiting from cloud pooling of baseband 
resources, an SDN controller [8] can be leveraged 
to sense traffic variations and adjust the working 
status of under-utilized BSs, thus improving ener-
gy efficiency. Meanwhile, an AI center plays a cru-
cial role in learning traffic variations and adjusting 
BS switching policy. Here, we briefly talk about 
two AI schemes to design traffic-aware greener 
cellular networks, and show how AI could effec-
tively solve this problem.

The most intuitive approach is to first fore-
cast traffic loads in the near future and then 
adjust the status of BSs, so as to satisfy the 
predicted traffic loads but incur minimal ener-
gy consumption. For traffic prediction, we 
can resort to the prediction module of AI. For 
example, our previous work [14] modifies the 
popular ARMA algorithm by incorporating traf-
fic sparsity in both the temporal and spatial 
domains and demonstrates the prediction error 
for aggregate traffic records collected from 
China Mobile could be as low as 15 percent, 
in terms of normalized root mean square error. 
Furthermore, we also predict the service-level 
traffic with more bursty property in [15] and 
demonstrate appealing accuracy as well, by 
deriving the traffic model (e.g., a -stable mod-
els) from realistic traffic records and utilizing a 
stable model-based compressive sensing algo-
rithm.1 On the other hand, in order to deter-
mine the appropriate BS switching policy, we 
take advantage of the branch-and-bound algo-
rithm, one kind of dynamic programming meth-
od, to solve the formulated optimization theory 
[14] and show that along with practical traffic 
variations, significant energy savings could still 
be expected. In particular, when traffic hits to 
the lowest point in the early morning (from 6 
AM to 8 AM), the AI-induced BS switching pol-
icy merely costs 55 percent of the energy that 
would be consumed if we emply no energy sav-
ing scheme.

In order to attain the BS switching solution, it is 
also viable to merge the prediction and reasoning 

FIGURE 4. The AI application framework for reinforcement learning-based greener cellular networks.
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Based on the sensing, 
prediction, and reason-
ing modules, AI could 
contribute to designing 
traffic-aware greener 
cellular networks. 
Meanwhile, such a 
design represents the 
typical methodology to 
exploit AI and reflects 
the effectiveness of AI 
on future cellular net-
works.

modules together, by applying a Markov chain to 
model possible traffic load variations and making 
use of the actor-critic algorithm in Fig. 4 [13], a 
reinforcement learning (RL) approach [12]. Spe-
cifically, the AI center would first estimate traffic 
load variations based on the on-line experience. 
Afterward, it can select one of the possible BS 
switching operations under the estimated circum-
stance and then decrease or increase the prob-
ability of the same action to be later selected 
according to the feedback cost information from 
SDN controllers, by updating the policy and value 
function. After repeating the actions and gradual-
ly knowing the corresponding costs, the AI cen-
ter would know how to switch the BSs for one 
specific traffic load profile. Meanwhile, as cellular 
network traffic exhibits strong self-similarity, the 
AI center could exchange the learned results in 
different periods and optimize the strategy in a 
faster manner. Our numerical results in a practi-
cal BS deployment scenario with simulated traffic 
traces also show that without knowing traffic vari-
ations beforehand, this RL method [12] could still 
converge quickly and approach the energy saving 
performance of a solution with perfectly predict-
ed traffic knowledge.

In a word, based on the sensing, prediction, 
and reasoning modules, AI could contribute to 
designing traffic-aware greener cellular networks. 
Meanwhile, such a design represents the typical 
methodology to exploit AI and reflects the effec-
tiveness of AI on future cellular networks.

Conclusion
In this article, we have suggested applying AI 
to cellular networks. We first discussed the ini-
tial intelligence emerging in nearly all aspects of 
5G cellular networks, including radio resource 
management, mobility management, gener-
al management and orchestration, and service 
provisioning management. Following such intel-
ligence, we argued it is still essential to bring 
more AI functionalities to 5G cellular networks 
by envisioning several prospective opportunities 
and listing some potential challenges. Finally, we 
provided a use case on how to obtain green-
er 5G cellular networks and demonstrated the 
thrilling effectiveness of AI. We could boldly 
argue that AI empowered 5G cellular networks 
will successfully enter the central stage of a digi-
talized world.
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