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ABSTRACT Predictability in spectrum prediction refers to the degree to which a correct prediction of the
radio spectrum state (RSS) can be made quantitatively. It is obvious that the possibility that the future RSS is
accurately predicted will be different when using different spectrum prediction algorithms. However, the fun-
damental limits on the accuracy of various spectrum prediction algorithms should exist and be worthwhile
to be paid attention to. In this paper, we define these fundamental limits as the performance bounds of
predictability, which can be the important indexes when evaluating the performance of different spectrum
prediction algorithms. Real-world spectrum data is involved to present comprehensive and profound analysis
of the predictability. We first transform large amount of spectrum data into symbol sequences by sampling
and quantization, to calculate the entropy of the symbol sequence, which represents the randomness of the
RSS evolution. Then, we derive the upper bound and the lower bound of the predictability mainly from
entropies of the symbol sequences. Further, we conduct the detailed analysis on the performance bounds of
the predictability of the RSS. Based on real-world data analytics, the key insights among others include:
1) entropies almost have no relationship with selection of sampling intervals in the data preprocessing;
2) the upper and the lower bounds of the predictability will both decrease as the quantization level rises and
tend to be stable around a value at last; and 3) two kinds of lower bounds of the predictability are proposed,
and one of the lower bounds, the regularity R, can reveal the tidal effect of the evolution of the RSS.

INDEX TERMS Predictability, spectrum state, entropy rate, real-world spectrum data, data analytics

I. INTRODUCTION
A range of applications in cognitive radio networks, from
adaptive spectrum sensing to predictive spectrum mobility
and dynamic spectrum access, depend on our ability to fore-
see the state evolution of radio spectrum [1]–[4]. A num-
ber of spectrum prediction techniques have been proposed,
such as time series-based prediction, autoregressive model-
based prediction, hidden Markov model-based prediction,
neural networks-based prediction, and Bayesian inference-
based prediction, etc. (see e.g. the surveys in [2] and [5], and
the references therein). Just as Shannon capacity gives the
upper bound of various modulation and coding schemes [6],

there should be fundamental performance bounds, in terms of
predictability, of various spectrum prediction algorithms.

Predictability is the degree to which a correct predic-
tion or forecast of a system’s state can be made either qual-
itatively or quantitatively [8]. When it comes to spectrum
prediction of interest in this paper, predictability refers to
the degree to which a correct prediction of the radio spec-
trum state (RSS) can be made quantitatively. Seeing that in
Shannon’s theorem [6], the channel capacity is defined as the
upper bound on the rate at which information can be reliably
transmitted over a communication channel when the length
of the source symbol string goes to infinity, that means there
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FIGURE 1. The evolution trajectories of RSS in the GSM900 downlink bands (935MHz ∼ 960MHz) and the GSM1800 downlink bands (1820MHz ∼
1875MHz) during the 3-day measurement. (a) RSS in the GSM900 downlink bands. (b) RSS in the GSM1800 downlink bands.

must be an encoding method to make the rate of the error-
free information transmission over a communication channel
be infinitely close to the channel capacity. Similarly, in this
paper, the upper bound of predictability in spectrum predic-
tion can be defined as the upper bound on the possibility that
the future RSS predicted by a certain spectrum prediction
algorithm agrees with the actual RSS at the next moment

when the length of the history RSS sequence goes to infinity,
that means there must be an appropriate spectrum prediction
algorithm to make the possibility be infinitely close to the
upper bound of predictability. Meanwhile, there should also
exist a lower bound of predictability. This means the possibil-
ity that one simplest spectrum prediction algorithm, whose
prediction is only based on the frequencies of the RSSs in
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the history sequence, can predict the future RSS accurately.
We can assess the reliability of the spectrum prediction algo-
rithm bymaking comparison between the prediction accuracy
and the bounds of predictability on the same spectrum dataset.
So, predictability in RSS dynamics can be an important index
when evaluating the performance of different spectrum pre-
diction algorithms. In this paper, we will pay attention to the
fundamental limits on the accuracy of spectrum prediction
algorithms, instead of constraining ourselves to discuss the
performance of a particular spectrum prediction algorithm.

Real-world spectrum data can provide evidence for the
research of performance bounds of predictability on spectrum
prediction. As an example, Fig. 1 shows the evolution trajec-
tories of the 3-day real-world RSS in the GSM900 downlink
bands and the GSM1800 downlink bands. The measured
power spectrum density (PSD) values,1 which are used to rep-
resent the RSS. The larger the PSD value is, the higher the sig-
nal strength is and the busier the service of the corresponding
frequency band is. As can be seen from both Fig. 1(a) and (b),
the RSS of part of measurement points has the variation trend
like tidal effect, which means the frequency bands are rela-
tively clear in the rest time, like deep night and early morning,
but relatively busy in the working time. The RSS of minority
measurement points remains unchanged and the RSS of other
measurement points evolves randomly and disorderly.

Accordingly, we can observe that regularity and random-
ness coexist in the evolution of the RSS of bands over the
time. The future RSS can be always predicted accurately
to some extent. Certainly, it is obvious that the possibility
that the future RSS is accurately predicted will be different
when using different spectrum prediction algorithms. Even if
we use an entirely accurate spectrum prediction algorithm,
predictability may have an upper bound due to the inherent
randomness in the RSS dynamics and the limited amount of
history data.

In our previous work [7], we introduced the concept of
the predictability into spectrum prediction and explored the
limits of the predictability in radio spectrum state (RSS)
dynamics by studying the RSS evolution patterns in spectrum
bands of several popular services based on the real-world
spectrum measurements, including TV bands, ISM bands,
and Cellular bands. We investigated the measured power
spectral density values (PSD), instead of the binary spectrum
occupancy (BSO), to analyze the predictability mainly for
the reasons that the PSD is the original raw data, also the
BSO highly depends on the selection of the detection thresh-
old inevitably and introduces detection or sensing errors
obtained by comparing with the detection threshold. We con-
ducted the entropy analysis by taking the real-world mea-
surements in TV bands as an example and quantizing the
PSD values into 8 levels. With the obtained actual entropy,
we calculated the upper bound 5max of the predictability.

1All measured data used to present the figure are from the open source
real-world spectrum dataset of the well-known RWTH Aachen University
spectrum measurement campaign [9].

Furthermore, we illustrated the cumulative distribution func-
tions for the predictability of various services from a sta-
tistical perspective. We can derive some conclusions from
the above work. On the one hand, the predictability in the
real-world RSS dynamics can reach up to 90% despite the
apparent randomness. On the other hand, the predictability
of various services and its distribution would be different due
to humans’ spectrum usage.

To present more comprehensive and profound analysis of
the predictability, we continue our research on the basis of
the previous work. Specifically, the new contributions of this
paper are summarized as follows:
• We obtain two kinds of lower bounds,5unc and R, of the
predictability.

• We analyse the impact of the size of data, including
sampling intervals and the size of original data, on cal-
culating entropies.

• We analyse the impact of different quantization levels on
entropies, the upper bound 5max and the lower bound
5unc of the predictability.

The key insights of real-world spectrum data analytics in
this paper include: i) entropies almost have no relationship
with selection of sampling intervals in the data preprocessing;
ii) the upper bound 5max and the lower bound 5unc of the
predictability will both decrease as the quantization level rises
and tend to be stable around a value at last; iii) the other
lower bound, the regularity R, can reveal the tidal effect of
the evolution of the RSS.

The remainder of this paper is organized as follows.
Section II will introduce the procedure of data preprocessing.
Section III will talk about computing the entropy of a symbol
sequence with finite length. The upper bound and the lower
bounds of the predictability will be presented in details in
Section IV. Section V will show the results and discussions
about the predictability. Conclusions are drawn in Section VI.

II. DATA PREPROCESSING
The real-world spectrum dataset of the RWTH Aachen Uni-
versity spectrum measurement campaign2 is made up of the
measured PSD values in chronological order of a number
of measurement points in the bands. We can try to regard
the sequence of measured PSD values as the information
sequence. The measured PSD values are represented in the
decimal form and data preprocessing can help us trans-
form the sequence of measured PSD values into the sym-
bol sequence in the appropriate form which is convenient

2The researchers have conducted a strict and complete spectrum mea-
surement from December 2006 to July 2007 at two locations in Aachen,
Germany, and one location in Maastricht, Netherlands. The measured bands
ranges from 20MHz to 6GHz and are composed of four subbands of each
1.5GHz bandwidth. A resolution bandwidth of 200 kHz is chosen as a
compromise between frequency resolution and the maximum supported
span. So, each subband of 1.5GHz bandwidth includes 8192 measurement
points, which will cause a small overlap between adjacent measurement
channels. The inter-sample time is about 1.8s that means there will be about
1000 measured PSD values obtained in 30 minutes for each measurement
point by the measurement system. In this paper, almost all the bands carrying
the popular services will be included in our analysis.
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for analysis. Data preprocessing can be divided into two parts:
sampling and quantization.

A. SAMPLING
The original inter-sample time in the RWTH Aachen Univer-
sity spectrum measurement campaign is about 1.8s, which
results in about 48000 measured PSD values one day for each
individual spectrum point. It is hard for us to process such
huge data with a PC in time. We may obtain a new spectrum
dataset by taking one PSD value as a sample every several
consecutive PSD values to facilitate the presentation and
analysis. We can call the procedure ‘sampling’. The interval
time between the two adjacent samples based on the original
measurements can be defined as the sampling interval, which
may have effect on the entropy of the sequence and then on
the predictability. It is obvious that the details of evolution
trajectories will be lost more or less after sampling. The
longer the sampling interval is, the more details are lost.
How much impact sampling has on the predictability will be
discussed in Section V-C.

B. QUANTIZATION
The measured PSD with continuous values can be trans-
formed into the symbols via quantization to facilitate further
processing. convenient for analysis. We take the maximum
value and the minimum value of the original dataset as the
upper and lower bound respectively and quantize the PSD
values between the upper and lower bound into Q levels
equally (Q ≥ 3). The PSD values inside each quantization
interval will be represented by each corresponding symbol.

There is still a special case taken into consideration. When
Q = 2, it is inappropriate to quantize the PSD values into
2 levels equally for the FCC’s final rules. The sensitive
threshold is specified as −114dBm/200kHz in the rule [9],
which means if the PSD with continuous values is bigger
than −114dBm, the corresponding channel should be con-
sidered as busy and the RSS can be symbolized with the
symbol ‘1’; otherwise, the RSS will be symbolized with the
symbol ‘0’.

III. ENTROPY ANALYSIS
Given a symbol sequence with finite length, how can we
depict the randomness of the discrete source transmitting a
symbol? In the Shannon’s information theory [6], the infor-
mation entropy is the general information measure of the
source which reflects the randomness of the source.

For a source of the known probability space composed
by the prior probabilities that the source transmits different
symbols with, we can easily calculate its information entropy
according to the formula of source entropy

S (X) = −
m∑
i=1

p (ai) logp (ai) , (1)

where m represents the total kinds of source symbols
and p (ai) represents the frequency that the symbol ai

is transmitted [10]. Only the symbol sequence with finite
length is given in our problem. Maybe we can estimate
the probability distribution of all symbols appearing in the
sequence, which will help us obtain the information entropy.
The length of the symbol sequence will have a significant
influence on the accuracy of the estimated probability dis-
tribution. The longer the sequence is, the more accurate the
estimation is with the higher computation cost. The tem-
poral correlation of adjacent symbols should be taken into
account, too.

Let X = {Xi} be the symbol sequence, where Xi represents
a symbol at the sampling time slot i, which can be position i
mentioned below.

The entropy of a stationary ergodic process X is defined by

S(X ) = lim
n→∞

1
n
S (X1,X2, . . . ,Xn) (2)

and the limit must exist. This is the per symbol entropy of the
n-length sequence. Another related quantity for entropy rate
is defined by

S ′(X ) = lim
n→∞

S (Xn |Xn−1,Xn−2, . . . ,X1 ) (3)

which represents the conditional entropy of the last symbol
given the past sequence with n− 1 length. According to [10],
for a stationary stochastic process X , we have

S(X ) = S ′(X ). (4)

S (Xn |Xn−1, . . . ,X1 ) is nonincreasing in n and has a
limit S ′(X ).
So, the entropy of X = {Xi} can be written as

S , lim
n→∞

1
n
S (X1,X2, . . . ,Xn)

= lim
n→∞

S (Xn |Xn−1,Xn−2, . . . ,X1 )

= lim
n→∞

1
n

n∑
i=1

S (Xi |hi−1 )

= lim
n→∞

1
n

n∑
i=1

S (i), (5)

where hi−1 = {Xi−1,Xi−2, . . . ,X1} and S (n) , S (Xn |hn−1 )
is defined as the conditional entropy of the symbol at
position n.

The definition of the entropy of a stationary ergodic pro-
cess has been given in (2), which holds under the condition
that the length of the sequence approaches infinity. In prac-
tice, some straightforwardmethods for estimating the entropy
rate of an unknown source would be to run a universal coding
algorithm on a finite long sequence of the source output. If the
symbol sequence is long enough for the algorithm to con-
verge, the compression ratio is a good estimate for the source
entropy. Here, we invoke the Lempel-Ziv algorithm [11] to
address this issue. The algorithm reveals deep connections
between the entropy rate of a stationary ergodic process and
the longest match-length of the subsequence in the process of
encoding compression.

VOLUME 5, 2017 22763



J. Sun et al.: Predictability Analysis of Spectrum State Evolution

Specifically, for i ≤ j, X ji denotes the subsequence{
Xi, . . . ,Xj

}
. For i ≥ 1, 3i = k represents the length of

the shortest subsequence X i+k−1i starting at position i that
does not appear as a contiguous subsequence of the previous
i-length symbol subsequence X i−10 . The length of the
sequence is denoted by n, namely the window size. Then,
the entropy of the sequence can be defined as

Sest =
log2n
n

(
n∑
i=1

3i

)−1
. (6)

This method for estimating entropy using Lempel-Ziv
algorithm is actually an exhaustive-searching process with
heavy computation. When n approaches infinity, Sest con-
verges to the actual entropy [11].

If the time correlation between two adjacent symbols isn’t
taken into account, the entropy of the symbol sequence will
be much easier to be computed. The problem degenerates
into only considering the frequency of each symbol. The

time-uncorrelated entropy can be defined as −
M∑
i=1

pilog2pi,

denoted as Sunc, where M represents the total kinds of all
different symbols and pi represents the appearance frequency
of each symbol. Note that when the measured PSD values are
transformed into a symbol sequence by sampling and quan-
tization, the relationship between the kinds of symbols M
and the quantization level Q is M ≤ Q. For the non-uniform
distribution of the original measured PSD values, there may
be no values inside some quantization intervals, leading to
that some corresponding symbols don’t exist in the symbol
sequence.

Furthermore, the problem can degenerate by ignoring the
different appearance frequencies of symbols, only thinking
about that symbols appear with equal probability. The random
entropy can be defined as log2M , denoted as Srand.

There is no doubt that for any symbol sequence, Sactual ≤
Sunc ≤ Srand. Except the actual entropy, the other two
entropies are both defined in the case of ignoring some statis-
tical property of the symbol sequence. Entropy represents the
nondeterminacy that the source transmits the symbol, also
the randomness of the source. The bigger the entropy is,
the bigger the randomness of the source is.When the source is
regarded as transmitting each symbol with equal probability,
the random entropy must be the biggest one among three
entropies.

IV. THE UPPER BOUND AND THE LOWER
BOUND OF PREDICTABILITY
As mentioned above, entropy represents the nondeterminacy
that the source transmits the symbol. When the entropy is
equal to 0, it means that there is not any nondeterminacy that
the source transmits the symbol. The symbol transmitted by
the source at the next moment is determined by the history
symbol sequence. In this case, predictability, the possibility
that an appropriate prediction algorithm can predict the sym-
bol transmitted at the next moment accurately [8]. When it

comes to the random entropy Srand = log2M , it means the
probability of transmitting each symbol is equal, then the pre-
dictability will not exceed 1/M accordingly. So, the relation-
ship between the entropy and the bounds of the predictability
can be established.

A. DEFINITION OF PREDICTABILITY
Let hn−1 = {Xn−1,Xn−2, . . . ,X1} denote a history symbol
sequence of a measurement point from position 1 to posi-
tion n − 1. Let Pr[Xn = X̂n |hn−1 ] be the probability that
the estimated next symbol X̂n agrees with the actual next
symbol Xn based on the history sequence hn−1. Let π (hn−1)
be the probability the next symbol will agree with the most
likely next symbol xML based on the history sequence hn−1.
Thus

π (hn−1) = sup
x
{Pr [Xn = x |hn−1 ]} , (7)

where Pr [Xn = x |hn−1 ] is the probability that the next sym-
bol Xn is x based on the history sequence hn−1. That is,
π (hn−1) contains the full predictive power including the
potential long-range correlations present in the data.

Let Pa(X̂n |hn−1 ) be the distribution generated by an arbi-
trary spectrum prediction algorithm a* over the next possible
symbol X̂n. Let P (Xn |hn−1 ) be the true distribution over the
next symbol. Thus, the probability of correctly predicting
the next symbol of the sequence is Pra{Xn = X̂n |hn−1 } =∑

x P (x |hn−1 )Pa (x |hn−1 ). Since π (hn−1) ≥ P (x |hn−1 )
for any x, we have

Pr
a

{
Xn = X̂n |hn−1

}
=

∑
x

P (x |hn−1 )Pa (x |hn−1 )

≤

∑
x

π (hn−1)Pa (x |hn−1 )

= π (hn−1) . (8)

In other words, any prediction based on the history
sequence hn−1 cannot do better than the one that the source
transmits the most likely symbol at the next position.

For a hypothetical prediction algorithm a*, the maxi-
mal predictability is theoretically achievable which can be
denoted as

Pa∗ (x |hn−1 ) =

{
1 x = xML
0 x 6= xML .

(9)

That is to say that a* can always choose the most likely
symbol as its prediction of the symbol transmitted at the next
position. Then, we have

Pr
a∗

{
Xn = X̂n |hn−1

}
=

∑
x

P (x |hn−1 )Pa∗ (x |hn−1 )

= π (hn−1) . (10)

Therefore, π (hn−1) is not only an upper bound, but is in
principle attainable by an appropriate algorithm.

Next, we define the predictability 5(n) for the given his-
tory sequence whose length is n − 1. Let P (hn−1) be the
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probability of obtaining a particular history sequence hn−1.
Then, the predictability is given by

5(n) ≡
∑
hn−1

P (hn−1)π (hn−1) , (11)

denoting that all possible history sequences are summed.
Taking the limit, we define the overall predictability5 as

5 ≡ lim
n→∞

1
n

n∑
i

5(i). (12)

Since 5(n) is the best success rate to predict the symbol
at the position n, 5 may be viewed as the time averaged
predictability.

B. UPPER BOUND OF PREDICTABILITY
The conditional entropy is defined in (5). Next, we will relate
the conditional entropy to the predictability.

Assuming that π (hn−1) = p, we can obtain the inequation
about the conditional entropy

S (Xn |hn−1 ) ≤ SF (π (hn−1)) , (13)

by invoking the Fano’s inequality H (X |Y ) ≤ H (Pe) +
Pe log (m− 1). The derivation is as follows

S (Xn |hn−1 ) ≤ H (Pe)+ Pe log (m− 1)

= H (1−π (hn−1))+(1−π (hn−1)) log (m−1)

= −
[
plog2p+ (1− p) log2 (1− p)

]
+ (1− p)log2 (M − 1)

, SF (p) = SF (π (hn−1)) , (14)

where M represents the total kinds of all different symbols,
SF is the notation of the newly defined function in the
equations above and SF (p) is concave and monotonically
decreases with p. Then, we can establish the relationship
between the conditional entropy and the predictability by
using Jensen’s inequality as follows [8]

S (n) =
∑
hn−1

P (hn−1)S (Xn |hn−1 )

≤

∑
hn−1

P (hn−1)SF (π (hn−1))

≤ SF

∑
hn−1

P (hn−1)π (hn−1)


= SF (5 (n)) . (15)

Similarly, we can obtain the relationship between S and5
as

S = lim
n→∞

1
n

n∑
i=1

S (i)

≤ lim
n→∞

1
n

n∑
i=1

SF (5 (i))

≤ SF

(
lim
n→∞

1
n

n∑
i=1

5(i)

)
= SF (5) . (16)

For SF (5) ≥ S and that SF is a monotone decreas-
ing concave function, we can obtain the minimum value
of SF , namely S = Sactual, when 5 is set as its maximum
value 5max. We can describe this relationship by the equa-
tions as follows

Sactual = SF
(
5max)

= −
[
5maxlog25

max
+
(
1−5max) log2 (1−5max)]

+ (1−5max)log2 (M − 1) . (17)

Thus, 5max is an upper bound of the predictability5.

C. LOWER BOUND OF PREDICTABILITY
As mentioned above, SF (5) is a monotone decreasing con-
cave function in 5. We can refer to the details of entropy
analysis in Section III for the value of SF . The relationship
among three entropies is Sactual ≤ Sunc ≤ Srand. When SF
reaches its minimum value Sactual, the value of variable 5
can be regarded as the upper bound of the predictability,
denoted as 5max. When the temporal correlation isn’t taken
into account, namely SF = Sunc, we can also regard the
value of variable 5 as the lower bound of the predictability,
denoted as 5unc. The defination of this lower bound of the
predictability can be described as

Sunc = SF
(
5unc)

= −
[
5unclog25

unc
+
(
1−5unc) log2 (1−5unc)]

+ (1−5unc)log2 (M − 1) . (18)

Here, we leave Srand out of consideration, since Srand rep-
resents the entropy that each symbol shares equal proba-
bility which is too loose to serve as a lower bound of the
predictability.

From another angle, we can separate the sequence into
several segments to measure the respective regularity,3 since
the long sequence seems random. The regularity of the long
sequence is another thought of the lower bound.

Let h′n−1 be one segment of the long sequence and
π
(
h′n−1

)
≡ P

(
x ′ML

∣∣h′n−1 ). LetP (h′n−1) be the probability of
3Regularity can be considered as the probability of the symbol at the next

moment being consistent with the symbol with the highest frequency within
a certain period of time [8]. The regularity is denoted as R and also ignores
the temporal correlations among symbols, similar to 5unc.
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FIGURE 2. Entropies of the RSS dynamics in the GSM900 downlink bands (935MHz ∼ 960MHz) and the GSM1800 downlink bands (1820MHz ∼
1875MHz) during the 6-day measurements (Q = 8, sampling interval = 3 min). (a) The entropy of the RSS dynamics in the GSM900 downlink
bands. (b) The entropy of the RSS dynamics in the GSM1800 downlink bands.

obtaining the particular segment. Regularity can be denoted
as follows

R (n) =
∑

h′n−1∈hn−1

P
(
h′n−1

)
π
(
h′n−1

)
. (19)

We can prove thatR (n) represents a lower bound for5(n).

5(n) ≡
∑
hn−1

P (hn−1) π (hn−1)

=

∑
hn−1

 ∑
h′n−1∈hn−1

P
(
h′n−1

)
P
(
hn−1

∣∣h′n−1 )
π (hn−1)

=

∑
h′n−1∈hn−1

P
(
h′n−1

)∑
hn−1

P
(
hn−1

∣∣h′n−1 )π (hn−1)


≥

∑
h′n−1∈hn−1

P
(
h′n−1

)∑
hn−1

P
(
hn−1

∣∣h′n−1 )P (x |hn−1 )


=

∑
h′n−1∈hn−1

P
(
h′n−1

)
P
(
x
∣∣h′n−1 )

=

∑
h′n−1∈hn−1

P
(
h′n−1

)
π
(
h′n−1

)
= R (n) (20)

Then, the overall regularity is defined as

R ≡ lim
n→∞

1
n

n∑
i=1

R (i) ≤ lim
n→∞

1
n

n∑
i=1

5(i) = 5. (21)

Combining this result with the upper bound, the pre-
dictability 5 satisfies R ≤ 5 ≤ 5max. Thus R is one lower
bound of the predictability.

To summarize this section on entropy analysis, we propose
three bounds of the predictability in spectrum prediction
in all. The upper bound 5max and the lower bound 5unc

are considering the grobal predictability from the whole long
sequence of a specified long period of time. But the lower
bound R is separating the long sequence into sub-segments
to consider the respective predictability of every sub-period
of time. The former one 5max is derived from searching
for the huge data space, bringing heavy computation; the
latter two, 5unc and R, both ignore the temporal correlations
among symbols of the sequence, with less computation cost.
In practice, to make the accuracy of the prediction algorithm
as close as possible to the upper bound of the predictabil-
ity and as higher as possible than the lower bound of the
predictability is our pursuit when designing the spectrum
prediction algorithms.

V. RESULTS AND DISCUSSION
In this section, we conduct extensive data analysis on the
measured PSD values of the first two subbands from 20MHz
to 3GHz which were collected on the 3rd floor balcony
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FIGURE 3. The actual entropy and the time-uncorrelated entropy of the RSS dynamics with different sampling intervals in the GSM900 downlink
bands (935MHz∼960MHz) during the 1-day measurements and the 6-day measurements respectively (Q = 32). (a) During the 1-day measurement
(Q = 32). (b) During the 6-day measurement (Q = 32). (c) During the 1-day measurement (Q = 32). (d) During the 6-day measurement (Q = 32).

in a residential area in Aachen, Germany. Discussions and
analysis on the entropies and bounds of the predictability of
the popular services will be specified in the following.

A. EXPERIMENTAL SETUP
Firstly, we take the datasets of the PSD values in the
GSM900 downlink bands and the GSM1800 downlink bands
as examples to calculate entropies of the RSS. The followed
discussion and analysis are mainly based on these datasets.
Then, we discuss the impacts of the size of data and quanti-
zation levels on entropies.

Secondly, we derive the upper bound 5max and the lower
bound 5unc of the predictability based on the computation
of entropies. Then, the impact of quantization levels on
predictability is discussed in details. With the appropriate
selection of quantization levels and the size of data, more
spectrum data are involved in our research and predictability
of different bands will be illustrated.

The bounds above are both considering the global pre-
dictability, while the lower bound R focuses on the time-
segmented predictability which will be included at last.

B. ENTROPIES OF BANDS
Entropies of the RSS in the GSM900 downlink bands and the
GSM1800 downlink bands have been shown in Fig. 2. Here,
the random entropy Srand, the time-uncorrelated entropy Sunc

and the actual entropy Sactual of the bands are plotted in
the same figure to make comparison. The size of the PSD
values is 6-day measurements; the quantization level Q is 8

and the sampling interval is 3min. The relationship between
three entropies is confirmed exactly Sactual ≤ Sunc ≤ Srand,
consistent with the theory.

Actual entropies of measurement points in the GSM900
downlink bands are uniformly distributed in the range
of 0 to 1, which means that the RSSs of some measurement
points relatively evolve randomly while those remain regular
relatively. Actual entropies of some measurement points in
the GSM1800 downlink bands equal to 0, which means the
RSS of them keep almost unchanged. Meanwhile, the RSS
of the rest of measurement points in the GSM1800 downlink
bands evolves randomly, consistent with the colorful strips in
the Fig. 1.

C. IMPACT OF THE SIZE OF DATA ON ENTROPIES
The size of data have great impact on the computation of
entropies, especially the actual entropy. When calculating the
actual entropy, the entire sequence is searched for ‘the short-
est subsequence’ at each position. The longer the sequence
is, the more time the process of calculating the actual entropy
costs. Thus, it is important for us to reduce the data amount
involved in our analysis to provide convenience.

A direct method to reduce the data amount is to involve less
days’ measurements in the analysis. The subgraphs in the left
column in Fig. 3 use 1-day measurements and the subgraphs
in the right column use 6-day measurements. Curve clusters
of the subgraphs in the same row approximately have the
same trend. The more data is involved, the more states of the
radio spectrum there will occur, thus, the bigger the entropies
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FIGURE 4. Entropies of the RSS dynamics with different quantization levels in the GSM900 downlink bands (935MHz ∼ 960MHz) during the 6-day
measurements (sampling interval = 3min). (a) The actual entropy. (b) The time-uncorrelated entropy.

are, especially for the time-uncorrelated entropies which are
directly proportional to the kinds of symbolsM .

Another method to reduce data is sampling. Prolonging the
sampling interval is to reduce the data amount when keep-
ing days of measurements unchanged. Subgraphs in Fig. 3
also compare the entropies when selecting different sampling
intervals. Whatever days of measurements are and whatever
quantization levels are, curve clusters of actual entropies and
time-uncorrelated entropies almost overlap respectively. As a
result, we can find that the sampling interval has ignorable
effect on the entropies. When it comes to processing large
amount of data, like several-day measurements, we can pro-
long the sampling interval to make the processing procedure
as short as ensuring the abundant sampling data.

D. IMPACT OF QUANTIZATION LEVELS
ON ENTROPIES
Quantization, as an important part of data preprocessing,
helps us transform the measured PSD The measured PSD
with continuous values into the symbols. It is convenient for
us to calculate entropies or do further analysis on the symbol
sequence. When the quantization level Q equals to 2, there
are only two kinds of symbols in the symbol sequence and
the entropy of the symbol sequence will be so small that no
more than 1. The larger the quantization level is, the more
kinds of symbols there are in the symbol sequence and the
bigger the entropies are.

The above conclusions obtained from theoretical analy-
sis are reinforced in Fig. 4. Entropies will increase as the

quantization levels rise and the time-uncorrelated entropies
rise with the larger magnitudes. Moreover, the selection
of quantization levels will affect the computation speed of
entropies. More quantization levels can bring the shorter data
processing procedure.

If we continue to predict the future RSS on the basis of
the history symbol sequence, the prediction result of the
future RSS must be the symbols instead of the numerical
PSD values. When the quantization level Q equals to 2,
the possibility of predicting the future RSS accurately is at
least 50%. The larger the quantization level is, the more kinds
of symbols there will occur in the future and the smaller
the possibility of predicting the future RSS accurately is.
Whether this conclusion is correct will be discussed in the
following section.

E. PREDICTABILITY OF BANDS
On the basis of the above analysis and discussion, we investi-
gate the upper bound and the lower bound of the predictability
of the RSS dynamics in the GSM900 downlink bands and
the GSM1800 downlink bands, where the lower bound of the
predictability here refers to5unc. The size of the PSD values
is 6-day measurements; the quantization level Q is 8 and the
sampling interval is 3min.

Fig. 5(a) shows the predictability of the RSS dynamics
in the GSM900 downlink bands and the upper bounds of
the predictability of all measurement points are up to 80%.
The lower bounds of the measurement points are above 60%
except a fewmeasurement points. Although it seems that high
randomness exists in the evolution trajectories, there have a
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FIGURE 5. Predictability of the RSS dynamics in the GSM900 downlink bands (935MHz∼960MHz) and the GSM1800 downlink bands
(1820MHz∼1875MHz) during the 6-day measurements (Q = 8, sampling interval = 3min). (a) Predictability of the RSS dynamics in the GSM900
downlink bands. (b) Predictability of the RSS dynamics in the GSM1800 downlink bands.

FIGURE 6. The upper bound of the predictability with different quantization levels of several measurement points in the GSM900 downlink
bands (935MHz∼960MHz) during the 6-day measurements (sampling interval = 3min).

good performance on the predictability. Similar observations
can be found on the predictability of the RSS dynamics in the
GSM1800 downlink bands in Fig. 5(b).

F. IMPACT OF QUANTIZATION LEVELS
ON PREDICTABILITY
To explore whether the quantization level has an impact
on the predictability of the RSS, the upper bounds and the

lower bounds of the predictability when selecting different
quantization levels are compared with each other. To facilitate
the presentation, we randomly select 8 measurement points
among all measurement points of the GSM900 downlink
bands to plot their bounds of the predictability of the RSS
for comparison in Fig. 6 and Fig. 7.

It is consistent that the upper bounds and the low bounds
of the predictability will both decrease as the quantization
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FIGURE 7. The lower bound 5unc of the predictability with different quantization levels of several measurement points in the GSM900 downlink
bands (935MHz∼960MHz) during the 6-day measurements (sampling interval = 3min).

FIGURE 8. The upper bound 5max and the lower bound 5unc of the predictability of one measurement point in the GSM900 downlink
bands (935MHz∼960MHz) during the 6-day measurements (sampling interval = 3min).

levelQ rises, and then decrease slowly, keeping stable around
a value at last. The difference between the maximum value
and the minimum value of the original dataset we used
is about 65dBm. When the quantization level Q is greater
than 650, which means the corresponding quantization inter-
val is less than 0.1dBm, the corresponding resolution of
prediction is high enough to neglect the effect of quantization
on the original data.

We can also pay attention to one of the 8 measure-
ment points to make comparison between the upper bound
5max and the lower bound 5unc of the predictability.
The upper bound of the predictability of the RSS of
measurement-point-7 tends to be around 0.67 and the lower

bound tends to be around 0.265 in Fig. 8. Without quanti-
zation, the maximum possibility to predict the future RSS
accurately with the appropriate prediction algorithm based on
the original dataset is still up to 67%. Certainly, the boundwill
vary with each measurement point.

G. PREDICTABILITY OF DIFFERENT BANDS
The upper bound5max and the lower bound5unc of the pre-
dictability are related to the actual entropy Sactual or the time-
uncorrelated entropy Sunc and the number of the symbols M
in (17) and (18). So, the upper bound 5max and the lower
bound 5unc will be influenced by the quantization level Q
and the dataset itself involved in the data processing.
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FIGURE 9. The cumulative density functions (CDFs) for the upper bound of the predictability in different bands during the 6-day
measurements (Q = 32, sampling interval = 3min).

FIGURE 10. The cumulative density functions (CDFs) for the lower bound 5unc of the predictability in different bands during the 6-day
measurements (Q = 32, sampling interval = 3min).

Predictability of the RSS in the bands of all popular ser-
vices is illustrated in Fig. 9 and Fig. 10. The sizes of the
PSD values of different services are all 6-day measurements;
the quantization level Q is 32 and the sampling interval is
3min. It follows that the upper bounds of the predictability
of most popular services are around 90% and the upper

bounds of the predictability of the GSM900 downlink bands
and the GSM1800 downlink bands have a relatively poor
performance due to the influence of the randomness of human
activities. The lower bounds 5unc of the predictability range
from 40% to 80%. Some bands have high lower bounds of
the predictability, which represents the future RSS of these
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FIGURE 11. The regularity of the GSM900 downlink bands during the 6-day measurements (Q = 32, sampling interval = 1.8s). (a) The
regularity of measurement points in the GSM900 downlink bands within each half-hourly interval. (b) The average regularity of the
GSM900 downlink bands within each half-hourly interval.

FIGURE 12. The regularity of the GSM1800 downlink bands during the 6-day measurements (Q = 32, sampling interval = 1.8s). (a) The
regularity of measurement points in the GSM1800 downlink bands within each half-hourly interval. (b) The average regularity of the
GSM1800 downlink bands within each half-hourly interval.

bands can be easily predicted accurately. When it comes to
predicting the future RSS of these bands, simple and efficient
algorithms without taking the time correlation into account
are enough to predict the future RSS accurately.

H. THE LOWER BOUND R OF PREDICTABILITY
Another lower bound of the predictability R is to consider
the probability of the symbol at the next moment being

consistent with the symbol with the highest frequency within
a certain period of time. To let each half-hour measure-
ments as one segment of the symbol sequence, we calcu-
late the regularity of each segment of the symbol sequence
of all measurement points in the bands, then averaging
the regularity of all measurement points in each half-hour
period as the average regularity R of the bands in each
half-hour period. The curves of R with time varying of
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the GSM900 downlink bands and the GSM1800 downlink
bands are respectively plotted in Fig. 11(b) and Fig. 12(b).
The lower bounds R of the predictability mainly range
from 40% to 60% and both evolve clearly like tidal effect.
It accords with the speciality of the bands of the two popular
service that clear in the rest time and busy in the working
time.

VI. CONCLUSION
This paper studies the predictability of the RSS in the popular
bands with the real-world spectrum data. The first contri-
bution is to find that entropies almost have no relationship
with selection of sampling intervals in the data preprocessing.
We can prolong the sampling interval to make computation
quicker to facilitate the analysis and research. The second
contribution is to find that the upper bounds and the lower
bounds of the predictability will both decrease as the quan-
tization level rises and tend to be stable around a value at
last, which means there exists the fundamental limits of the
predictability of the RSS. The third contribution is to propose
two kinds of lower bounds of the predictability, and one of the
lower bounds, the regularity R, can reveal the tidal effect of
the evolution of the RSS.
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