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TACT: A Transfer Actor-Critic
Learning Framework for Energy Saving in

Cellular Radio Access Networks
Rongpeng Li, Zhifeng Zhao, Xianfu Chen, Jacques Palicot, and Honggang Zhang

Abstract—Recent works have validated the possibility of im-
proving energy efficiency in radio access networks (RANs),
achieved by dynamically turning on/off some base stations
(BSs). In this paper, we extend the research over BS switching
operations, which should match up with traffic load variations.
Instead of depending on the dynamic traffic loads which are still
quite challenging to precisely forecast, we firstly formulate the
traffic variations as a Markov decision process. Afterwards, in
order to foresightedly minimize the energy consumption of RANs,
we design a reinforcement learning framework based BS switch-
ing operation scheme. Furthermore, to speed up the ongoing
learning process, a transfer actor-critic algorithm (TACT), which
utilizes the transferred learning expertise in historical periods or
neighboring regions, is proposed and provably converges. In the
end, we evaluate our proposed scheme by extensive simulations
under various practical configurations and show that the pro-
posed TACT algorithm contributes to a performance jumpstart
and demonstrates the feasibility of significant energy efficiency
improvement at the expense of tolerable delay performance.

Index Terms—Radio access networks, base stations, sleep-
ing mode, green communications, energy saving, reinforcement
learning, transfer learning, actor-critic algorithm.

I. INTRODUCTION

THE explosive popularity of smartphones and tablets has
ignited a surging traffic load demand for radio access

and has been incurring massive energy consumption and huge
greenhouse gas emission [1], [2]. Specifically speaking, the
information and communication technology (ICT) industry
accounts for 2% to 10% of the world’s overall power con-
sumption [3] and has emerged as one of the major contributors
to the world-wide CO2 emission. Besides that, there also exist
economical pressures for cellular network operators to reduce
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the power consumption of their networks. It’s envisioned that
the electricity bill will doubly enlarge in five years for China
Mobile [4]. Meanwhile, the energy expenditure accounts for a
significant proportion of the overall cost. Therefore, it’s quite
essential to improve the energy efficiency of ICT industry.

Currently, over 80% of the power consumption takes place
in the radio access networks (RANs), especially the base
stations (BSs) [5]. The reason behind this is largely due to
that the present BS deployment is on the basis of peak traffic
loads and generally stays active irrespective of the heavily
dynamic traffic load variations [6], [7]. Recently, there has
been a substantial body of works towards traffic load-aware BS
adaptation [8] and the authors have validated the possibility of
improving energy efficiency from different perspectives. Luca
Chiaraviglio et al. [9] showed the possibility of energy saving
by simulations. [10] and [11] proposed how to dynamically
adjust the working status of BS, depending on the predicted
traffic loads. However, to reliably predict the traffic loads is
still quite challenging, which makes these works suffering
in practical applications. On the other hand, [12] and [13]
presented dynamic BS switching algorithms with the traffic
loads a prior and preliminarily proved the effectiveness of
energy saving.

Besides, it is also found that turning on/off some of the BSs
will immediately affect the associated BS of a mobile terminal
(MT). Moreover, subsequent choices of user associations in
turn lead to the traffic load differences of BSs. Hence, any
two consecutive BS switching operations are correlated with
each other and current BS switching operation will also further
influence the overall energy consumption in the long run.
In other words, the expected energy saving scheme must
be foresighted while minimizing the energy consumption. It
should concern its effect on both the current and future system
performance to deliver a visionary BS switching operation
solution.

The authors in [6] presented a partially foresighted energy
saving scheme which combines BS switching operation and
user association, by giving a heuristic solution on the basis
of a stationary traffic load profile. In this paper, we try to
solve this problem from a different perspective. Instead of
predicting the volume of traffic loads, we apply a Markov
decision process (MDP) to model the traffic load variations.
Afterwards, the solution to the formulated MDP problem can
be attained by making use of actor-critic algorithm [14], [15],
a reinforcement learning (RL) approach [16], one advantage of
which is that there is no necessity to possess a prior knowledge
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Fig. 1. Transfer learning for reinforcement learning in BS switching
operation scenario.

about the traffic loads within the BSs. On the other hand, given
the centralized structure of cellular networks, energy saving
will significantly benefit from a literally existing centralized
BS switching operation controller such as the base station
controller (BSC) in second generation (2G) cellular networks
or the radio network controller (RNC) in third generation (3G)
cellular networks rather than a distributed one. As a result,
we assume that a BS switching operation controller exists
within the reinforcement learning framework, as illustrated in
Fig. 1. The controller would firstly estimate the traffic load
variations based on the on-line experience. Afterwards, it can
select one of the possible BS switching operations under the
estimated circumstance and then decreases or increases the
probability of the same action to be later selected on the basis
of the required cost. Here, the cost primarily focuses on the
energy consumption due to such a BS switching operation
and also takes the performance metric into account to ensure
the user experience. After repeating the actions and knowing
the corresponding costs, the controller would know how to
switch the BSs for one specific traffic load profile. Moreover,
with the MDP model, the resulting BS switching strategy is
foresighted, which would improve energy efficiency in the
long run.

However, it usually take some time for the RL approaches
to be convergent to the optimal solution in terms of the
whole cost [17], [18]. Hence, the direct application of the
RL algorithms may sometimes get into trouble, especially for
a scenario where a BS switching operation controller usually
takes charge of tens or even hundreds of BSs [11]. Fortunately,
the periodicity and mobility of human behavior patterns make
the traffic loads exhibit some temporal and spatial relevancies
[19], thus making the traffic load-aware BS switching strate-
gies at different moments or neighboring regions relevant.
Therefore, we could deal with the application issue by utilizing
the conceptual idea of transfer learning (TL) [20]. TL, which
mostly concerns how to recognize and apply the knowledge
learned from one or more previous tasks (source tasks) to more
effectively learn to solve a novel but related task (target task)
[21], is intuitively appealing, cognitively inspired, and has led
to a burst of research activities [20]–[23]. By transferring the
learned BS switching operation strategy at historical moments
or neighboring regions (source tasks), TL could exploit the

temporal and spatial relevancy in the traffic loads and speed
up the on-going learning process in regions of interest (target
tasks) as depicted in Fig 1. As a result, the learning framework
of BS switching operation is further enhanced by incorporating
the idea of TL into the classical actor-critic algorithm (AC),
namely the Transfer Actor-CriTic algorithm (TACT) in this
paper.

In a nutshell, our work proposes a reinforcement learning
framework for energy saving in RANs. Compared to the
previous works, this paper provides the following three key
insights:

• Firstly, we show that the learning framework is feasible
to save the energy consumption in RANs without the
knowledge of traffic loads a prior. Moreover, the perfor-
mance of the learning framework approaches that of the
state-of-the-art scheme (SOTA) [6], which is assumed to
have fully knowledge of traffic loads. These preliminary
results have already been presented in [24].

• Secondly, we extend the idea of TL to the conventional
RL algorithms and show that the proposed TACT al-
gorithm outperforms the classical AC algorithm with a
performance jumpstart.

• Thirdly, this paper details the convergence analysis of the
TACT algorithm and thereby contributes to the general
literature in RL field, especially the general AC algo-
rithm.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model and formulate
the traffic variation as an MDP. In Section III, we talk
about the energy saving scheme by the conventional RL
framework. Section IV focuses on the incorporation of idea
of TL into the conventional RL framework and investigates
the convergence proof of the TACT algorithm. Section V
evaluates the proposed schemes and presents the validity and
effectiveness. Finally, we concludes this paper and presents
several remaining works in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Beforehand, Table I summarizes the most used notations in
this paper.

An RAN usually consists of multiple BSs while the traf-
fic loads of BSs are usually fluctuating, thus often making
BSs under-utilization. In this paper, we assume that there
exists a region L ∈ R

2 served by a set of overlapped BSs
B = {1, . . . , N} as Fig. 1 depicts. In addition, we assume
there exists a BS switching operation controller, which can
timely know the traffic loads in these BSs at current stage
and correspondingly determine the energy efficient working
status of any BS (i.e., active/sleeping mode) at next stage in a
centralized way. Beyond that, the paper focuses on downlink
communication, i.e., from BSs to MTs. Meanwhile, the file
transmission requests at a location x ∈ L arrive following a
Poisson point process with arrival rate per unit area λ(x) and
file size 1

μ(x) [25]–[27]. After that, the traffic load density at
a location x ∈ L is defined as λ(x)/μ(x) < ∞ [6], [25].
Therefore, the traffic load density can capture different spatial
traffic variations. For example, a hotspot can be characterized
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TABLE I
A LIST OF THE MAIN SYMBOLS IN THE PAPER.

Symbol Meaning

M =< S,A,P, C > MDP Tuple: State Space S , Action Space A,
s(k) ∈ S,a(k) ∈ A State Transition Probability Function P ,

and Cost Function C
superscript (k) Stage Number

V π(s) Value Function V w.r.t. Strategy π and State s
p(s,a) Policy: Tendency to Select Action a under State s

po, pn and pe Subscript o, n, e: Overall, Native and Exotic Policy
δ(s(k),a(k)) TD Error under State s(k) and Action a(k)

ν1(s(k), k) Occurrence of State s(k) in the Previous k Stages
k̂ = ν2(s(k),a(k), k) Occurrence of (s(k),a(k)) in the Previous k Stages

p̂o(k̂) Discrete Sequence: Evolution of p
(k)
o (s,a)

p̂(0)(t) Continuous Sequence: Interpolation Result of p̂o(k̂)

p̂(k̂)(t) Temporal Shifted Version of p̂(0)(t)
π̇(t), V̇ (t) and ṗo(t) Derivative of π(t), V (t) and po(s,a)
α(·), β(·), and ζ(·) Positive Step-Size Parameter in Learning Algorithms

λ(x), 1/μ(x) Arrival Rate and File Size at Location x
qi Constant Power Consumption Percentage for BS i
τ Temperature: Positive Parameter
ς Delay Performance Importance: Positive Parameter

by higher arrival rate or larger file size. Hence, when the set
of BSs Bon is turned on, the traffic loads severed by BS i ∈
Bon can be represented as Γi =

∫
L Ii(x,Bon)λ(x)/μ(x) dx,

whereas Ii(x,Bon) = 1 is a user association indicator and
denotes location x is served by BS i ∈ Bon and vice versa.
Otherwise, if a BS i is in sleeping mode, i.e., i ∈ B \ Bon,
the traffic loads are defined as zero, namely Γi = 0. To
demonstrate the temporal traffic load variations within one
BS’ coverage, i.e., P(Γ

(k+1)
i |Γ(k)

i ) within the coverage of BS
i, we partition the traffic loads Γi into several segments and
use a finite state indicator si ∈ Si to describe one segment.
Subsequently, for the whole region of interest, a state vector
s = {s1, · · · , sN} ∈ S = S1 × · · · × SN is constructed to
model the traffic load variations and constitutes a finite state
Markov chain (FSMC).

Let’s denote the transmission rate of a user located at
x and served by BS i ∈ Bon as ci(x,Bon). For analytical
convenience, assume that ci(x,Bon) does not change over
time, i.e., we do not consider fast fading or dynamic inter-
cell interference. Instead, ci(x,Bon) is assumed as a time-
averaged transmission rate in this paper, based on the fact
that the time scale of user association is commonly much
larger than the time scale of fast fading or dynamic inter-cell
interference. Hence, the inter-cell interference is considered as
static Gaussian-like noise, which is feasible under interference
randomization or fractional frequency reuse [6], [27]. Beyond
that, though ci(x,Bon) is location-dependent, it is also affected
by the shadowing effect and thus not necessarily determined
by the distance from the BS i.

Furthermore, the system load density can be defined as
the fraction of time required to deliver traffic loads from BS
i ∈ Bon to location x, namely �i(x) = λ(x)/ (μ(x)ci(x,Bon)).
Analogous to the definition of traffic loads, the system loads
for an active BS i ∈ Bon can be represented as ρi =∫
L �i(x)Ii(x,Bon) dx. Meanwhile, the system loads for a

sleeping BS i ∈ B\Bon is defined as zero. Hence, the indicator
set I = {Ii(x,Bon)|i ∈ B, x ∈ L} is feasible [25] if each BS
i ∈ B can serve ρi < 1. Eventually, our goal is to choose
certain active BSs and find a feasible user association indicator

set to minimize the total cost. By exploiting the proposed
learning framework, the controller can know the BS switching
operation strategy at last without the prior knowledge of traffic
loads. We will give the details in Section III.

B. Problem formulation

In this paper, we primarily aim to minimize the overall
energy consumption of BSs in RANs. Our previous work [11]
has shown the energy consumption of a BS is not linearly
proportional to the traffic loads within its coverage area.
Moreover, the energy consumption of BSs consists of two
categories: some constant energy consumption stays irrelevant
to BS’s traffic loads while the remainder varies proportionally
to BS’s traffic loads. Hence, we adopt the generalized energy
consumption model [6], which can be summarized as

Cee(ρ,Bon) =
∑
i∈Bon

[(1 − qi)ρiPi + qiPi] , (1)

where ρ = {ρ1, · · · , ρN}. Besides, qi ∈ (0, 1) is the constant
power consumption percentage for BS i, and Pi is the maxi-
mum power consumption of BS i when it is fully utilized.

On the other hand, in order to avoid the potential quality
of service (QoS) deterioration, we introduce a delay-optimal
metric in [25] to demonstrate the flow performance. As
defined in [25], the delay-optimal performance function can
be formulated as

Cdp(ρ,Bon) =
∑
i∈Bon

ρi
1− ρi

. (2)

Specifically, for a queue system M/G/s, (2) equals the num-
ber of flows in the system. If we try to minimize (2), Little’s
law [28] implies that it’s actually equivalent to minimize the
average delay.

Above all, our problem is to find an optimal set of active
BSs and corresponding user associations that minimizes the
function of the energy consumption while ensuring the QoS,



LI et al.: TACT: A TRANSFER ACTOR-CRITIC LEARNING FRAMEWORK FOR ENERGY SAVING IN CELLULAR RADIO ACCESS NETWORKS 2003

namely

min
ρ,Bon

{C = Cee(ρ,Bon) + ςCdp(ρ,Bon)} ,
s.t. ρi ∈ [0, 1) ∀i ∈ B,

(3)

where ς is a positive balancing parameter with a unit W/s. ς
indicates the equivalent cost for one flow waiting in the system
and reflects the importance of the delay performance relative
to the energy consumption.

III. STOCHASTIC BS SWITCHING OPERATION IN

REINFORCEMENT LEARNING FRAMEWORK

A. Markov decision process

An MDP is defined as a tuple M =< S,A,P , C >, where
S is the state space, A is the action space, P is a state transi-
tion probability function, and C is a cost function. Specifically,
at stage k, the traffic load state is s(k). Following an action
a(k) = {a(k)1 , · · · , a(k)N }, the controller choose to turn a BS
i ∈ B into sleeping mode if a(k)i = 0. Otherwise, if a(k)i = 1,
the BS i remains active. The users correspondingly associate
themselves with the remaining active BSs Bon according to an
indicator set I(k), which can be determined by the specific
metrics to select the serving BS, such as cell traffic loads or
received signal strength, etc [6]. Thereafter, if we assume that
as the traffic loads emerge, the traffic load state transforms into
s(k+1), which is determined by the exact volume of varying
traffic loads at stage k and the related serving BSs, with the
transition probability simplified to

P(s′|s(k),a(k)) =

{
1, s′ = s(k+1);

0, otherwise.
(4)

Meanwhile, the immediate cost generated by the environment
(computed by (3)) is fed back to the BS switching operation
controller.

The goal is to find a strategy π, which maps a state s
to an action π(s), i.e., a(k), to minimize the discounted
accumulative cost starting from the state s. Formally, this
accumulative cost is called as a state value function, which
can be calculated by [16]

V π(s) = Eπ

[ ∞∑
k=0

γkC(s(k), π(s(k))|s(0) = s)

]

= Eπ

[
C(s, π(s)) + γ

∑
s′∈S

P(s′|s, π(s))V π(s′)

]
,

(5)
where the positive parameter γ is the discount factor that maps
the future cost to the current state. Given the diminishing
importance of future cost than the current one, γ is smaller
than 1. The optimal strategy π∗ satisfies the Bellman equation
[16]:

V ∗(s) = V π∗
(s)

= min
a∈A

{
Eπ∗

[
C(s,a) + γ

∑
s′∈S

P(s′|s,a)V π∗
(s′)

]}
.

(6)
Since the optimal strategy minimizes the cumulative cost from
the beginning, it contributes to design a foresighted energy
saving scheme.
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algorithm (TACT).

B. The actor-critic learning framework for energy saving

There have been some well-known methods to solve the
MDP issues such as dynamic programming [16]. Unfortu-
nately, these methods heavily depend on prior knowledge
of the environmental dynamics. However, it’s challenging to
know the future traffic loads precisely in advance. Therefore,
in this paper, we employ reinforcement learning approaches
to solve the MDP problem without requiring the knowledge
of traffic loads a prior and specifically adopt the actor-critic
algorithm. As the name implies, the actor-critic algorithm
encompasses three components: actor, critic, and environment
as illustrated in Fig. 2 (Left). At a given state, the actor
selects an action in a stochastic way and then executes it.
This execution transforms the state of environment to a new
one with certain probability, and feeds back the cost to the
actor. Then, the critic criticizes the action executed by the
actor and updates the value function through a time difference
(TD) error. After the criticism, the actor will update the policy
to prefer the action with a smaller cost, and vice versa. The
algorithm repeats the above procedure until convergence. The
reasons to adopt actor-critic algorithm are three-folded: (i)
since it generates the action directly from the stored policy,
it requires little computation to select an action to perform;
(ii) it can learn an explicitly stochastic policy which may be
useful in non-Markov traffic variation environment of RANs
[29]; (iii) it separately updates the value function and policy
[16]. As a result, it would be more easily to implement the
policy knowledge transfer in Section IV, compared to other
critic-only algorithms like ε-greed and Q-learning [30], .

We design an actor-critic learning framework for energy
saving scheme as illustrated in Fig. 3.

(i) Action selection: Beforehand, let’s assume that the
system is at the beginning of stage k. Meanwhile, the traffic
load state is s(k). Thereafter, the controller needs to select an
action according to a stochastic strategy, the purpose of which
is to improve performance while explicitly balancing two
competing objectives: a) searching for a better BS switching
operation (exploration) and b) taking as little cost as possible
(exploitation). As a result, the controller not only performs
a good BS switching operation based on its past experience,
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but also is able to explore a new one. The most common
methodology is to use a Boltzmann distribution. The controller
chooses an action a in state s(k) of stage k with probability
[16]

π(k)(s(k),a) =
exp{p(s(k),a)/τ}∑

a′∈A exp{p(s(k),a′)/τ} , (7)

where τ is a positive parameter called temperature. In addition,
p(s(k),a(k)) indicates the tendency to select action a(k) at
the state s(k), and it will update itself after every stage. It’s
worthwhile to note that though there exists the possibility that
the remaining active BSs are not enough to serve the traffic
loads in the present stage k. However, as the conventional
energy saving scheme commonly does, the controller can start
an emergent response paradigm to quickly turn on some BSs.
Hence, in this paper, we assume the action a(k), which the
controller finally chooses, can meet the traffic load require-
ments.

(ii) User association and data transmission: In one stage,
there exist several slots for user association and data trans-
mission. After the controller chooses to turn some of BSs
into sleeping mode and broadcasts the traffic load density at
stage k− 1, the users choose to connect one BS according to
the modified metric in [6] and start the communications slot
by slot. Specifically, users at location x choose to join BS i∗,
while i∗ satisfies

i∗(x) = arg max
j∈Bon

cj(x,Bon)

(1− qj)Pj + ς(1− ρk−1
j )−2

, ∀x ∈ L.
(8)

As stated in [6], (8) proves to be optimal to achieve the
minimum of total cost in (3) if the active BSs are de-
termined. Intuitively, (8) would be simplified to i∗(x) =

argmaxj∈Bon

cj(x,Bon)
(1−qj)Pj

, ∀x ∈ L, if we merely consider the
minimization of energy consumption (i.e., ς = 0). The
simplified equation implies that users at location x prefer to
choose to join the BS with the largest transmission rate at the
same traffic load-related power consumption.

(iii) State-value function update: After the transmission part
of stage k, the traffic loads in each BS will change, thus
transforming the system to state s(k+1) by (4). Meanwhile,
the total cost for the transmission would be C(k)(s(k),a(k)).
Consequently, a TD error δ(k)(s(k),a(k)) would be computed
by the difference between the state-value function V (k)(s(k))
estimated at the preceding state and C(k)(s(k),a(k)) + γ ·

V (k)(s(k+1)) at the critic, namely

δ(k)(s(k),a(k))

= C(k)(s(k),a(k))

+ γ
∑
s′∈S

P(s′|s(k),a(k))V (k)(s′)− V (k)(s(k))

= C(k)(s(k),a(k)) + γ · V (k)(s(k+1))− V (k)(s(k)).

(9)

Afterwards, the TD error would feed back to the actor. By the
way, the state-value function would be updated as

V (k+1)(s(k)) = V (k)(s(k)) +α(ν1(s
(k), k)) · δ(k)(s(k),a(k)).

(10)
Here, ν1(s(k), k) denotes the occurrence times of state s(k)

in these k stages. α(·) is a positive step-size parameter that
affects the convergence rate. On the other hand, if s �= s(k),
V (k+1)(s) will be kept the same as V (k)(s).

(iv) Policy update: At the end of stage k, the critic would
employ the TD error to “criticize” the selected action, which
is implemented as

p(k+1)(s(k),a(k))

= p(k)(s(k),a(k))− β(ν2(s
(k),a(k), k)) · δ(k)(s(k),a(k)),

(11)
Similar to ν1(s

(k), k), ν2(s(k),a(k), k) indicates the executed
times of action a(k) at state s(k) in these k stages. β(·)
is a positive step-size parameter. (7) and (11) ensure one
action under a specific state can be selected with higher
probability if the “foresighted” cost it takes is comparatively
smaller, i.e., δ(k)(s(k)), (a)(k) < 0. Additionally, if a �= a(k),
p(k+1)(s(k),a) = p(k)(s(k),a).

If each action is executed infinitely often in every state, in
other words, if in the limit, the learning strategy is greedy
with infinite exploration, the value function V (s) and strategy
π(k)(s,a) will finally converge to V ∗ and π∗ with probability
(w.p.) 1 as k → ∞ [31].

IV. TRANSFER ACTOR-CRITIC ALGORITHM FOR

STOCHASTIC BS SWITCHING OPERATION

A. Motivation and formulation of transfer actor-critic algo-
rithm

The previous section addresses the methodology to exploit
the classical AC algorithm to conduct the BS switching
operation, culminating in an effective energy saving strategy
in the end. In this section, we present the means that the
controller utilizes the knowledge of learned strategies during
historical periods or neighboring regions to be in the groove
of finding the optimal BS switching operations.
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Basically, the policy, say p(s,a), which finally determines
the strategy π(s,a) in one learning task, indicates the ten-
dency of action a to be chosen in state s. When the learning
process converges, the tendency to choose a specific action a
in a specific state is comparatively larger than that of other
actions. In other words, it means that if the BS switching
operation is conducted based on one learned strategy, the
energy saving in the whole system tends to be optimized in
the long run. Hence, if the knowledge of this policy p(s,a)
is transferred to another task, e.g., the knowledge transferred
from Period 1 (source task) to Period 2 (target task) within the
same region of interest in Fig. 1, the controller in the target
task can make an attempt by taking the same action a when the
traffic loads come into state s. Compared to learning from the
scratch, the controller might directly make the wisest choice
at the very beginning. However, in spite of the similarities
between the source task and the target task, there might still
exist some differences. For example, the system might come
into the same state in two different tasks, whereas the traffic
loads in the source task (e.g., Period 1) might be usually
higher than that in the target one (e.g., Period 2). Hence,
instead of staying on the chosen action a in source task, the
controller in target task can make a more aggressive choice to
turn more BSs into sleeping mode, thus saving more energy
consumption. Consequently, in this case, the transferred policy
guides in a negative manner. To avoid this underlying problem,
the transferred policy should have a decreasing impact on
choosing a certain action, once the controller has attempted to
choose this action and nurtured its own learning experience.

Taking the above considerations into account, we propose
a new policy update method, named Transferred Actor-CriTic
algorithm (TACT) as Fig. 2. In the TACT algorithm, the overall
policy (i.e., po) to select an action is divided as a native one pn

and an exotic one pe. Without loss of generality, let’s assume
that at stage k, the traffic load state is s(k) and the chosen
action is a(k). Accordingly, the overall policy po is updated
as

p(k+1)
o (s(k),a(k))

=
[
(1− ζ(ν2(s

(k),a(k), k)))p(k+1)
n (s(k),a(k))

+ζ(ν2(s
(k),a(k), k))pe(s

(k),a(k))
]pt

−pt

,

(12)

where [x]ba with b > a, denotes the Euclidean projection
of x onto the interval [a,b], i.e., [x]ba = a if x < a;
[x]ba = b if x > b; and [x]ba = x if a ≤ x ≤ b. In
this case, a = −pt and b = pt, with pt > 0. Additionally,
p
(k+1)
o (s(k),a) = p

(k)
o (s(k),a), ∀a ∈ A but a �= a(k).

Besides that, pn(s,a) still updates itself according to the
classical actor-critic algorithm, namely (11).

Initially, the exotic policy pe(s,a) dominates in the overall
strategy. Hence, when the environment enters a state s, the
presence of pe(s,a) contributes to choose the action, which
might be optimal to s in the source task. Consequently, the
proposed policy update method leads to a possible perfor-
mance jumpstart. On the other hand, since ζ(·) ∈ (0, 1) is
the transfer rate and ζ(k) → 0 as k → ∞, the effect of
the transferred exotic policy pe(s,a) continuously decreases.
Therefore, the controller can not only take advantage of the

learned expertise in the source task, but also swiftly get rid of
the negative guidelines.

Finally, we summarize our proposed TACT algorithm in
Algorithm 1 .

Algorithm 1 TACT : The Transfer Learning Framework for
Energy Saving

Initialization:
for each s ∈ S, each a ∈ A do

Initialize state-value function V (s), native policy func-
tion pn(s,a), exotic policy function pe(s,a) (transferred
knowledge) and strategy function π(s,a);

end for
Repeat until convergent

1) Choose an action a(k) in state s(k) according to
π(k)(s(k),a(k)) in (7);

2) Users at location x connect one BS i by (8) and then
start data transmission;

3) If ρi ≤ 1, ∀i ∈ L, the chosen action is feasible.
The cost function C(s(k),a(k)) is calculated by (3);
otherwise, an emergent response paradigm starts as the
conventional scheme does.

4) Identify the traffic loads and accordingly update state
s(k) → s(k+1) and compute the TD error by (9);

5) Update the state-value function (10) for s = s(k);
6) Update the native policy function and the overall pol-

icy function by (11) and (12) for s = s(k),a = a(k),
respectively;

7) Update the strategy function π(k+1)(s(k),a) by (7),
for s = s(k) and all a ∈ A.

B. Convergence analysis

Next, we are interested in the convergence of TACT algo-
rithm, since the knowledge transfer makes the policy update
in the proposed TACT algorithm distinct from that in the
classical AC algorithms and it becomes difficult to directly
apply the convergence results in the latter ones. We start the
analysis by introducing several related lemmas. Singh [31]
shows that the Boltzmann method is greedy in the limit with
infinite exploration, based on a large enough τ . Therefore, we
have the following lemma.

Lemma 1. If we use the Boltzmann exploration method with
a large enough τ , there thereby exists an η > 0, such that

lim
k→∞

ν2(s,a, k)

k
≥ η, ∀s ∈ S,a ∈ A. (13)

In other words, as k → ∞, ν2(s,a, k) = ηk → ∞.

Definition 1. Define a function ϑs,a(po) as

ϑs,a(po) =

⎧⎪⎨
⎪⎩

0 if po(s,a) = pt and δ(s,a) ≥ 0,

or po(s,a) = −pt and δ(s,a) ≤ 0,

1 otherwise.

(14)

The next theorem states that our proposed policy update
tracks an ordinary differential equation (ODE).

Theorem 1. Assume that the learning rate β(k) in (11) satisfies
∞∑
k=0

β(k) = ∞, β(k) ≥ 0,

∞∑
k=0

β(k)2 < ∞, (15)
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and the transfer rate ζ(k) satisfies lim ζ(k)/β(k) → 0 as k →
∞. po(s,a) asymptotically tracks the solution of the ODE

ṗo(t) = −δ(s,a)ϑs,a(po), ∀s ∈ S,a ∈ A, (16)

where δ(s,a) = lim δk(s,a) as k → ∞.

Proof: We provide a proof sketch here and will address
the details in Appendix. Without loss of generality, assume
that the state is s(k). By Algorithm 1, at stage k, the policy
value po(s

(k),a) would be changed only when a is the exe-
cuted action a(k). Therefore, by merely including the updated
values, we could form another discrete sequence p̂o(k̂)

1 to
indicate the evolution of p

(k)
o (s(k),a(k)). Here, the index k̂

equals ν2(s(k),a(k), k). After that, by introducing a concept of
β(k̂)-induced continuous time t and interpolating the discrete
sequence p̂o(k̂), we construct a continuous sequence p̂(0)(t)

and its shifted version p̂(k̂)(t). Next, we prove that the shifted
continuous sequence p̂(k̂)(t) is equicontinuous. Based on the
discussions around the Arzelà-Ascoli Theorem [32], we finally
obtain that any limit of p̂(t), or the discrete equivalent p̂o(k̂),
must track the solution of the ODE in (16) for a sufficiently
large k̂. By Lemma 1, the theorem comes.

In addition, we introduce the definition of a strict Lyapunov
function [32], which is the fundamental of our following proof.

Definition 2. Suppose that for an ODE ż(t) = f(z) defined
on a region D, V (z) is a continuously differentiable and real-
valued function of z such that V (0) = 0, V (z) > 0, ∀z �= 0.
If V̇ (t) = ∇V · ż(t) = ∇V · f(z) ≤ 0 on the region D, and
the equality holds only when ż(t) = 0, the function V (z) is
a strict Lyapunov function for the ODE ż(t).

Our proof relies on the following theorem by Konda and
Borkar [14], which establishes the convergence of a general
actor-critic algorithm.

Theorem 2. Assume that the learning rate α(k) satisfies the
assumptions in Section 2.2 [14] and β(k) and ζ(k) meet the
conditions in Theorem 1. If the strategy π, which is derived
by (7) with the policy update method given by (12), has a
strict Lyapunov function for the ODE π̇(t), we thereby have π
converges w.p. 1 and ‖π − π∗‖ ≤ ε for any ε > 0 as pt → ∞.

Beforehand, it comes the following lemma by directly
applying (5) in (9).

Lemma 2.

∑
a∈A

δ(s,a)π(s,a) = 0, ∀s ∈ S. (17)

Lemma 3. If the strategy π(s,a) tracks the solution of ODE
π̇(t), and π̇(t) satisfies π̇(t)δ(s,a) ≤ 0, then we have
∇V π(s)π̇(t) ≤ π̇(t)δ(s,a) ≤ 0, ∀s ∈ S.

Proof: For two distinct policies π and π′, let’s define a
value function operation T (π′, V π(s))
= Eπ′

[
C(s,a) + γ

∑
s′∈S p(s′|s,a)V π(s′)

]
. Assume that

there exists an infinitesimal ε > 0 such that π + επ̇(t) is still

1Indeed, p̂o(k̂) refers to p̂
(k̂)
o (s(k),a(k)). But, for simplicity of represen-

tation, the notation of s(k) and a(k) is omitted here.

a valid strategy. If denote π′ = π + επ̇(t), we thereby have

T (π′, V π(s))− V π(s)

= Eπ′

[
C(s,a) + γ

∑
s′∈S

P(s′|s,a)V π(s′)

]
− V π(s)

=
∑
a∈A

{
π′

[
C(s,a) + γ

∑
s′∈S

P(s′|s,a)V π(s′)− V π(s)

]}

=
∑
a∈A

(π + επ̇(t))δ(s,a)

=
∑
a∈A

επ̇(t)δ(s,a) ≤ 0

The last equality follows from Lemma 2.
Denote an iteration operation of T (π′, V π(s)) as

T n(π′, V π(s)) = T n−1(π′, T (π′, V π(s))), we have
T n(π′, V π(s)) ≤ T n−1(π′, V π(s)) ≤ · · · ≤ V π(s).

In addition, T n(π′, V π(s)) − V π(s) ≤ ∑
a∈A

επ̇(t)δ(s,a),

for n > 1. As n → ∞, T n(π′, V π(s)) → V π′
(s), we obtain

V π′
(s)− V π(s)

ε
=

V π+επ̇(s)− V π(s)

ε
≤ π̇(t)δ(s,a) ≤ 0.

As ε → 0, ∇V π(s)π̇(t) ≤ π̇(t)δ(s,a) ≤ 0. The claim
follows.

Theorem 3.
∑
s∈S

V π(s) is a strict Lyapunov function for ODE

π̇(t), if pt is sufficiently large.

Proof: By explicit differentiating (7) over t, we have

π̇(t) =
1
τ
exp [po(s,a)/τ ]∑

a′∈A exp [po(s,a′)/τ ]
ṗo(t)

−
1
τ
exp [po(s,a)/τ ]

∑
a′∈A {exp [po(s,a

′)/τ ] ṗo(t)}
{∑

a′∈A exp [po(s,a′)/τ ]
}2

=
1

τ
π(s,a)ṗo(t)− 1

τ
π(s,a)

∑

a′∈A
π(s,a′)ṗo(t)

=
1

τ
π(s,a)ṗo(t)− 1

τ
π(s,a)

∑

a′∈A
π(s,a′)

[−δ(s,a′)ϑs,a′(po)
]

=
1

τ
π(s,a)ṗo(t).

The last equality follows from Lemma 2, after taking into
account that if pt is sufficiently large, ϑs,a(po) = 1 holds. By
Theorem 1,

π̇(t)δ(s,a) =

[
− 1

τ
π(s,a)δ(s,a)ϑs,a(po)

]
· δ(s,a)

= − 1

τ
π(s,a) [δ(s,a)]

2 ≤ 0.

The equality only holds at the equilibrium point ṗo(t) =
−δ(s,a) = 0. By Lemma 3, ∇V π(s)π̇(t) ≤ 0. Therefore,
according to Definition 2, the claim follows.

Theorem 4. Regardless of any initial value chosen for pn(s,a),
and transferred knowledge pe(s,a), if the learning rate α(k),
β(k) and the transfer rate ζ(k) meets the required conditions
meanwhile pt and τ are sufficiently large, the Algorithm 1
converges.

Proof: The proof is the direct application of Theorem 2,
which establishes the convergence given two conditions. First,
the policy po(s,a) tracks the solution of an ODE, by Theorem
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Fig. 4. Illustration of BS deployment in our simulation scenario.

1. Second, the tracked ODE has a strict Lyapunov function,
by Theorem 3. Therefore, the learning process in Algorithm
1 converges.

V. NUMERICAL ANALYSIS

We validate the energy efficiency improvement of our
proposed scheme by extensive simulations under practical
configurations. Here, we simulate for an area of 2km × 2km,
where there exist five macro BSs and five micro BSs [6], [33]
as Fig. 4 shows. Moreover, we assume that file transmission
requests at location x ∈ L follow a Poisson point process with
arrival rate λ(x) and file size 1/μ(x). To ease the simulation
process, each BS’ traffic load state merely takes value of 0
or 1 (0 represents the case where the realistic traffic loads
are smaller than the historical average one while 1 indicates
the other cases). Beyond that, we assume the maximum
transmission powers for BSs, i.e., 20W and 1W for macro
and micro BSs, respectively. Based on the linear relationship
between transmission and operational energy consumption in
[6], the maximum operational powers for macro BS and micro
BS are 865W and 38W, respectively. We set the propagation
channel according to the COST-231 modified Hata model [34]
and don’t consider the influence of fast fading effect and
noise. As for the proposed TACT algorithm, the learning rate
α(k) = 1/k while β(k) = 1

/
(k log k) [14]. Moreover, the

transfer rate ζ(k) = θk , with the transfer rate factor θ ∈ (0, 1),
thus satisfying the assumption in Theorem 1.

By the way, we assume the extra cost is negligible when
we turn the necessary BSs into active mode. Besides, we
define cumulative energy consumption ratio (CECR) as the
metric to test how much energy saving can be achieved due
to the application of our proposed schemes. Specifically, the
CECR metic is defined by the ratio of the accumulative energy
consumption when certain BSs are turned off (as our scheme
runs) to that when all the BSs stay active since our simulation
starts. This definition is reasonable since it can show the
foresighted energy efficiency improvement, which is exactly
the goal of an energy saving scheme.

TABLE II
USED SIMULATION PARAMETERS

Parameter description Value

Simulation area 2km × 2km
Maximum transmission power Macro BS 20W Micro BS 1W

Maximum operational power Macro BS 865W Micro BS 38W
Height Macro BS 32m Micro BS 12.5m

Channel bandwidth 1.25MHz
Intra-cell interference factor 0.01

Arrival rate λ(x) 5× 10−6

File size 1/μ(x) 100kbyte
Constant Power Percentage q 0.5

Temperature τ 1000
Discount Factor γ 0.001

Transfer Rate θ 0.2
Delay Performance Importance ζ 0 W/s
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Fig. 5. Performance comparison under various homogeneous traffic arrival
rates.

Besides, we would compare the performance2 of our pro-
posed schemes with that of the state-of-the-art (SOTA) scheme
[6], which assumes the controller can obtain a full knowledge
of traffic loads in prior and finds the optimal BS switching
solution by greedily turning as many as BSs into sleeping
mode. To simplify the comparison, we simulate by adjusting
only one parameter while configuring the others according to
Table II.

Firstly, we examine how much energy saving can be
achieved under different static traffic load arrival rates. [6]
shows that when all BSs are turned on, a homogeneous traffic
distribution of λ(x) = 10−4 for all x ∈ L will offer loads
corresponding to about 10% of BSs utilizations. Therefore, we
vary the homogeneous traffic arrival rate λ(x) from 5×10−6 to
5×10−4 to reflect the effect of traffic loads on energy saving.
Here, the transferred policy is generated from a source task
with the static arrival rate λ = 5×10−6. As depicted in Fig. 5,
we can expect more significant energy conservation with the
decrease of arrival rate λ. This is because that if all the BSs
stay active under lower traffic loads, the BSs are more highly
under-utilized. Moreover, the CECR continues decreasing as
the simulation runs, since the controller will have a better
understanding of the traffic loads and thereby know whichever
action has a better energy efficiency. Unfortunately, since

2Due to the space limitation, only temporal knowledge transfer is consid-
ered for the TACT scheme.
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Fig. 6. Performance tradeoff between energy and delay under different delay
equivalent cost scenarios.

the proposed learning schemes3 are performed without the
knowledge of traffic loads a prior, the performance of them
are inferior to that of the SOTA scheme, especially at the
beginning of the simulations. However, we can see that the
gap compensated for the absent knowledge becomes much
smaller, when the TACT scheme is applied with the learned
knowledge.

After validating the feasibility of proposed learning frame-
work to save the energy, Fig. 6 depicts the performance trade-
off between energy consumption and delay under different
delay equivalent cost scenarios by tuning ς . When ς = 0, the
energy saving is most significant. However, this also incurs
a limited increase in delay. Comparatively, the energy saving
would be less obvious if we put more emphasis on the delay
equivalent cost by choosing a larger ς so as to decrease the
delay. Again, we could also find that the tradeoff points of
TACT are closer to those of the SOTA solutions in all these
scenarios.

Fig. 7 presents the performance improvement4 of TACT
scheme over classical AC scheme. As expected, the TACT
scheme yields a relatively large performance improvement,
especially at the beginning of each simulation. In other words,
the TACT scheme contributes to a performance jumpstart, or
a faster convergence speed. Fig. 7 also depicts the similar-
ity between the source task and the target task, measured
by Kullback-Leibler divergence [35]. It shows a smaller
Kullback-Leibler divergence between the source task and the
target task leads to a more efficient transfer effect. Besides,
we also plot the impact of transfer rate factor θ in Fig. 8.
Generally speaking, as we expect, larger θ results in faster
convergence rate and larger energy saving.

We also investigate the performance of the proposed
schemes when traffic loads periodically fluctuates. [12] shows
practical traffic load profile is periodical and can be approx-

3Together with the classical AC algorithm, ε-Greed algorithm is also
compared. But, due to the insufficient exploration issue in the ε-Greed
algorithm [16], the corresponding performance is the worst in all cases and
then refrains us to use it further.

4The performance improvement is calculated by dividing the energy con-
sumption margin between TACT scheme and classical AC scheme over the
energy consumption using classical AC scheme.
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Fig. 8. Performance impact of the transfer rate factor θ to the TACT scheme.

imated by a sinusoidal function λ(k) = λV · cos(2π(k +
φ)/D)+λM, where D is the period of a traffic load profile, λV

is the variance of traffic profile and λM is the mean arrival rate.
Therefore, we employ λ(k, x) = (0.99 ·cos(2π(k+10)/24)+
1)× 10−5 to approximate the practical traffic load arrival rate
at location x ∈ L. Fig. 9 compares the performance of the
proposed schemes and shows that the TACT scheme converges
faster than the classical AC scheme.

At last, we continue the performance evaluation of our pro-
posed schemes and present more detailed sensitivity analyses
in Fig. 10. In Fig. 10 (a)–(c), we present the simulation results
under various configurations to reflect the effect of tempera-
ture value τ , file size 1/μ and constant power consumption
percentage q. We can observe that the performance trends
match our common sense in all these cases. For example, in
Fig. 10 (a), a larger value of τ implies that the controller
has a higher desire to explore new actions. Therefore, even
though the controller has tried the wisest action, the controller
would choose more actions with larger cost, resulting in a less
significant energy consumption saving. Fortunately, the TACT
scheme could exploit the transferred knowledge to avoid some
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Fig. 9. Performance comparison with time-variant traffic arrival rate
λ(k, x) = (0.99 · cos(2π(k + 10)/24) + 1)× 10−5 .
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Fig. 10. Performance comparison under various configurations: (a) Different
values of τ , (b) Different file sizes 1/μ, (c) Different energy consumption
models, and (d) Different arrival rates in a 6 BS (red shaded region in Fig.
4) scenario. All these simulations results are generated after 1500 stages.

certainly undesirable actions and performs better than the
classical AC one, especially at larger values of τ . Fig. 10
(b) demonstrates that the effect of file sizes to the scheme
performance would be similar to that of arrival rates. Fig.
10 (c) implies that the schemes will perform better when the
constant power consumption accounts for a larger proportion
of the whole cost, since turning off one under-utilized BS
will make a clearer difference and save more energy in these
cases. On the other hand, we also give the simulation results
for the red shaded region with 6 BSs (illustrated in Fig. 4) and
exhibit the robustness of our proposed schemes in different BS
deployment scenarios.

VI. CONCLUSION

In this paper, we have developed a learning framework
for BS energy saving. We specifically formulated the BS
switching operations under varying traffic loads as a Markov
decision process. Besides, we adopt the actor-critic method,
a reinforcement learning algorithm, to give the BS switching
solution to decrease the overall energy consumption. After-
wards, to fully exploit the temporal relevancy in traffic loads,

we propose a transfer actor-critic algorithm to improve the
strategies by taking advantage of learned knowledge from
historical periods. Our proposed algorithm provably converges
given certain restrictions that arise during the learning process,
and the extensive simulation results manifest the effectiveness
and robustness of our energy saving schemes under various
practical configurations.

Similar to the simulated temporal knowledge transfer, our
proposed TACT approach is potentially viable to be applied
in spatial scenarios to achieve a performance improvement.
Unfortunately, the mapping of knowledge will be sometimes
less straightforward in the latter case, due to the underlying BS
geographical deployment differences. Therefore, we are ded-
icated to handle the related meaningful yet more challenging
issues over spatial knowledge transfer in the future.

APPENDIX

Proof of Theorem 1.
Proof: Without loss of generality, assume that at stage k,

the state is s(k) and the chosen action is a(k). Moreover, the
latest stage that the state-action pair (s(k),a(k)) occurred is
stage m. Thus, by Algorithm 1, the policy p

(j)
o (s(k),a(k)) re-

mains invariant for any j ∈ [m, · · · , k). For simplicity of rep-
resentation, we denote one sequence p̂o(k̂) = p

(k)
o (s(k),a(k))

and p̂o(k̂ − 1) = p
(j)
o (s(k),a(k)) for any j ∈ [m, · · · , k),

where the index k̂ equals ν2(s
(k),a(k), k). In addition, the

sequences p̂n(k̂) and δ̂(k̂) are defined analogously to p̂o(k̂).
Thus, based on (12), we have

p̂o(k̂) = p(k)o (s(k),a(k))

=
[
(1− ζ(k̂ − 1))p̂n(k̂) + ζ(k̂ − 1)pe(s

(k),a(k))
]pt

−pt

.

(18)
Firstly, assume that pt is large enough such that

∣∣∣p̂o(k̂)
∣∣∣ < pt

and
∣∣∣p̂o(k̂ + 1)

∣∣∣ < pt, while the assumption will be dropped
later.

Subtracting (12) to (18), we obtain

p̂o(k̂ + 1)− p̂o(k̂)

= (1 − ζ(k̂ − 1))
(
p̂n(k̂ + 1)− p̂n(k̂)

)
− (ζ(k̂)− ζ(k̂ − 1))

(
p̂n(k̂ + 1)− pe(s

(k),a(k))
)

= −β(k̂)(1− ζ(k̂ − 1))δ̂(k̂)

− (ζ(k̂)− ζ(k̂ − 1))
(
p̂n(k̂ + 1)− pe(s

(k),a(k))
)
.

(19)

The last equality holds because of (11).

Define t0 = 0 and tk̂ =
∑k̂−1

j=0 β(j). For t ≥ 0, let K(t)

denote the unique value of k̂ such that tk̂ ≤ t < tk̂+1,
as Fig. 11-(a) depicts. For t < 0, set K(t) = 0. Define
the continuous time interpolation p̂(0)(·) on (−∞,∞) by
p̂(0)(t) = p

(0)
o (s(k),a(k)) for t ≤ 0, and for t ≥ 0,

p̂(0)(t) = p̂o(K(t)) = p̂o(k̂), for tk̂ ≤ t < tk̂+1.

Moreover, we define the sequence of shifted processes
p̂(k̂)(t) = p̂(0)(tk̂ + t), t ∈ (−∞,∞), as Fig. 11-(d)
depicts. Define Yj = 0 and Zj = 0 for j < 1. Moreover,
define Yj = (1 − ζ(j − 1))δ̂(j) and Zj = (ζ(j) − ζ(j −
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Fig. 11. Illustration of (a) the function K(t), (b) the function p̂(0)(t), (c)
the function K(t

k̂
+ t) and (d) the function p̂(k̂)(t).

1))
(
p̂n(j + 1)− pe(s

(k),a(k))
)

for j ≥ 1. Define Z(0)(t) = 0
for t ≤ 0 and

Z(0)(t) =
∑K(t)−1

j=0
Zj ,

Z(k̂)(t) = Z(0)(tk̂ + t)− Z(0)(tk̂) =
∑K(t

k̂
+t)−1

j=k̂
Zj , t ≥ 0.

Taking into account the definitions above (recall that
K(tk̂) = k̂), the following equation can be achieved by a
manipulation of (19)

p̂(k̂)(t) = p̂o(k̂)−
∑K(tk̂+t)−1

j=k̂
(β(j)Yj + Zj)

= p̂o(k̂)−
∑K(tk̂+t)−1

j=k̂
(β(j)Yj)− Z(k̂)(t).

(20)

Since p̂(k̂)(t) is piecewise constant, we can rewrite (20) as

p̂k̂(t) = p̂o(k̂)−
∫ t

0

YK(tk̂+x)dx− Z(k̂)(t) + ϕ(k̂)(t), (21)

where ϕ(k̂)(t) is the outcome due to the replacement of the
first sum in (20) by an integral. ϕ(k̂)(t) = 0 at the times when
the interpolated sequences have jumps, i.e., t = tk̂′ − tk̂, k̂

′ >
k̂, and ϕ(k̂)(t) → 0 in t as k̂ → ∞ under the assumption in
(15).

Besides that, by our assumption that
lim ζ(k̂)/β(k̂) → 0 as k̂ → ∞, Zk̂ =

(ζ(k̂) − ζ(k̂ − 1)) ·
(
p̂n(k̂ + 1)− pe(s

(k),a(k))
)

=

o(β(k̂))
(
p̂n(k̂ + 1)− pe(s

(k),a(k))
)

. Therefore,

Z(k̂)(t) =
∑K(tk̂+t)−1

j=k̂
o(β(j))

(
p̂n(j + 1)− pe(s

(k),a(k))
)
.

Thus, as k̂ → ∞, Z(k̂)(t) is negligible, since it’s a small
order of magnitude to

∑K(tk̂+t)−1

j=k̂
β(j)Yj .

Given the above discussion, as k̂ → ∞, the sequence of
functions p̂(k̂)(t) = p̂o(k̂) −

∫ t

0 YK(tk̂+x)dx is equicontinous.
Hence, by the Arzelà-Ascoli Theorem [32], there is a conver-
gent subsequence in the sense of uniform convergence on each
bounded time integral, and it’s easily seen that any limit of
p̂(t), or the discrete equivalent p̂o(k̂), must track the solution
of the ODE ˙̂p(t) = −δ̂(k̂) for sufficiently large k̂.

Next, in the special case where p̂o(k̂−1) = pt and δ̂(k̂−1) ≥
0, at next stage k, the overall policy p̂o(k̂) would equal pt.

Thus, the ODE ˙̂p(t) = 0. Similar discussion can be easily
applied to the case, where p̂o(k̂− 1) = −pt and δ̂(k̂− 1) ≤ 0.

Furthermore, as k → 0, by Lemma 1, k̂ =
ν2(s

(k),a(k), k) → ∞.
Summarizing the above discussion and taking into account

δ(s(k),a(k)) = lim δ(k)(s(k),a(k)) as k → ∞, we can obtain

ṗo(t) = −δ(s(k),a(k))ϑs(k),a(k)(po). (22)

The claim follows.
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